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Abstract Graphical models are widely used to encode conditional independence
constraints and causal assumptions, the directed acyclic graph (DAG) being one
of the most common families of models. However, DAGs are not closed under
marginalization: that is, if a distribution is Markov with respect to a DAG, several
of its marginals might not be representable with another DAGunless one discards
some of the structural independencies. Acyclic directed mixed graphs (ADMGs)
generalize DAGs so that closure under marginalization is possible. In a previous
work, we showed how to perform Bayesian inference to infer the posterior distribu-
tion of the parameters of a given Gaussian ADMG model, where the graph is fixed.
In this paper, we extend this procedure to allow for priors over graph structures.
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1 Acyclic Directed Mixed Graph Models

Directed acyclic graphs (DAGs) provide a practical language to encode conditional
independence constraints (see, e.g., [8]). However, such afamily is notclosed under
marginalization. As an illustration of this concept, consider the followingDAG:

Y1→ Y2← X → Y3← Y4

This model entails several conditional independencies. For instance, it encodes con-
straints such asY2 ⊥⊥ Y4, as well asY2 6⊥⊥ Y4 | Y3 andY2 ⊥⊥ Y4 | {Y3,X}. Directed
graphical models are non-monotonic independence models, in the sense that condi-
tioning on extra variables can destroy and re-create independencies, as the sequence
{ /0,{Y3},{Y3,X}} has demonstrated.
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If X is a latent variable which we are not interested in estimating, there might be
no need to model explicitly its relationship to the observedvariables{Y1,Y2,Y3,Y4}
– a task which would require extra and perhaps undesirable assumptions.

However, marginalizingX results in a model that cannot be represented as a
DAG structure without removing some of the known independence constraints.
Since any constraint that conditions onX has to be dropped in the marginal for
{Y1,Y2,Y3,Y4} (for instance,Y2 ⊥⊥ Y4 | {Y3,X}), we are forced to include extra
edges in the DAG representation of the remaining variables.One possibility is
{Y1→ Y2← Y3← Y4,Y4→ Y2}, where the extra edgeY4→ Y2 is necessary to avoid
constraints that we know should not hold, such asY2 ⊥⊥ Y4 | Y3. However, with that
we lose the power to express known constraints such asY2⊥⊥Y4.

Acyclic directed mixed graphs (ADMGs) were introduced in order to provide
independence models that result from marginalizing a DAG. ADMGs aremixed in
the sense they contain more than one type of edge. In this case, bi-directed edges are
also present. They areacyclic in the sense that there is no directed cycle composed
of directed edges only. In principle, it is possible for two vertices to be linked by
both a directed and a bi-directed edge. Moreover, letsp(i) denote the “spouses” of
Yi in the graph (i.e., thoseYj such thatYi ↔ Yj exists) and definensp(i) to be the
non-spouses (Yi is neither a spouse nor a non-spouse of itself).

In our example, the corresponding ADMG could be

Y1→ Y2↔ Y3← Y4

Independences can be read off an ADMG using a criterion analogous to d-separation.
More than one Markov equivalent ADMG can exist as the result of marginaliz-
ing a DAG (or marginalizing another ADMG). Moreover, other types of (non-
independence) constraints can also result from an ADMG formulation if one allows
two edges between two vertices. A detailed account of such independence models
and a Gaussian parameterization are described at length by [9, 10]. Generalizations
are discussed by [11]. An algorithm for maximum likelihood estimation in Gaus-
sian ADMGs was introduced by [5]. A Bayesian method for estimating parameters
of Gaussian ADMGs was introduced by [12]. In this paper, we extend [12] by allow-
ing the ADMG structure to be estimated from data, besides theparameters. Section
2 reviews the Bayesian formulation of the problem while Section 3 describes a sam-
pler for inferring structure. A simple demonstration is given in Section 4.

2 A Review of the Gaussian Parametrization and Priors

Given a ADMGG and ap-dimensional distributionP, each random variable in
the distribution corresponds to a vertex in the graph. LetYi be a vertex with parents
Yi[1],Yi[2], . . . ,Yi[Mi ], 1≤ i≤ p, 1≤ i[ j]≤ p, 1≤ j≤Mi. We define a set of parameters

{λi j} according to the regression equationYi = ∑Mi
j=1 λi jYi[ j]+ εi, where each error

termεi is distributed as a zero mean Gaussian. Therefore, given thecovariance ma-
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trix V of the error terms, we have a fully specified zero-mean Gaussian distribution.
The parameterization ofV is given by a sparse positive definite matrix: if there is
no bi-directed edgeYi↔ Yj, then we define(V)i j ≡ vi j ≡ 0. The remaining entries
are free parameters within the space of (sparse) positive definite matrices. Priors for
such models were described by [12]. Priors for eachλi j are defined as independent
zero-mean Gaussians, which in our experiments were given a prior variance of 3.
The prior forV is given by

πG (V) ∝ |V|−(δ+2p)/2exp

{

−
1
2

tr(V−1U)

}

(1)

for V ∈M+(G ), the cone of positive definite matrices wherevi j ≡ 0 if there is no
edgeYi↔ Yj in G . This is called aG -inverse Wishart prior. In general, there is no
closed-form expression for the normalizing constant of this density function. Draws
from the posterior distribution for parameters can be generated by a Gibbs sampler
scheme as introduced by [12].

3 A Sampler for Bi-directed Structures

In this Section we consider the case where a givenp-dimensional observed vector
Y is generated according to a Gaussian ADMG model without directed edges. In
this special case, the corresponding graph is called abi-directed graph. That is,Y
follows a zero-mean multivariate Gaussian with sparse covariance matrixV. Condi-
tional on a bi-directed graphG , V is given theG -inverse Wishart prior (1). For each
pair of variables(Yi,Yj), i < j, we define a Bernoulli random variablezi j , where
zi j = 1 if and only if there is an edgeYi ↔ Yj in G . Vector z denotes the vector
obtained by stacking allzi j variables. The prior forG is defined as the product
of priors for eachzi j , i < j (zi j is also defined fori > j and equal toz ji), where
p(zi j = 1)≡ ηiη j, with eachηi ∼Uni f orm(0,1) a priori.

For a general ADMG with directed and bi-directed edges, directed edge coef-
ficients can be sampled conditioned onV using a variety of off-the-shelf meth-
ods (e.g., using spike-and-slab priors corresponding to parameters associated with
directed edges). Conditioned on edge coefficients{λi j}, the joint residual vec-
tor given by entriesYi−∑Mi

j=1λi jYi[ j] follows a Gaussian bi-directed graph model,
where sampling requires novel methods. Therefore, for simplicity of exposition,
we describe only the sampler for the bi-directed structure.We present an (ap-
proximate) Gibbs sampler to generate posterior samples forz given a dataset
D = {Y(1),Y(2), . . . ,Y(N)}.

Let V\i,\i the submatrix ofV obtained by dropping itsi-th column and row. Let
z\i j be the set of edge indicator variablesz without indicatorzi j (or z ji). The sampler
iterates over each vertexYi and performs the following:

1. for eachj ∈ {1,2, . . . , p}\{i}, we samplezi j givenV\i,\i andz\i j;
2. we sample thei-th row/column entries ofV, {vi1,vi2, . . . ,vip} givenV\i,\i andz
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The second step above is parameter sampling for sparse covariance matrices,
described in detail by [12]. In the remainder of this Section, we focus on the step of
structure sampling. The conditional distribution forzi j is given by

p(zi j | V\i,\i,z\i j,D) ∝ p(D | V\i,\i,z)× p(V\i,\i | z)× p(zi j | z\i j) (2)

One difficulty is introduced by the factorp(V\i,\i | z), which is the marginal of a
G -inverse Wishart and where in generalp(V\i,\i | z\i j,zi j = 1) 6= p(V\i,\i | z\i j,zi j =
0). Computing this factor is expensive. However, in 1,000 preliminary runs with
p = 10,δ = 1 andU as the identity matrix, we found that errors introduced by the
approximation

p(V\i,\i | z\i j,zi j = 1)≈ p(V\i,\i | z\i j,zi j = 0) (3)

are minimal. No convergence problems for the Markov chains could be detected
either. We adopt this approximation due to the large computational savings it brings,
and as such the factorp(V\i,\i | z) will be dropped without further consideration.

The first factor in (2) can be rewritten by completing and integrating away the
remaining non-zero entries ofV, which we denote here byVi·:

p(D | V\i,\i,z) =
∫ N

∏
d=1

p(Y(d) | V)p(Vi· | V\i,\i,z) ∏
j∈E(z,i)

dvi j (4)

whereE(z, i) is the set of indices for the spouses ofYi in G (as given byz), including
Yi itself. By definition,vi j = 0 if Yj is not a spouse ofYi in G .

In order to solve this integral, we appeal to some of the main results of [12]. Let
Bi be a 1× (p−1) vector andγi a positive scalar such that

Vi,\i = BiV\i,\i, vii = γi +BiV\i,\iB
T
i (5)

whereVi,\i is thei-th row ofV after removing entryvii. We defineBsp(i) andBnsp(i)
to be the subvectors ofBi that match the corresponding rows ofV\i,\i. The “non-
spouse” entries are not free parameters when considering the structural zeroes of
V.

By our definition ofBi, we have thatBiV\i,nsp(i) gives the covariance between
Yi and its non-spouses (whereV\i,nsp(i) is the corresponding submatrix ofV). By
assumption these covariances are zero, that isBiV\i,nsp(i) = 0. It follows that

Bsp(i)Vsp(i),nsp(i)+Bnsp(i)Vnsp(i),nsp(i)= 0⇒Bnsp(i)=−Bsp(i)Vsp(i),nsp(i)V
−1
nsp(i),nsp(i)

(6)
As in the unconstrained case, the mapping between the non-zero entries ofVi· and
{Bsp(i),γi} is one-to-one. Following [12], conditional densityp(Vi· | V\i,\iz) can be
rewritten as:

p(Vi· | V\i,\i,z) = pB(Bsp(i) | γi,V\i,\i;µB ,γiKB)pγi(γi | V\i,\i;αi,βi) (7)
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wherepB(·;µB ,γiKB) is a Gaussian density function with meanµB and covariance
matrix γiKB, and functionpγi(·;αi,βi) is an inverse gamma density function with
parametersαi andβi. Parameters{µB,KB,αi,βi} are described in the Appendix.
Moreover, as a function of{zi j,Bsp(i),γi,V\i,\i}, we can rewritep(Y(d) | V) as:

p(Y(d) | V) ∝ γ−1/2
i exp

{

−
1

2γi

(

Y (d)
i −Bsp(i)H

(d)
sp(i)

)2
}

(8)

whereH(d)
sp(i) are the residuals of the regression of the spouses ofYi on its non-

spouses for datapointd, as given byV\i,\i. That is

H(d)
sp(i) ≡ Y(d)

sp(i)−Vsp(i),nsp(i)V
−1
nsp(i),nsp(i)Y

(d)
nsp(i) (9)

Combining (7) and (8) allows us to rewrite (4) as

p(D | V\i,\i,z) ∝ |KB|
− 1

2 |T|−
1
2

β αi
i

Γ (αi)

Γ (α ′i )
β ′i

α ′i
(10)

where{T,α ′i ,β ′i } are defined in the Appendix. Every term above depends on the
value ofzi j . Finally, p(zi j = 1 | V\i,\i,z\i j,D) ∝ p(D | V\i,\i,z\i j,zi j = 1)ηiη j and
p(zi j = 0 | V\i,\i,z\i j,D) ∝ p(D | V\i,\i,z\i j,zi j = 0)(1−ηiη j).

After resamplingzi j for all 1≤ j ≤ p, j 6= i, we resample the corresponding non-
zero covariances, as described at the beginning of this Section, and iterate, alternat-
ing with steps to sample latent variables, regression coefficients and hyperparame-
tersηi as necessary.

4 Illustration: Learning Measurement Error Structure

One application of the methodology is learning the structure of measurement error
for a latent variable model. Consider, for illustration purposes, the DAG in Figure 1.
Assume the goal is to learn from observed measurementsY1,Y2, . . . ,Y8 what values
the corresponding latent variablesX1 andX2 should take (more precisely, to calcu-
late functionals of the conditional distribution of{X1,X2} givenY). Other sources of
variability explain the marginal distribution ofY, but they are not of interest. In this
example,X3 andX4 are the spurious sources. Not including them in the model intro-
duces bias. Sometimes background knowledge is useful to provide which observed
variable measures which target latent variable (e.g.,Y1 should be a child ofX1 but
not ofX2). The literature in structural equation models and factor analysis [3, 2] pro-
vides some examples where observed variables are designed so that latent concepts
of interest are measured (up to some measurement error). Background knowledge
about other hidden common causes of the observed variables is less clear, though.

In this Section, we provide a simple illustration on how to combine background
knowledge about measurement with an adaptive methods that generates extra condi-
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Fig. 1 In the left, a model where latent variablesX3 andX4 provide an extra source of dependence
for some of the observed variables that is not accounted by the target latent variablesX1 andX2. In
the right, a graphical representation of the marginal dependencies after marginalizing away some
(X3 andX4) but not all of the latent variables.

tional dependencies among observed variables. Consider a more complex synthetic
model given by a latent variable ADMG with four latent variables and 12 observed
variables. Each observed variable has a single latent parent: the first three haveX1

as a common parent, the next three haveX2, and so on. The covariance matrix of
the latent variables was sampled from an inverse Wishart distribution. Bi-directed
edges among indicators were generated randomly with probability 0.2. To ensure
identifiability, we pick 2 out the each 3 children of each latent variable and enforce
that no bi-directed edges should exist within this set of 8 indicators. More flexible
combinations can be enforced in the future using the resultsof [6].

The goal is: given knowledge about which directed edges exist and do not exist,
learn the bi-directed structure. The algorithm in the previous Section is used to sam-
ple error covariance matrices among observed variables (non-zero error covariances
between a latent variable and an observed variable are prohibited for simplicity,
and the covariance matrix among latent variables has no independence constraints).
This is done as part of a Gibbs sampling procedure where the values of the latent
variables are also sampled so that the procedure in Section 3can be used without
modification as if all variables were observed.

Figure 2 summarizes the analysis of the error covariance matrix and its corre-
sponding bi-directed structure using a sample size of 2000 (and a Markov chain
with 5000 iterations). A bi-directed structure estimate isgenerated using the pos-
terior samples. In this case, instead of using the most common structure as the es-
timator, we use a thresholding mechanism. EdgesYi ↔ Yj such that the posterior
expected value of the correspondingzi j is greater than 0.5 are kept, while the oth-
ers are estimated to be non-existent. A thresholding estimator for the structure is a
practical alternative to choosing the most probable graph:a difficult task for Markov
chain Monte Carlo in discrete structures. An analysis of thresholding mechanisms
is provided in other contexts by [1] and [4]. However, since the estimated graph
might not have occurred at any point during sampling, further parameter sampling
conditioned on this graph will be necessary in order to obtain as estimator for the
covariance matrix with structural zeroes matching the missing edges.

We also found that the choice of priorp(zi j = 1)≡ ηiη j to be particularly impor-
tant. An alternative priorp(zi j = 1) = 0.5 resulted in graphs with considerably more
edges than the true one. A more extended discussion on how to enforce sparsity by
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Fig. 2 In the left, the estimated error correlation matrix as givenby the expected value of the
marginal (hence, not sparse) posterior distribution of therescaled error covarianceV. Black dots
mean correlation of -1, white dots mean correlation of 1. In the right, the estimator of the structure
(edge appears if its posterior probability is greater than 0.5). The procedure added two spurious
edges, but the corresponding estimated correlations are still close to zero.

priors over graphical structures is presented by [7]. An important line of future work
will consist on designing and evaluating priors for mixed graph structures.
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Appendix

We describe the parameters referred to in the sampler of Section 3. The full
derivation is based on previous results described by [12]. Let HH be the statistic
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∑d
n=1 H(d)

sp(i)H
(d)
sp(i)

T
. Likewise, letYH ≡ ∑d

n=1Y (d)
i H(d)

sp(i) andYY ≡ ∑d
n=1Y (d)

i

2
. Re-

call that the hyperparameters for theG -inverse Wishart areδ andU, as given by
Equation (1) and as such we are computing a “conditional normalizing constant”
for the posterior ofV integrating over onlyone of the row/columns ofV.

First, let

Ai ≡ Vsp(i),nsp(i)V
−1
nsp(i),nsp(i)

Mi ≡ (U\i,\i)−1U\i,i
mi ≡ (Uss−AiUns)Msp(i)+(Usn−AiUnn)Mnsp(i)

K−1
B
≡ Uss−AiUns−UsnAT

i +AiUnnAT
i

µB ≡ KBmi

(11)

where
[

Uss Usn

Uns Unn

]

≡

[

Usp(i),sp(i) Usp(i),nsp(i)

Unsp(i),sp(i) Unsp(i),nsp(i)

]

(12)

Moreover, let
Ui ≡ MT

i U\i,\iMi−mT
i Kimi

uii.\i ≡ Uii−Ui,\i(U\i,\i)−1U\i,i

αi ≡ (δ + p−1+#nsp(i))/2
βi ≡

(

uii.\i +Ui
)

/2
T ≡ K−1

B
+HH

q ≡ YH+K−1
B

µB

(13)

where #nsp(i) is the number of non-spouses ofYi (i.e.,(p−1)−∑p
j=1 zi j).

Finally,

α ′i ≡
N
2
+αi,

β ′i ≡
YY+ µT

B
K−1

B
µB−qT T−1q
2

+βi

(14)

Notice that each calculation ofAi (and related products) takesO(p3) steps (as-
suming the number of non-spouses isO(p) and the number of spouses isO(1),
which will be the case in sparse graphs). For each vertexYi, an iteration could take
O(p4) steps, and a full sweep would take prohibitiveO(p5) steps. In order to scale
this procedure up, some tricks can be employed. For instance, when iterating over
each candidate spouse for a fixedYi, the number of spouses increases or decreases
by 1: this means fast matrix update schemes can be implemented to obtain a new
Ai from its current value. However, even in this case the cost would still beO(p4).
More speed-ups follow from solving forVsp(i),nsp(i)V

−1
nsp(i),nsp(i) using sparse ma-

trix representations, which should cost less thanO(p3) (but for small to moderate
p, sparse matrix inversion might be slower than dense matrix inversion). Moreover,
one might not try to evaluate all pairsYi↔Yj if some pre-screening is done by look-
ing only at pairs where the magnitude of corresponding correlation sampled in the
last step lies within some interval.


