Hidden Common Cause Relations in Relational Learning

- Ricardo Silva (Gatsby Unit/UCL)
- Wei Chu (Columbia)
- Zoubin Ghahramani (Cambridge)

silva@statslab.cam.ac.uk
In a Nutshell

- The problem: classification with non-iid data
 - The source of non-iidness: relational information
- A new family of models:
 - Where conditioning creates dependence
 - This means chains of training points generate “long distance” dependencies
 - Distinct from and complements Markov networks
- Experiments with classification of text documents
Learning with Non-IID Data
Hidden Common Cause Relations

X:
- Capital (GE)
- Capital (Westinghouse)

Y:
- Stock price (GE)
- Stock price (Westinghouse)

Industry factor 1
Industry factor 2
Industry factor k?

…
Notation: Directed Mixed Graphs

X:
- Capital(GE)
- Stock price(GE)

Y:
- Capital (Westinghouse)
- Stock price (Westinghouse)

Richardson (2003)
What are the implications? – a comparison with Markov networks/CRFs

\[Y_i \] observed node \quad \[Y_i \] unobserved node

\[Y_1 \] \rightarrow \[Y_2 \] \rightarrow \[Y_3 \] \rightarrow \[Y_4 \]
Information from \[Y_1 \] passes to \[Y_4 \]

\[Y_1 \] \rightarrow \[Y_2 \] \rightarrow \[Y_3 \] \rightarrow \[Y_4 \]
Information from \[Y_1 \] does not pass to \[Y_4 \]

\[Y_1 \] \leftrightarrow \[Y_2 \] \rightarrow \[Y_3 \] \rightarrow \[Y_4 \]
Information from \[Y_2 \] does not pass to \[Y_4 \]

\[Y_1 \] \leftrightarrow \[Y_2 \] \rightarrow \[Y_3 \] \rightarrow \[Y_4 \]
Information from \[Y_2 \] passes to \[Y_4 \]
Model for Binary Classification

- Non-parametric probit regression

\[P(y_i = 1 | x_i) = P(y^*(x_i) > 0) \]
\[y^*(x_i) = f(x_i) + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, 1) \]

- Zero-mean Gaussian process prior over \(f(\cdot) \)

- Relational dependency model:
 - Make \(\{\varepsilon\} \) dependent multivariate Gaussian, unit variance
 - For convenience, decouple it into two error terms

\[\varepsilon = \varepsilon^* + \zeta \]
Dependency Model: the Decomposition

\[\varepsilon = \varepsilon^* + \zeta \]

Independent from each other

Marginally independent

Dependent according to relations

\[\sum \varepsilon = \sum \varepsilon^* + \sum \zeta \]

Diagonal

Not diagonal, with 0s only on unrelated pairs
Dependency Model: the Decomposition

\[y^*(x_i) = f(x_i) + \varepsilon = f(x_i) + \zeta + \varepsilon^* = g(x_i) + \varepsilon^* \]

- If \(K \) was the original kernel matrix for \(f(\cdot) \), the covariance of \(g(\cdot) \) is simply

\[\Sigma_{g(.)} = K + \Sigma_{\varepsilon^*} \]

- Plugging-in Expectation-Propagation:
 - Likelihood does not factorize over \(f(\cdot) \), but factorizes over \(g(\cdot) \! \):

\[p(g \mid x, y) \propto p(g \mid x) \prod_i p(y_i \mid g(x_i)) \]
Parameterizing the Relational Covariance Σ_ζ

- “Poking” zeroes in a covariance matrix is tricky:

\[
\begin{bmatrix}
1 & 0.8 & 0.8 \\
0.8 & 1 & 0.8 \\
0.8 & 0.8 & 1
\end{bmatrix}
\]

- (Note: Markov network forces zeros on the inverse)

\[
\Sigma^{-1} =
\begin{bmatrix}
1 & \rho_{12} & 0 \\
\rho_{12} & 1 & \rho_{23} \\
0 & \rho_{23} & 1
\end{bmatrix}
\]
Parameterizing the Relational Covariance Σ_ζ

- Find all cliques and create a latent variable for each.
- Rescale marginal correlation matrix U by a factor ρ
 - $\Sigma_\zeta = \rho U$
 - ρ becomes a hyperparameter in $[0, 1]$
- In practice, cannot extract all cliques
- Suggestion: triangulate and then extract
 - A relaxation of the problem (not always harmless)
Experimental Setup

- Three text classification tasks

Comparisons:
- Standard Gaussian Process classifiers
- Standard GPs with link features
- The relational GP (RGP) of Chu et al. (2006 – Last NIPS)
- Our Mixed Graph Gaussian Process: XGP
- Linear kernels

Criterion:
- Area under the curve (AUC)

Transductive setting:
- Test points given in advance
Experiment I: Political Books dataset

- 105 books: conservative or liberal?
- Text extracted from Amazon.com front pages
- Available at www.statslab.cam.ac.uk/~silva

- 50% training, 50% test
- AUC for standard GP: 0.92
- AUC for RGP and XGP about the same: 0.98
Experiment II: Subset of CORA

- Database of publications in Computer Science
- 1% for training, 99% for test (too easy)
 - Very “uniform” links – mostly between same class papers
- XGP cannot do better than RGP when there is so little training data to propagate information

Table 1: The averaged AUC scores of citation prediction on test cases of the Cora database are recorded along with standard deviation over 100 trials. “\(n \)” denotes the number of papers in one class. “Citations” denotes the citation count within the two paper classes.

<table>
<thead>
<tr>
<th>Group</th>
<th>(n)</th>
<th>Citations</th>
<th>GPC</th>
<th>GPC with Citations</th>
<th>XGP</th>
</tr>
</thead>
<tbody>
<tr>
<td>5vs1</td>
<td>346/488</td>
<td>2466</td>
<td>0.905 ± 0.031</td>
<td>0.891 ± 0.022</td>
<td>0.945 ± 0.053</td>
</tr>
<tr>
<td>5vs2</td>
<td>346/619</td>
<td>3417</td>
<td>0.900 ± 0.032</td>
<td>0.905 ± 0.044</td>
<td>0.933 ± 0.059</td>
</tr>
<tr>
<td>5vs3</td>
<td>346/1376</td>
<td>3905</td>
<td>0.863 ± 0.040</td>
<td>0.893 ± 0.017</td>
<td>0.883 ± 0.013</td>
</tr>
<tr>
<td>5vs4</td>
<td>346/646</td>
<td>2858</td>
<td>0.916 ± 0.030</td>
<td>0.887 ± 0.018</td>
<td>0.951 ± 0.042</td>
</tr>
<tr>
<td>5vs6</td>
<td>346/281</td>
<td>1968</td>
<td>0.887 ± 0.054</td>
<td>0.843 ± 0.076</td>
<td>0.955 ± 0.041</td>
</tr>
<tr>
<td>5vs7</td>
<td>346/529</td>
<td>2948</td>
<td>0.869 ± 0.045</td>
<td>0.867 ± 0.041</td>
<td>0.926 ± 0.076</td>
</tr>
</tbody>
</table>
Experiment III: WebKB

- Hardest task: “outlier” detection
 - Identify pages that are not student/faculty/department/project
- Notice that links between pages are of all sorts
 - Makes sense to propagate information only if class label is given
- 10% for training, 90% for test

Table 2: Comparison of the three algorithms on the task “other” vs. “not-other” in the WebKB domain. Results for GPC and RGP taken from [2]. The same partitions for training and test are used to generate the results for XGP. Mean and standard deviation of AUC results are reported.

<table>
<thead>
<tr>
<th>University</th>
<th>Numbers</th>
<th>Other</th>
<th>All</th>
<th>Link</th>
<th>GPC</th>
<th>RGP</th>
<th>XGP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornell</td>
<td></td>
<td>617</td>
<td>865</td>
<td>13177</td>
<td>0.708 ± 0.021</td>
<td>0.884 ± 0.025</td>
<td>0.917 ± 0.022</td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td>571</td>
<td>827</td>
<td>16090</td>
<td>0.799 ± 0.021</td>
<td>0.906 ± 0.026</td>
<td>0.949 ± 0.015</td>
</tr>
<tr>
<td>Washington</td>
<td></td>
<td>939</td>
<td>1205</td>
<td>15388</td>
<td>0.782 ± 0.023</td>
<td>0.877 ± 0.024</td>
<td>0.923 ± 0.016</td>
</tr>
<tr>
<td>Wisconsin</td>
<td></td>
<td>942</td>
<td>1263</td>
<td>21594</td>
<td>0.839 ± 0.014</td>
<td>0.899 ± 0.015</td>
<td>0.941 ± 0.018</td>
</tr>
</tbody>
</table>
Conclusions

- Truly new relational model
 - Remember to think: graphical models are more than drawings
- Trivial to implement
 - One can reuse GP classifier code easily
- Requires one more hyperparameter only
- Many directions to explore:
 - So far, extremely simple covariance parameterizations
 - Several alternatives of parameterization as open directions
 - Combination of different relationships
 - Multiple kernel learning
 - Different models, heteroskedastic noise, full Bayesian learning, etc.
- Code available at http://www.statslab.cam.ac.uk/~silva