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Abstract

We consider the problem of automatically discovering analogies between pairs of pro-
teins that are known to interact. For example, given a pair of interacting proteins,
P1:P2, which of two other interacting pairs, P3:P4 or P5:P6, interacts in a way that is
most “similar” to P1:P2? In other words, is the interaction P3:P4 more analogous to
P1:P2 than P5:P6 is? The goal of such exploratory analysis is to find new subclasses
of interactions that might be relevant for further study: e.g., P1:P2 might belong to
a class of interactions that is not yet fully formalized, and scientists exploring the
interaction between P1:P2 might want to find other interactions which behave in an
analogous way. This can lead to novel ways of categorizing proteins based on func-
tional similarity. We present a Bayesian formulation of this question and illustrate its
application to exploring new taxonomies of protein-protein interactions. In order to
objectively evaluate the performance of our method against state-of-the-art and pop-
ular methods for information retrieval, we adopt an evaluation measure based on the
Munich Institute for Protein Sequencing taxonomy. The results indicate a significant
advantage for our approach.
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1 Contribution

Many university admission exams, like the American Scholastic Assessment Test (SAT) and Graduate
Record Exam (GRE), used to include a section on analogical reasoning. A prototypical analogical rea-
soning question is as follows:

DOCTOR:HOSPITAL ::

A) sports fan : stadium

B) cow : farm

C) professor : college

D) criminal : jail

E) food : grocery store

The examinee has to answer which of the 5 pairs best matches the relation implicit in DOCTOR:HOSPITAL.
Although all candidate pairs interact in some way, pair professor:college seems to best capture the
notion of (object, place of work) implicit in the relation between doctor and hospital.

Performing this type of analogical reasoning could be extremely useful in less mundane domains.
Consider the following question, composed solely of pairs of interacting proteins according to the MIPS
classification system (Mewes and et. al, 2004):

YDL061C : YLR167W ::

A) YBR084CA : YJL189W

B) YBL092W : YKR094C

C) YDL083C : YGL189C

D) YBL027W : YJL189W

E) YDR178W : YKL148C

In the given question, YDL061C is a protein of type cytoplasm (40.03), while YLR167W is of type
cytoplasmic and nuclear degradation (6.13.01). Such is also the case of B) YBL092W : YKR094C. Other
pairs contain members which are both in the 40.03 class but none in 6.13.01, and are in this sense not
as close to the question pair as option B.

Dividing the population of protein interactions into subpopulations with similar mechanisms of linkage
is therefore a way of categorizing proteins and their functional roles. The population of interacting pairs
of proteins is not uniform. The biological mechanism by which protein pair P1:P2 is linked might not
be the same mechanism behind the linkage of P3:P4, as illustrated above. The result of this effort
is that taxonomies such as the Gene Ontology (Ashburner et al., 2000), or the Munich Institute for
Protein Sequencing (MIPS) database (Mewes and et. al, 2004) can be enriched by suggesting analogical
similarities of protein interactions.
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As an example, consider the following thought experiment. Suppose, for the sake of illustration, that
one was not aware of the above mentioned MIPS categories 40.03 and 6.13.01. Still, the scientist has
observed a set S composed of a few pairs of proteins interacting in the cytoplasm, where one protein in
each pair appears to have a functional role related to cytoplasmic degradation. The biological relevance
of this regularity could be strengthened if other pairs with similar behavior were detected. This detection
can be difficult in the early stages of investigation, where no rule that classifies pairs according to this
class of interaction is known, and no labeled data for building classifiers is available. However, if one could
query a database of protein-protein interactions to identify pairs similar to those in S, this information
could be used to further clarify functional roles.

In this article we propose a novel way of determining the relational similarity of protein-protein
interactions. Like some other approaches (Valencia and Pazos, 2002; Bader, 2003; Nabieva et al., 2005),
this method analyses data containing: 1. information about which pairs of protein interact; 2. features
of proteins, such as the respective gene expression levels corresponding to a given protein. Unlike some
other approaches, our goal is to retrieve protein pairs that would belong to the same subpopulation
(“cluster”) of interactions represented by S. This is not a classification problem; our goal is not to
predict if two proteins interact or not.

We emphasize that analogies might be ambiguous.1 As a consequence, our methodology (and avail-
able software) is meant to provide an exploratory data analysis tool that is able to formulate and rank
plausible analogies between protein-protein relations. The solution we propose for making less ambigu-
ous queries is to allow for sets of pairs to be used. In this setup, the implicit qualitative relation is the
same for all members in “question set” S, and the goal is to rank all other relations by how similar
they are to this common, implicit, S-interaction2. In information retrieval terminology (Manning et al.,
2007), our set S is a query set for which a retrieval system has to provide similar items.

To summarize, the core ideas that form our contribution are:

1. motivation: finding similar protein-protein interactions is a relevant and important problem, be-
cause it allows for novel taxonomies of proteins;

2. good methods for finding similar protein-protein interactions must be able to identify and select
the relevant (predictive) physical attributes, or features, for any given interaction.

3. using only a single example to describe a subpopulation of protein-protein interactions is arguably
a very ambiguous description. Larger query sets provide more consistent descriptions;

2 Approach

The basic approach we take in this paper was originally introduced by Silva et al. (2007). We detail its
fundamental principles, and describe the particular way by which this approach is applicable to scalable
protein-protein exploratory data analysis.

Let A and B represent object spaces. To say that an interaction A:B is analogous to S = {A1:B1,
A2:B2, . . . , AN :BN} is to define a measure of similarity between the pair and the set of pairs. However,
this similarity is not (directly) given by the information contained in the distribution of objects {Ai} ⊂ A,
{Bi} ⊂ B, but by the mappings classifying such pairs as being linked:

Bayesian analogical reasoning formulation: Consider a space of latent functions
in A×B → {0, 1}. Assume that A and B are two objects classified as linked by some
unknown function f(A, B), i.e., f(A, B) = 1. We want to quantify how similar the
function f(A, B) is to the function g(·, ·), which classifies all pairs (Ai, Bi) ∈ S as being
linked, i.e., g(Ai, Bi) = 1. The similarity should be a function of the observations
{S, A, B} and our prior distribution over f(·, ·) and g(·, ·).

Such a similarity will be defined through a Bayes factor, as explained next. For simplicity, we will
consider a family of latent functions that is parameterized by a finite-dimensional vector: the logistic
regression function with multivariate Gaussian priors for its parameters.

1One of the reasons why ETS has dropped analogical reasoning questions from its college admission exams in the United
States.

2To borrow an example from a clustering task (Ghahramani and Heller, 2005), words such “republican” and “US
president” seem to express the concept implicit in the set {“Bush”, “Nixon”, “Reagan”}, while the set {“Bush”, “Putin”,
“Blair”} suggests concepts such as “current world leader”.

2



A B

C

A B

C

Θ

N N

N
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

A B

A B

C

ΘC

N N

N

(a) (b)

Figure 1: (a) Graphical plate representation for the relational Bayesian logistic regression, where NA, NB

and NC are the number of objects of each class, where NC is equal to the number of elements in LAB.
(b) Extra dependencies induced by further conditioning on C are represented by undirected edges.

For a particular pair (Ai ∈ A, Bj ∈ B), let X ij = [Φ1(A
i, Bj) Φ2(A

i, Bj) . . . ΦK(Ai, Bj)]T be a point
on a feature space defined by the mapping Φ : A × B → ℜK . Let Cij ∈ {0, 1} be an indicator of the
existence of a link between Ai and Bj in the database. Let Θ = [θ1, . . . , θK ]T be the parameter vector
for our logistic regression model

P (Cij = 1|X ij , Θ) = logistic(ΘT X ij) (1)

where logistic(x) = (1 + e−x)−1. Our measure of similarity for a pair (Ai, Bj) with respect to a query
set S is the probabilistic similarity measure of “Bayesian sets” (Ghahramani and Heller, 2005) on a
log-scale:

score(Ai, Bj) = log P (Cij = 1|X ij ,S,CS = 1)
− log P (Cij = 1|X ij)

(2)

where CS is the vector of link indicators for S: i.e., C1 = 1, C2 = 1, . . . , CN = 1 indicates that all pairs
in S are linked.

The general framework is as follows. We are given a relational database (DA,DB,LAB), where the
first two components of this database are sampled respectively from A and B. Relationship table LAB

is a binary matrix assumed to be generated by a logistic regression model of link existence. A query
proceeds according to the steps below:

1. the user selects a set of pairs S that are linked in the database;

2. the system performs Bayesian inference to obtain the corresponding posterior distribution for Θ,
P (Θ|S,CS), given a Gaussian prior P (Θ);

3. the system iterates through all linked pairs, computing for each pair the integrals

P (Cij = 1|X ij,S,CS = 1) =∫
P (Cij = 1|X ij, Θ)P (Θ|S,CS = 1) dΘ (3)

P (Cij = 1|X ij) =
∫

P (Cij = 1|X ij , Θ)P (Θ) dΘ (4)

4. given the value of such integrals, the system sorts pairs according to the score in Equation (2).
This sorted list is the output.

Since the integral used in the Bayesian logistic function (3) does not have a closed formula, in all of
these expressions we use the Bayesian variational approximation by Jaakkola and Jordan (2000). For
completeness, we briefly review this approach in the Appendix.

The corresponding plate model is illustrated in Figure 1(a). Latent parameter vector Θ = {θ1, θ2, . . . , θK}T

and objects A and B are ancestors of link indicator C. By conditioning on C = 1, elements of Θ will be
connected to and share information from input data {A, B}, as in Figure 1(b). This information can be
passed forward to evaluate other points. The suggested setup scales as O(K3) due to the matrix inver-
sions necessary for (variational) Bayesian logistic regression (Jaakkola and Jordan, 2000). If necessary,
a further approximation for P (Θ|S,CS) might be imposed if the dimensionality of Θ is too high.
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2.1 Modeling protein-protein interactions

In our molecular biology experiments, we use data that indicates if two pairs of proteins interact or
not. This reduces to a binary class problem with two classes: interaction exists and interaction does
not exist. The type of interaction will depend on the data. For instance, the MIPS data indicate co-
complex protein pairs. It is hand curated data and does not include information from high-throughput
datasets. Since the population of protein-protein interactions depend on the experimental conditions
under which they were measured, the subpopulations that our method is meant to find also depend on
such conditions.

The approach cannot succeed if the underlying model is not a good classifier of protein-protein
interactions. Results from Qi et al. (2006) indicate that logistic regression can provide reasonable
predictions for the data we use in our experiments. It is always important to check this condition before
using our method, since it assumes from the outset that the data can be reasonably separated into the
interaction/no interaction classes.

2.2 Priors and the role of “negative data”

Two important parts of the algorithm still need to be clarified. First, the algorithm described seemingly
never uses the “negative” data, i.e., the pairs that do not interact. Second, one needs to decide on a
prior for the model, which plays an important role in the proposed approach.

The answers for both questions are interwined. As discussed by Ghahramani and Heller (2005) and
Silva et al. (2007), empirical priors are used. To be more precise, in our setup we initially fit a logistic
regression classifier using a maximum likelihood estimation (MLE) and our data, obtaining the estimate

Θ̂.
A covariance matrix Σ̂ for Θ is set proportional to the MLE estimated covariance:

(Σ̂)−1 = c ·
(
XTŴX

)
/N (5)

where N is the total number of (positive and negative) pairs in our data, X is the N × K matrix
containing the protein-protein features that were used in the MLE computation. Matrix M is a diagonal
matrix. Entry (M)rr is given by p̂(r) · (1− p̂(r)), where p̂(r) is the MLE predicted probability of positive
interaction for the t-th row of X.

The constant c is a user-defined parameter. In our experiments, we set c to be equal to the number
of elements in S. The interpretation is that we are using as a prior a sample of size equivalent to our
query. Results are fairly insensitive to small variantions of c. In general, for larger queries one might
want to limit the size of c, depending on the domain.

The prior for Θ is then set to be the normal N (Θ̂, Σ̂). As previously mentioned in Silva et al. (2007),
empirical priors are a sensible choice: this is a retrieval, not a predictive, task. Basically, the entire
data set is the “population.” A data-dependent prior based on the population is quite important for
an approach like Bayesian sets, since deviances from the “average” behaviour in the data are useful to
discriminate between subpopulations.

Notice this data for prior fitting includes both positively (interacting) and negatively (non-interacting)
classified pairs. Therefore, the negative data plays an important role through the prior. Moreover, this
indirect role of negative data is a computational asset: the computational bottleneck lies on the Bayesian
inference steps of our approach, which do not use the negative data (and which usually are in much larger
numbers than the positive pairs). This contrasts with other common approaches (Silva et al., 2007).

A visual intuition on the role of the prior, negative data, and resulting score function is given in
Section 4.1.

3 Results

Our approach measures similarity through a function space instead of a feature space. To evaluate the
merits of our approach, we designed experiments in which we perform protein-protein retrieval.

In this section, we evaluate our approach on data collected from yeast cells. Our gold standard for
protein-protein interactions is the Munich Information Center for Protein Sequences (MIPS) catalog
(Mewes and et. al, 2004). Details on the particular data we use are given in Appendix B. Moreover, we
make use of the MIPS classification system for proteins in the evaluation criteria described shortly. We
also describe competing approaches against which we compare our algorithm, and perform a sensitivity
analysis on the importance of the prior distribution and feature space.
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3.1 Evaluation metric

Evaluating the relevance of proposed analogical similarities is not a straightforward process, and is prone
to subjective assessments and extended discussions, as typically happens in the development of a new
taxonomy. In our studies, we propose an objective measure of evaluation that is used to rank different
algorithms.

Conside a query set S, and a ranked response list R = {R1, R2, R3, . . . , RN} of protein-protein pairs.
Every element of S is a pair of proteins Pi:Pj such that Pi is of class M1 and Pj is of class M2, where M1

and M2 are classes lying on the bottom of the MIPS classification system. For instance, M1 = 67.04.01.02
(other cation transporters (Na, K, Ca , NH4, etc.)) and M2 = 67.5 (transport mechanism).

The retrieval algorithm that generates R does not receive any information concerning the MIPS
taxonomy. It ranks R starting from the protein pair that is judged most similar to S, followed by
the other protein pairs in the population in decreasing order of similarity. Each algorithm has its own
measure of similarity.

The evaluation criterion for each algorithm is as follows: we generate a precision-recall curve (Man-
ning et al., 2007) and calculate the area under the curve (AUC). For more details concerning precision-
recall curves, see Appendix C.

Notice that in the experiments that follow, we want to focus on very specific MIPS subclasses. This
is solely for evaluation purposes, since such classes are known to the experimenter but not known to the
algorithm. Our criterion is rather stringent, in the sense it requires a perfect match of each RI with the
MIPS categorization, which is not an unique gold standard for analogical similarity. AUC scores will be
lower than in typical information retrieval applications. However, we will adopt this score in our study
due to its several advantages:

1. it is readily available and does not rely on further subjective assessments;

2. there are several ways by which a pair RI might be analogous to the relation implicit in S, and they
do not need to agree with MIPS. Still, we postulate that there is a correlation between the MIPS
categorization given to S and relevant subpopulations of protein-protein interactions similar to S.
Therefore, the corresponding AUC is a tool for comparing the usefulness of different algorithms;

3.2 Algorithms

We compare our approach against two widely used similarity metrics for information retrieval, and one
state-of-the-art method:

• the nearest neighbor measure (NN) with Euclidean distances: for a given query set S and a given
candidate point RI , the distance between the point and the set is given by the minimum distance
between RI and any individual point in S;

• the cosine distance metric (COS): the distance between any two vectors is taken as the inner
product of the normalized vectors, where the normalized vector is obtained by dividing it by its
Euclidean norm. To measure the distance between a point and a set, we take the average of the
distances;

• the Gaussian Bayesian sets metric (GBSets): Bayesian sets (Ghahramani and Heller, 2005) give
state-of-the-art performance for tasks such as retrieval of word concepts and images. Since our
features are continuous, we used a variation based on Gaussian models. Details are given in
Appendix D.

Because our variation of Bayesian sets is motivated by relational data, we call our approach the
relational Bayesian sets method (RBSets), to contrast it with the Gaussian Bayesian set (GBSets)
described above.

None of these approaches can be interpreted as measures of analogical similarity, since they do
not take into account how the protein pair features (gene expression, in our case) contribute to their
interaction3. We are not aware of any other measure which does. It is true that a direct measure of
analogical similarity is not theoretically required to perform well according to our evaluation metric.
However, we will see that in this task our measure can often perform an order of magnitude better than
other approaches by reasoning analogically.

3As a consequence, none uses negative data. Another consequence is the necessity of modeling the input space, a
difficult task given the dimensionality and the continuous nature of the features.
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Figure 2: Average precision/recall curves for four different types of queries of size 15. Each curve is an
average over 20 random trials.

3.3 Studies

We chose 4 different protein-protein combinations for our benchmark. They were chosen according to
the MIPS categorization and shown below, along with the percentage of interacting pairs they represent
after we remove the query elements:

• Query 1: 67.04.01.02× 67.5 (i.e., other cation transporters (Na, K, Ca , NH4, etc.) × transport
mechanism), 1% of the interacting pairs;

• Query 2: 40.03 × 06.13.01 (i.e., cytoplasm × cytoplasmic and nuclear degradation), 2.5% of the
interacting pairs;

• Query 3: 04.03.03× 04.01.04 (i.e., tRNA processing × rRNA processing), 0.3% of the interacting
pairs;

• Query 4: 8.04× 8.04 (i.e., mitochondrial transport × mitochondrial transport), 0.7% of the inter-
acting pairs;

For each query evaluation, we randomly choose 15 elements of the given class of pairs and run the 4
algorithms with the selected input. This is repeated 20 times. Figure 2 shows the average precision-recall
curves for each query, with the coordinates of each point in the curve being the average of the 20 query
results.

As expected, such curves are lower than typical precision-recall curves for the binary classification
problem of predicting protein-protein interactions, such as the ones depicted in Qi et al. (2006). A direct
comparison between the classification curves and the retrieval curves of Figure 2 is not appropriate, since
the classification curves have a well-defined loss function (0/1, for wrong and correct predictions)4. The
loss function employed in the retrieval problem is not optimal, but chosen for the reasons pointed in
Section 3.1.

We can see how much better RBSets performs when compared against different approaches. Ta-
ble 3.3 summarizes the difference in the area under curve between our approach and the others. All
differences are significant under a sign test at a 0.01 level (all differences are all positive).

4It is also clear that we are dealing with many fewer “positive examples” (i.e., the selected query size) than in a common
binary classification setup. In Qi et al.’s setup, there are thousands of “positive examples” against 15 of ours.
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Query RBSets - NN RBSets - GBSets RBSets - Cosine

1 0.14 (0.05) 0.14 (0.05) 0.16 (0.05)
2 0.04 (0.03) 0.06 (0.02) 0.08 (0.02)
3 0.10 (0.03) 0.08 (0.03) 0.10 (0.04)
4 0.11 (0.04) 0.12 (0.04) 0.12 (0.04)

Table 1: Differences in the area under the curve between our algorithm and each of the other
three algorithms. See Section 3.3 for details. Each entry contains the average (over 20 trials) and
the respective standard deviations in parenthesis. The areas under the curve for our algorithm are
(0.17, 0.14, 0.10, 0.13), with respective standard deviations of (0.05, 0.02, 0.03, 0.04).
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Figure 3: Histograms of the ratio AUC(RBSets) / AUC(NN) for the four different types of queries.

The limited performance of Gaussian Bayesian sets can be attributed not only to the relational nature
of the data, which this model was not designed for, but also to the multimodality of the distribution of a
few variables. However, removing these variables did not alter significantly the behavior the algorithm,
which now might be due to the loss of information given by these variables.

It is also interesting to visualize the distribution of the ratio statistics. For the nearest neighbor
algorithm, we computed the ratio between the area under curve of RBSets and the area for NN in each
of the 20 trials. The distribution can be visualized in Figure 3. Gains over an order of magnitude are
common.

There are some explanations for the rapid degradation of precision in Query 2 (40.03 × 06.13.01).
The particular difficulty in this case is the fact that every protein in all queries is also of MIPS types
(5.01, 40.03) (with the ribosome biogenesis type (5.01) being one of the most numerous categories in
the MIPS data). This is a good illustration of the strictness of our evaluation criterion, since in some
sense pairs of type 40.03 × 06.13.01 are also of type 40.03 × 5.01, 40.03 × 4.03, 5.01 × 5.01. Had
we counted pairs of type (5.01, 40.03) × (5.01, 40.03) as valid hits, we would have achieved very high
precision-recall curves (e.g., close to 100% precision in the top 50 hits), but the query would then be
uninteresting due to the high concentration of pairs of this subpopulation. The restriction of perfect
matching makes results appear less dramatic, but implicitly it might be ranking relevant subpopulations
within (5.01, 40.03) × (5.01, 40.03). Only further studies on determining the significance of such pairs
might provide a more fair evaluation.
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Figure 4: Degradation of performance by using a random prior instead of the empirically derived one.

3.3.1 Sensitivity analysis: prior

In order to evaluate the importance of the empirical prior, we re-run the 20 experiments of Query 1
using a random prior. This prior uses the same covariance matrix Σ̂ from our original definition, but
the mean parameter Θ̂ is now a random vector, sampled from a standard Gaussian with independent
variables.

The result is illustrated in Figure 4, where we replicate the curve obtained with the original prior
(average over 20 trials) with the curve obtained with the same queries for the random priors. The
average area under the curve is 0.07, contrasted with the 0.17 area for the original prior.

3.3.2 Sensitivity analysis: feature set

Ultimately, the success of our approach will depend on a good predictive model of interaction existence.
We perform some preliminary studies on how a more flexible classifier could improve the results pre-
sented here. In order to achieve a more flexible discriminant with logistic regression, we expand our
feature set to include other non-linear transformations of the data. We used all second-order monomials
that can be obtained from our original features (e.g., for a feature set {x, y}, the resulting expanded
feature set is {x2, y2, xy}). Unfortunately, this did not increase the evaluation statistic compared to our
simpler model. This might be a limitation of the information contained in the data. However, further
research on integrating more flexible discriminants than logistic regression are likely to improve results
in general. How to incorporate nonparametric classifiers in a computationally efficient way for our task
is an interesting open question.

4 Discussion

In biology, there is a historical division between analogies and homologies (Griffiths et al., 2002, p. 622).
Homologies are similarities due to physical structure. One example of physical structure is the genotype.
In this case, the common genetic ancestry between the wing of a bat and the arm of a human make them
genetically homologous structures. In constrast, analogies are similarities due to functionality, such as
the wings of bats and wings of birds, which do not share common structural genetic ancestry. In the
light of such definitions and that the interaction of proteins follows from their function, we postulate
that functional (interaction) similarities of interest should be analogical in nature, and derive measures
of similarity accordingly.

It is fair to say that structural features ultimately underly functional similarity, depending on how
such features are defined. However, given a set of structural features that are fixed a priori, the impor-
tance of each feature will vary with respect to the target interaction. For instance, consider a SAT-like
exam where for a given pair (say, water:river) we have to choose (out of 5 pairs) the one that best
matches the type of relation implicit in such a query. In this case, it is reasonable to say car:traffic
would be a better match than (the somewhat nonsensical) soda:ocean, since cars flow through traffic,
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and so does water through a river. The feature that water, river, soda and ocean are either liquids or
liquid bodies is not relevant in this relation.

In this sense, one can say that weights given to features of objects (proteins) in our similarity measure
can only be assigned based on the extent to which such features are useful to predict the existence of
the target relation (protein-protein interactions). We formalized this idea with our approach in Section
2. We provided evidence of its usefulness in Section 3.

4.1 An illustration

A clearer understanding of the algorithm and the role of negative data can be obtained by visualizing a
particular example.

We generated data from two classes. The data is represented in Figure 5(a), where the x’s are
the positive data points, and the triangles the negative points. Positive points were generated over
two independent circles of radius 0.15. To facilitate visualization, positive and negative regions do not
overlap.

Let {X1, X2} be the original space. We use the Bayesian logistic classifier with feature space Φ(X) =
{X1, X2, X

2
1 , X2

2 , X1X2}. A possible empirical prior, which uses the MLE estimated covariance instead
of Equation (5), is shown in (b). The role of the negative data should be clear from Figure (c): while
the positive datapoints are the same as in (a), a different distribution of negative points induces a
completely different empirical prior. In Figure 5(d), we show the prior suggested in Section 2.2, with
c = 1. Increasing c brings this prior closer to the one in (b), with equality attained at c = N .

When conditioned on a query, the probability mass moves around, as exemplified by Figure 5(e) and
(f). A query set S of 5 points points is depicted within small circles in Figure 5(e). The contours in (e)
correspond to different scores (Equation 2) for points in this input space, when conditioned in S. Notice
that this score is a function of the prior boundary and the query set. The top 20 data points according
to our score are show within diamonds in Figure (e). Figure (f) shows the posterior distribution given
S (corresponding to Equation 3).

Figures 5(g) and (h) depict the results for a different query. Again the query points are depicted as
small circles in (g), with the top 20 points within small diamonds5. Notice that in both (e) and (g),
the posterior space defines a distance function that is very different from what could be expected from
Euclidean distance.

This can be visualized in Figure 6. This distance, measured with respect to the same query set
of Figure 5(g), uses a type of nearest neighbor measure. The result consists on concentric ellipses.
This measure is more favorable to the southmost points than ours. This is not in accord to our prior
decision boundary (Figure 5), which treates the curvature at the south points rather differently from the
curvature at the southwest points, where our query lies.

A geometric intuition of our analogical reasoning formulation can be summarized as follows: the
query points define a new curvature on the decision surface (the probability of interaction surface). This
new surface results from the initial prior surface, with the space being bent by the introduction of the
query points. The regions that change most towards this new curvature are those whose relationship
best matches the one defined by the query.

4.2 Related work

To define an analogy is to define a measure of similarity between structures of related objects (pairs of
proteins, in our case). A key aspect of this is that, typically, we are not interested in how each individual
object (protein) in a candidate pair (protein-protein pair) is similar to individual objects in the query
pairs. This concept of assessing analogical similarity through a measurement of relational similarity
instead of object similarity was formalized by the Structure Mapping Theory (SMT) of Gentner (1983).
SMT eventually became an influential work on analogical reasoning in the artificial intelligence and
cognitive science literature (French, 2002).

There is a large literature on analogical reasoning in artificial intelligence and psychology. We refer
to French (2002) for a survey. Other recent references are discussed in Silva et al. (2007). The graphical
model formulation of Getoor et al. (2002) incorporates models of link existence in relational databases,

5For this example, we illustrate a query that does not correspond to points in the original dataset.
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(h)

Figure 5: Contour plots for different priors and query-dependent posteriors in a two-dimensional input
space. Color varies from blue to red as the probability of positive class increases. In (a), positive points
are indicated by x’s, and negative ones by triangles. In (b), the prior that is obtained using the maximum
likelihood estimates (MLE) as parameters. In (c), a dataset that has a different distribution for negative
data, but the same for positive data, induces a completely different empirical prior using the same MLE
criterion. In (d), the prior obtained when we used the smoothed MLE parameters described in Section
2.2 (we use c = 1 in this case). In (e), a contour of the scores (Equation 2) obtained by a particular
query set and the prior in (d). The query points are depicted as circles, and the top 20 positive data
points are depicted within diamonds. In (f), the posterior distribution (Equation 3) induced by such
a query. Another query is depicted in the last row: (g) shows the score contours, and (h) shows the
posterior contours. All values obtained with the variational approximation.
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Figure 6: The same query of Figure 5(g) results in very different score contours if an Euclidean nearest
neighbor criterion is used (described in Section 3.2). Points indicated with crosses are some of the points
whose score are relatively inflated when compared to our metric.

an idea used explicitly in this work. In the clustering literature, the probabilistic approach of Kemp
et al. (2006) is motivated by principles similar to those in our formulation: the idea is that there is an
infinite mixture of subpopulations that generates the observed relations. See (Silva et al., 2007) for a
detailed comparison.

4.3 What this approach is not about

To emphasize once more, our focus here is not on predicting the presence or absence of links, as in, e.g.,
(Qi et al., 2006) but rather on retrieving similar links from among those already assumed to exist in the
relational database. Neither is our focus to provide a fully unsupervised clustering of the whole database
of pairs (as in, e.g., Airoldi et al., 2006; Kemp et al., 2006).

Although the problem of predicting protein-protein interactions is popular in bioinformatics liter-
ature, it has little to do with the task we describe in this paper. Qi et al. (2006), for instance, use
machine learning techniques to predict if a particular pair interacts or not. We are not solving this
problem. Our very different setup assumes from the outset that the protein-protein interactions are
given. The problem we tackle in this paper is a type of information retrieval or clustering on demand
problem, where we search over the space of already linked proteins. Our goal is to discover, given a set
of interacting pairs (a “cluster”), which other interacting pairs are plausible elements of this set.

5 Conclusion

We presented a novel measure of similarity between biological structures based on the principe of ana-
logical comparison. It provides a way of clustering biological data that is considerably different from
other methods, due to its focus on analysing the space of functions that map object features to their
relations, instead of the feature space itself. For small size queries, our method find analogies that are
functionally relevant among the top matches

This work can be expanded in many ways, including but not limited to: allowing for extra depen-
dencies between interactions that are not due to input features X ; scaling up the algorithm to allow
for higher-dimensional data; apply it to other domains such as evaluating analogies between cells from
different species. We believe several useful variations of our approach can be designed in the future.
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Appendix

A. Variational method

In this appendix we summarize the variational approximation for Bayesian logistic regression, as de-
scribed by Jaakkola and Jordan (2000). The task is to compute the integrals of the type shown by
Equations (3) and (4).

Let g(y) be the logistic function, g(y) = (1 + e−y)−1, and consider the case for the single data point
evaluation, Equation (4). The method lower-bounds the integrand as follows

P (C|X, Θ) = g(ΘT X) ≥ g(ξ) exp{(HC − ξ)/2 − λ(ξ)(H2
C − ξ2)} (6)

where HC = (2C − 1)ΘT X and λ(ξ) = tanh(ξ/2)/(4ξ), tanh(·) being the hyperbolic tangent function.
Consider first approximating P (Θ|X, C), which is obtained by normalizing

P (C|X, Θ)P (Θ) ≥ Q(C|X, Θ)P (Θ)

where Q(C|X, Θ) is the expression on the righ-hand side of (6).
Since this bound assumes a quadratic form as a function of Θ and our priors are Gaussian, the

approximate posterior will be Gaussian, which we denote by N (µpos, Σpos). However, this bound can
be loose unless a suitable value for the free parameter ξ is chosen. The key step in the approximation is
then to optimize the bound with respect to ξ.

Let the Gaussian prior P (Θ) be denoted as N (µ, Σ). The procedure reduces to an iterative opti-
mization algorithm where for each step the following updates are made:
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Σ−1
pos = Σ−1 + 2λ(ξ)XXT

µpos = Σ−1
pos

[
Σ−1µ + (C − 1/2)X

]

ξ = (XT ΣposX + (XT µpos)
2)1/2

(7)

To approximate an integral such as (3), a sequential update is performed: starting from the prior
P (Θ) for the first data point (X, C) in (S,CS), the resulting posterior N (µpos, Σpos) is treated as the
new prior for the next point. The ordering is chosen from an uniform distribution in our implementation.

Finally, given the optimized approximate posterior, the predictive integrals (3) (and, analogously,
(4) can be approximated as

log Q(Cij |X ij ,S,C) = log g(ξij) − ξij/2 + λ(ξij)ξ
2
ij

− 1
2µT

S
Σ−1

S
µT
S

+ 1
2µT

ijΣ
−1
ij µT

ij

+ 1
2 log(|Σ−1

ij |/|Σ−1
S

|)
(8)

where parameters (µS, ΣS) are the ones in the approximate posterior Θ|(S,CS) ∼ N (µS, ΣS), and
(µij , Σij) come from the approximate posterior Θ|(S,CS, X ij , Cij). Parameters (ξij , ξS) come from the
respective approximate posteriors.

B. Features and data

We use the data collected by Qi et al. (2006). Their MIPS data consists of 8236 positive protein-protein
interactions, and approximately 230,000 pairs that are labeled as negative examples. There are 162
attributes, 20 of which are derived from gene expression data. Details on how this data was collected is
given in the reference.

In our studies, we make use of the gene expression data only: most of the remaining attributes
contained a sizeable proportion of missing data6. Although there are standard ways of dealing with
missing data in logistic regression, we wanted to avoid adding another source of variance to our first
results. Better ways of dealing with missing data will be treated in a future extension of this paper.

Given the 20 attributes of a given pair Pi:Pj , we non-linearly transform them as follows: we first
calculate the Euclidean norm of the vector of 20 attributes, and normalize the vector by dividing each
entry by this norm. This normalization is reminiscent of the cosine distance metric (Manning et al.,
2007), a common distance metric in information retrieval applications. On top of the normalized 20
attributes, we also included the squared value of each of the 20 original variables as another source of
non-linear transformation.

C. Precision-recall curves

The curve is generated by scanning R in a sequential manner. For each element RI ∈ R, we calculate

• its corresponding precision, that is, the number of elements in {R1, R2, . . . , RI} that are either of
M1:M2 or M2:M1 class7 (we assume assymetric interactions are being measured), divided by I;

• its corresponding recall, that is, the number of elements in {R1, R2, . . . , RI} that are either of
M1:M2 or M2:M1 class, divided by the total number of elements in R that are of such classes;

The precision/recall of each RI defines a point in a space with recall in the x-axis and precision in
the y-axis.

D. Gaussian Bayesian sets

The most common implementation of Bayesian sets is based on binary data. Given the relatively small
dimensionality of our space (20 features), binarization is unlikely to produce any meaningful model.
Instead, we will treat the data as continuous, with a multivariate Gaussian model. The prior for the
parameters is a normal-Wishart prior with a mean and covariance hyperparameters. We set those

6Those attributes that are mostly complete are either poor predictors − as analyzed by Qi et al. − or are Gene Ontology
(GO) features. We did not want to add GO features to our study, since this would bias our results towards a particular
human-designed taxonomic system.

7Each protein in MIPS belongs to several classes. We consider Pi to be of class Mj if Mj is one of its classes.
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hyperparameters proportional to the maximum likelihood estimator using the positive pairs. Two user-
defined parameters, r and υ are needed: r is a multiplication factor for the mean hyperparameter, and
υ is a multiplication factor for the inverse covariance matrix hyperparameter (Heller and Ghahramani,
2005). We set r = 20 and υ = 1 to achieve broad priors.

14


