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Abstract Graphical models are widely used to encode conditionalgaddence

constraints and causal assumptions, the directed acyajghg(DAG) being one

of the most common families of models. However, DAGs are nased under

marginalization: that is, if a distribution is Markov witlespect to a DAG, several
of its marginals might not be representable with another Diit&ss one discards
some of the structural independencies. Acyclic directexiechigraphs (ADMGS)

generalize DAGs so that closure under marginalization sside. In a previous
work, we showed how to perform Bayesian inference to infergbsterior distribu-

tion of the parameters of a given Gaussian ADMG model, whegegtaph is fixed.

In this paper, we extend this procedure to allow for priorsrayraph structures.
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1 Acyclic Directed Mixed Graph Models

Directed acyclic graphs (DAGSs) provide a practical langusmgencode conditional
independence constraints (see, e.g., [8]). However, starhidy is notclosed under
marginalization. As an illustration of this concept, consider the followiD4G:

Y1—>Y2<—X—)Y3<—Y4

This model entails several conditional independenciesirfstance, it encodes con-
straints such a¥, 1L Y4, as well asy> £ Yz | Yz andY, 1L Yy | {Y3,X}. Directed
graphical models are nhon-monotonic independence moddlseisense that condi-
tioning on extra variables can destroy and re-create intgecies, as the sequence
{0,{Ys},{Ys,X}} has demonstrated.
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If X is a latent variable which we are not interested in estingatimere might be
no need to model explicitly its relationship to the observadables{Y1, Y, Y3,Ys}
— a task which would require extra and perhaps undesirablegstions.

However, marginalizingK results in a model that cannot be represented as a
DAG structure without removing some of the known indepemdeconstraints.
Since any constraint that conditions #nhas to be dropped in the marginal for
{Y1,Y2,Y3,Y4} (for instance,Y> 1L Yy | {Y3,X}), we are forced to include extra
edges in the DAG representation of the remaining varialflage possibility is
{M = Y2+ Y3+ Y4,Ys — Yo}, where the extra edgé — Y, is necessary to avoid
constraints that we know should not hold, suctvadl Ys | Y3. However, with that
we lose the power to express known constraints sudh dsY,.

Acyclic directed mixed graphs (ADMGs) were introduced im@r to provide
independence models that result from marginalizing a DABM&Ss aremixed in
the sense they contain more than one type of edge. In thisliadieected edges are
also present. They ageyclic in the sense that there is no directed cycle composed
of directed edges only. In principle, it is possible for twertices to be linked by
both a directed and a bi-directed edge. Moreoverspét) denote the “spouses” of
Y; in the graph (i.e., thos¥; such thaty; <+ Y; exists) and definasp(i) to be the
non-spousesy| is neither a spouse nor a non-spouse of itself).

In our example, the corresponding ADMG could be

Y1—>Y2<—)Y3(—Y4

Independences can be read off an ADMG using a criterion goakoto d-separation.
More than one Markov equivalent ADMG can exist as the restlnarginaliz-
ing a DAG (or marginalizing another ADMG). Moreover, othgpés of (non-
independence) constraints can also result from an ADMG didation if one allows
two edges between two vertices. A detailed account of sudbp@endence models
and a Gaussian parameterization are described at lengfh b9]f Generalizations
are discussed by [11]. An algorithm for maximum likelihoctimation in Gaus-
sian ADMGs was introduced by [5]. A Bayesian method for eating parameters
of Gaussian ADMGs was introduced by [12]. In this paper, wered [12] by allow-
ing the ADMG structure to be estimated from data, besidepénameters. Section
2 reviews the Bayesian formulation of the problem while ®&c8 describes a sam-
pler for inferring structure. A simple demonstration iseiMn Section 4.

2 A Review of the Gaussian Parametrization and Priors

Given a ADMG¥ and ap-dimensional distributionZ, each random variable in
the distribution corresponds to a vertex in the graph M_ée a vertex with parents
Yiis iz -5 i 1< < p, 1<i[j] < p, 1< j < M. We define a set of parameters
{Aij} according to the regression equatijr= z'j\/l:ij_)\ini[j] + &, where each error
termg; is distributed as a zero mean Gaussian. Therefore, giverotraiance ma-
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trix V of the error terms, we have a fully specified zero-mean Ganshstribution.
The parameterization of is given by a sparse positive definite matrix: if there is
no bi-directed edg¥ < Yj, then we defing¢V);; = vij = 0. The remaining entries
are free parameters within the space of (sparse) positfugitdéematrices. Priors for
such models were described by [12]. Priors for e&glare defined as independent
zero-mean Gaussians, which in our experiments were giveioavariance of 3.
The prior forV is given by

(V) O V] O el (v tu) | )

for V € M* (%), the cone of positive definite matrices wherg= 0 if there is no
edgeY; ++ Y} in ¢. This is called &/-inverse Wishart prior. In general, there is no
closed-form expression for the normalizing constant of tansity function. Draws
from the posterior distribution for parameters can be gatieerby a Gibbs sampler
scheme as introduced by [12].

3 A Sampler for Bi-directed Structures

In this Section we consider the case where a gp@timensional observed vector
Y is generated according to a Gaussian ADMG model withouttéceedges. In
this special case, the corresponding graph is calleiddirected graph. That is,Y
follows a zero-mean multivariate Gaussian with sparsertanvee matrixv. Condi-
tional on a bi-directed grapH, V is given theZ-inverse Wishart prior (1). For each
pair of variables(Y;,Y;), i < j, we define a Bernoulli random variabig, where
zj =1 if and only if there is an edg¥ « Y; in ¢. Vector z denotes the vector
obtained by stacking alfj; variables. The prior fot/ is defined as the product
of priors for eachzj, i < j (zj is also defined for > j and equal ta;;), where
p(zj =1) = ninj, with eachn; ~ Uniform(0,1) a priori.

For a general ADMG with directed and bi-directed edges,atii@ edge coef-
ficients can be sampled conditioned Wnusing a variety of off-the-shelf meth-
ods (e.g., using spike-and-slab priors corresponding tarpeters associated with
directed edges). Conditioned on edge coefficigiig}, the joint residual vec-
tor given by entries; — z'jv':il/\inim follows a Gaussian bi-directed graph model,
where sampling requires novel methods. Therefore, for &ty of exposition,
we describe only the sampler for the bi-directed structive. present an (ap-
proximate) Gibbs sampler to generate posterior samplex fgiven a dataset
2={YD Y@ yNI

LetV\;\; the submatrix o/ obtained by dropping itsth column and row. Let
z,j; be the set of edge indicator variabiesithout indicatorzj (or zji). The sampler
iterates over each vert&kand performs the following:

1. foreachj € {1,2,...,p}\{i}, we sample givenV\; \; andz,;;;
2. we sample theth row/column entries o¥, {vi1,Vi2,...,Vip} givenV,;,; andz
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The second step above is parameter sampling for sparseiamm@matrices,
described in detail by [12]. In the remainder of this Sectioa focus on the step of
structure sampling. The conditional distribution #ris given by

P(zj [ Vaini 2iij, 2) O p(Z | V\ini-2) x P(Vaini | 2) X p(zj | 2,i) )

One difficulty is introduced by the fact@(V\; \; | z), which is the marginal of a
¢-inverse Wishart and where in genepaV\; \; | 2\ij,zj = 1) # p(V\i\i | 2ij,2) =
0). Computing this factor is expensive. However, in 1,000ipr#lary runs with
p= 10,0 = 1 andU as the identity matrix, we found that errors introduced tg/ th
approximation

P(VAini | 24j,zj =1) = p(Vaini | 245,25 = 0) 3)

are minimal. No convergence problems for the Markov chamdd:be detected
either. We adopt this approximation due to the large contjoutal savings it brings,
and as such the fact@(V\; \; | z) will be dropped without further consideration.

The first factor in (2) can be rewritten by completing and gnéing away the
remaining non-zero entries ®f, which we denote here by;.:

- N
P(Z | V\inix2) = /ﬂ p(Y @ | V)p(Vi. [ Vyiri,2) dvij (4)
S d=1 icE))

whereE(z,i) is the set of indices for the spousesrpih ¢ (as given by), including
Y; itself. By definition,vij = 0 if Y;j is not a spouse of; in ¢.

In order to solve this integral, we appeal to some of the mesults of [12]. Let
% be a 1x (p— 1) vector andy a positive scalar such that

Vivi=%V\in, Vi =¥+BiV\i\i B (5)

whereV; \; is thei-th row of V after removing entry;;. We defineZgp iy and %gpi)
to be the subvectors a#; that match the corresponding rows\f; \;. The “non-
spouse” entries are not free parameters when considerngtthctural zeroes of
V.

By our definition of%;, we have that%V nsp(i) gives the covariance between
Yi and its non-spouses (WheYg; sy (i) is the corresponding submatrix bf). By
assumption these covariances are zero, tha\4,; nsp() = 0. It follows that

-1
PBsp(i)V sp(i) nsp(i) T Zrsp(i) Vsp(i) nsp(i) = 0= Pisp(i) = ~ Psp(i) Y sp(i).nsp(i) Y nsp(i) nsp(i)

(6)
As in the unconstrained case, the mapping between the rmorengies ofV;. and
{%spii)» ¥} is one-to-one. Following [12], conditional denspiyVi. | V\; \jz) can be
rewritten as:

P(Vi. | Vainir2) = Pz (Bspiiy | Y Vainis Mz MK 2) Py (W | Vs ai, B) - (7)
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wherepx(-; Uz, yK %) is a Gaussian density function with meagp and covariance
matrix yK &, and functionpy (-; ai, B) is an inverse gamma density function with
parametersy; and 3. Parameter$u»,K 4, ai, i} are described in the Appendix.
Moreover, as a function ofzj, Beyi), ¥, V\i i} we can rewritgp(Y @ | V) as:

~1/2 1/ d) \?
(Y9 V) 0 expd - o (% - )| ®
WhereHS:))(i) are the residuals of the regression of the spouse$ oh its non-

spouses for datapoidt as given by\; \;. Thatis

d

(d) _ (@ -1 (d)
Hsp(i) = Ysp(i) - Vsp(i),nsp(i)Vnsp(i),nsp(i)Ynsp(i) (9)
Combining (7) and (8) allows us to rewrite (4) as
. T )
p(@ | V\I,\Iaz) U |K%| 2|T| 2 r(ai) Bi/ai, (10)

where{T,a/,B/} are defined in the Appendix. Every term above depends on the
value ofzj. Finally, p(zj = 1| V\;\;,2ij,2) O p(Z | V\i\i»2yij» Z4j = 1)ninj and
P(zj =0 V\ini»2ij, 2) O p(Z [ Vainis2iij, gj = 0)(1—ninj).

After resamplingzj forall 1 < j < p,j # i, we resample the corresponding non-
zero covariances, as described at the beginning of thisoBeand iterate, alternat-
ing with steps to sample latent variables, regression oiefis and hyperparame-
tersn; as necessary.

4 1llustration: Learning Measurement Error Structure

One application of the methodology is learning the strietfrmeasurement error
for a latent variable model. Consider, for illustration poses, the DAG in Figure 1.
Assume the goal is to learn from observed measuren¥ents, ..., Ys what values
the corresponding latent variabl&s and X, should take (more precisely, to calcu-
late functionals of the conditional distribution £X1, X»} givenY). Other sources of
variability explain the marginal distribution &f, but they are not of interest. In this
example X3 andX, are the spurious sources. Not including them in the modegd-int
duces bias. Sometimes background knowledge is useful taderavhich observed
variable measures which target latent variable (&gshould be a child ok; but
not ofXy). The literature in structural equation models and factasis [3, 2] pro-
vides some examples where observed variables are desigtieat $atent concepts
of interest are measured (up to some measurement erroRgiBamd knowledge
about other hidden common causes of the observed variailessiclear, though.
In this Section, we provide a simple illustration on how tontwne background
knowledge about measurement with an adaptive methodsehatagtes extra condi-



6 Ricardo Silva

A

Fig. 1 In the left, a model where latent variabl&gandX, provide an extra source of dependence
for some of the observed variables that is not accountedédtatiget latent variables; andX;. In

the right, a graphical representation of the marginal déeecies after marginalizing away some
(X3 andX4) but not all of the latent variables.

tional dependencies among observed variables. Consider@aomplex synthetic
model given by a latent variable ADMG with four latent vafiedand 12 observed
variables. Each observed variable has a single latent paherfirst three have;
as a common parent, the next three h&yeand so on. The covariance matrix of
the latent variables was sampled from an inverse Wishatrilaision. Bi-directed
edges among indicators were generated randomly with piiigadh2. To ensure
identifiability, we pick 2 out the each 3 children of each teteariable and enforce
that no bi-directed edges should exist within this set ofddators. More flexible
combinations can be enforced in the future using the resti[g.

The goal is: given knowledge about which directed edges arid do not exist,
learn the bi-directed structure. The algorithm in the pvasiSection is used to sam-
ple error covariance matrices among observed variables£aom error covariances
between a latent variable and an observed variable arelptadhifor simplicity,
and the covariance matrix among latent variables has ngerttence constraints).
This is done as part of a Gibbs sampling procedure where thievaf the latent
variables are also sampled so that the procedure in Sectam Be used without
modification as if all variables were observed.

Figure 2 summarizes the analysis of the error covariancexreatd its corre-
sponding bi-directed structure using a sample size of 2@0d @ Markov chain
with 5000 iterations). A bi-directed structure estimatgénerated using the pos-
terior samples. In this case, instead of using the most camstracture as the es-
timator, we use a thresholding mechanism. Edges Y; such that the posterior
expected value of the correspondingis greater than 0.5 are kept, while the oth-
ers are estimated to be non-existent. A thresholding esiinfiar the structure is a
practical alternative to choosing the most probable grafifficult task for Markov
chain Monte Carlo in discrete structures. An analysis oftholding mechanisms
is provided in other contexts by [1] and [4]. However, sinbe estimated graph
might not have occurred at any point during sampling, furgreameter sampling
conditioned on this graph will be necessary in order to obéai estimator for the
covariance matrix with structural zeroes matching the imisedges.

We also found that the choice of pripfz; = 1) = nin; to be particularly impor-
tant. An alternative priop(z; = 1) = 0.5 resulted in graphs with considerably more
edges than the true one. A more extended discussion on hawdrce sparsity by
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Estimated graph

Estimated correlation

True graph

Fig. 2 In the left, the estimated error correlation matrix as gibgnthe expected value of the
marginal (hence, not sparse) posterior distribution ofrdsealed error covariandé. Black dots
mean correlation of -1, white dots mean correlation of 1hlright, the estimator of the structure
(edge appears if its posterior probability is greater tha).0Orhe procedure added two spurious
edges, but the corresponding estimated correlationsidreate to zero.

priors over graphical structures is presented by [7]. Andrtgmt line of future work
will consist on designing and evaluating priors for mixedgjn structures.
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Appendix

We describe the parameters referred to in the sampler ofioBe8t The full
derivation is based on previous results described by [18]HH be the statistic
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zﬁleg}i)Hg}) Likewise, letYH = 30_, Y VH) andYY = 54, ¥ 9° Re-
call that the hyperparameters for tifeinverse Wlshart aré andU, as given by
Equation (1) and as such we are computing a “conditional abzing constant”
for the posterior oV integrating over onlyne of the row/columns o¥/.

First, let

Ai=V sp(i), nsp() nsp(i),nsp(i)

= ( \AY ) U\ll
= (Uss = AilUns)Mgp(i) + (Usn — AiUnn) M spiiy (11)

K = Us—AiUns — UnAT +AiUnAT

Hz = Kgm;

where
[Uss Uﬂ _ {Uspa).,sp(i) Uspii) nspi) (12)
Uns Unn Unsp(i),sp(i) Unsp(i),nsp(i)

Moreover, let

% = M[U\; Mi —mTKim;

Ui\ = Uu Uii(Uying) MUy
ai = (0+p—1+#nsp(i))/2 (13)
B = (ull\l+%)/2
T =K +HH

a=YH+K Uz

where #sp(i) is the number of non-spouses¥fi.e.,(p—1) — 2}3:12”).
Finally,

, N
a;, = E + qj,
B e H‘LK‘%lzut% 9T + Bi
Notice that each calculation @ (and related products) takeg p®) steps (as-

suming the number of non-spouses/igp) and the number of spousesdg1),
which will be the case in sparse graphs). For each véftean iteration could take
0(p*) steps, and a full sweep would take prohibitigép®) steps. In order to scale
this procedure up, some tricks can be employed. For instavteen iterating over
each candidate spouse for a fixgdthe number of spouses increases or decreases
by 1: this means fast matrix update schemes can be implethemtbtain a new
A from its current value. However, even in this case the costiavstill be &' (p*).

More speed-ups follow from solving fNSP(i),nSp(i)V;s%J(i),nsp(i) using sparse ma-

trix representations, which should cost less ti##(p?) (but for small to moderate
p, sparse matrix inversion might be slower than dense maivirsion). Moreover,
one might not try to evaluate all paiYs« Y;j if some pre-screening is done by look-
ing only at pairs where the magnitude of corresponding ¢atiosn sampled in the
last step lies within some interval.

(14)




