
July 24, 2008

dmgBayes: Software for Bayesian Inference in

Mixed Graph Models and Structural Equation Models

Ricardo Silva

silva@statslab.cam.ac.uk

Abstract

This document briefly describes the dmgBayes software for doing
Bayesian inference with mixed graph models. The current main refer-
ence for this software is

Silva, R. and Ghahramani, Z. (2008). “The hidden life of la-
tent variables: Bayesian learning with mixed graph models”.

Current version: 1.0

dmgBayes

Ricardo Silva

silva@statslab.cam.ac.uk

1 Introduction

Directed mixed graph (DMG) models are graphical models with directed and bi-directed
edges. In particular, Gaussian models that factorize according to a DMG are commonly
known as Structural Equation Models (SEMs). Five basic references are:

• K. Bollen (1989). Structural Equations with Latent Variables. Wiley & Sons;

• T. Richardson and P. Spirtes (2002). “Ancestral graph Markov models”. Annals of
Statistics, Volume 30, Number 4, pp. 962-1030;

• T. Richardson (2003). “Markov properties for acyclic directed mixed graphs”. Scan-
dinavian Journal of Statistics, Volume 30, Number 1, pp. 145-157;

• M. Drton and T. Richardson (2004). “Iterative conditional fitting for Gaussian
ancestral graph models”. Proceedings of UAI’04;

• R. Silva and Z. Ghahramani (2008). “The hidden life of latent variables: Bayesian
learning with mixed graph models”.

dmgBayes is a software that implements some of the algorithms described by Silva
and Ghahramani (2008). The purpose of this document is to provide a simple description
on how to use dmgBayes for performing Bayesian inference.

Currently, dmgBayes provides functionality for the following families of models:

• Gaussian mixed graph models: the software provides a Markov Chain Monte Carlo
(MCMC) sampler for generating samples from the posterior. The output of the
software is an estimated covariance matrix defined as the expected posterior covari-
ance matrix given the data and prior. It also computes the predictive log-likelihood
of the model in an optional test set. Moreover, it generates an output file with all
MCMC samples, which can be easily accessed to generate plots and other MCMC
estimates of functionals of the posterior;

• zero-mean Gaussian models of marginal independence (i.e., bi-directed models).
On top of the above features, the software also allows for the computation of the
marginal likelihood of such models.

Section 3 details the initial steps to run dmgBayes using the Java interpreter or the
statistical software R. Sections 4 and 5 describe the basic functionality of the software.
Two simple examples are referred to in Section 6. Finally, Section 7 lists a few extensions
of dmgBayes that might be implemented in a near future. My recommendation is to first
look at the example files distributed with this software.

We first start with a brief description of the Gaussian mixed graph model and the
priors used in our formulation.

1

2 A short note on the models

Given that we use particular choices of priors and parameterizations to define these mod-
els, and that the given references might be unaccessible/too long, we first provide a brief
summary of the models. Readers already familiar with such models should skip this sec-
tion. We assume knowledge of standard graph terminology (nodes, parents, edges, etc.).
Section 1 of Silva and Ghahramani (2008) should contain all the necessary information
for the majority of the readers.

2.1 Parameters

Consider a Gaussian model with a set of variables Y = {Y1, Y2, . . . , Ym}. For each variable
Yi with a (possibly empty) parent set {Yi1, ..., Yik}, one provides a “structural equation”

Yi = µi + bi1Yi1 + bi2Yi2 + · · ·+ bikYik + εi (1)

where εi is a Gaussian random variable with zero mean and variance vii.
Unlike in standard regression models, “error term” εi is not necessarily constructed

to be independent of the other variables in Y. Dependencies arise when error terms
of different equations are not independent. Independence is asserted by the graphical
structure: εi and εj (the error term for some Yj) are marginally independent if Yi and Yj

are not connected by a bi-directed edge, but are otherwise free to be dependent.
By this parameterization, each directed edge Yi ← Yj in the graph corresponds to a

parameter bij . Each bi-directed edge Yi ↔ Yj in the graph is associated with a covariance
parameter vij , the covariance of εi and εj. Each node Yj in the graph is associated with
variance parameter vjj, the variance of εj . Algebraically, let B be a m ×m matrix, m

being the number of observed variables. This matrix is such that Bij = bij if Yi ← Yj

exists in the graph, and 0 otherwise. Let V be a m×m matrix, where Vij = vij if i = j

or if Yi ↔ Yj is in the graph, and 0 otherwise. Let Y be the column vector of observed
variables, µ the column vector of intercept parameters, and ε be the corresponding vector
of error terms. The set of structural equations can be given in matrix form as

Y = BY + µ + ε⇒ Y = (I−B)−1(ε + µ)
⇒ Σ(Θ) = (I−B)−1V(I−B)−T (2)

where A−T is the transpose of the inverse of matrix A and Σ(Θ) is the implied covariance

matrix of the model, Θ = {B,V, µ}.

2.2 Priors

We need priors for Θ in order to compute the posterior distribution of the parameters
given the data. In our software, we assume that each coefficient bij and intercept µi is
independent of all other parameters a priori. Its prior distribution is defined to be a
Gaussian where individual means and variances can be specified.

The prior for the covariance matrix of the error terms is non-standard. We need a
distribution for covariance matrices with zero entries for all pairs {Yi, Yj} not connected
by a bi-directed edge. Given the bi-directed component G of our DMG, we define the
prior over the covariance matrix V of the error terms to be:

2

p(V) =
1

IG(δ,U)
|Σ|−(δ+2m)/2 exp

{

−
1

2
tr(V−1U)

}

,V ∈M+(G), (3)

p(·) being the density function, tr(·) the trace function, and m the number of variables
(nodes) in our model. Space M+(G) is the space of all positive definite matrices with
entry vij = 0 if nodes Yi and Yj are not adjacent in G. It is assumed that δ > 0 and U

is positive definite. In the software, one has to specify δ and U.
There are no analytical expressions for the normalizing constant IG(δ,U). Since this

constant is vital for Bayesian model selection of bi-directed graphs, the software also
provides a routine to estimate this constant using Monte Carlo methods.

3 Preliminaries

You will need a Java Virtual Machine to run the software. Google “java runtime” in case
you do not have it installed already.

You will also need the Tetrad library, developed at Carnegie Mellon University.
Go to http://www.phil.cmu.edu/projects/tetrad download/download (or google for
“tetrad project” in case the link has changed) and download the latest JAR file. (Notice
that the website also has versions of this software for Java Web Start. Download the jar
instead). The current version of dmgBayes has been tested with tetrad-4.3.8-6.jar.

The dmgBayes software comes into two different versions:

• the R version: we provide R code that wraps the Java implementation of dmgBayes.
Everything is handled within R, including the data structures that need to be passed
to the sampler. Section 4 details how to use dmgBayes in this case;

• the stand-alone version: it is possible to run dmgBayes entirely from the command
line. All the information used by the sampler should be passed through text files.
Section 5 details how to format the input files and how to call the software from the
command line.

4 Using dmgBayes in R

When calling dmgBayes within R, you will first have to install the rJava package. This
package is available in CRAN and can be installed by the usual way.

The R version of dmgBayes can be configured in two ways. The first is by installing
a package. After the package is loaded, nothing else is necessary. The second way is by
using the source code directly (only one file is needed: dmgsample.R). In this case, we
have to initialize the library as follows. Start R, make sure dmgsample.R is accessible
within R (i.e., in the path) and enter the following:

> library(rJava)

> .jinit()

> .jaddClassPath(<enter here the path to the jar file dmgbayes1.0.jar>)

> .jaddClassPath(<enter here the path to the tetrad jar file>)

> source("dmgsample.R")

3

Now that R is ready to run dmgBayes, it is time to generate the information required
by the Bayesian procedure: the data file(s), the graphical structure (which defines which
parameters exist, as explained in Section 2), and the priors.

The current version (1.0) provides two applications in the R file dmgsample.R.

4.1 dmgbayes.gaussiansample

This application does Bayesian inference for Gaussian mixed graph models using a
MCMC algorithm. The basic functionality consists on generating estimates of the covari-
ance matrix (defined as the posterior mean) and predictive log-likelihood. Much more
can be done by using the generated samples, which are stored in a output file. Marginal
likelihood computation will be added in the future.

Call dmgbayes.gaussiansample with the following arguments:

• var.names: an array of strings providing the name of the variables;

• directed: a matrix indicating which directed edges exist;

• bidirected: a matrix indicating which bi-directed edges exist;

• train: the data;

• islatent: an array indicating which variables are latent and which are recorded in
train;

• prior.V: the matrix hyperparameter for the prior distribution of the error covari-
ance matrix V;

• dmg.df: the degrees of freedom hyperparameter for the prior distribution of V;

• b.priormean: an array containing the mean hyperparameters for the Gaussian prior
of each coefficient/intercept;

• b.priorvar: an array containing the variance hyperparameters for the Gaussian
prior of each coefficient/intercept;

• b.fixed: an array indicating which coefficient/intercept are fixed to constants. The
prior mean is used as the pre-defined constant value;

• mcmc.num.samples: the total number of MCMC steps used in the procedure;

• mcmc.burn.in: number of initial steps from the Markov chain that will be thrown
out;

• mcmc.step: if desired, set this to any integer value greater than 1 if one wants to
use only some of the sampled points for the estimates. Setting step size to n means
that, given that point i was kept, the next point to be stored will be point i + n.
The first point to be kept is the first one after the burn-in period.

• output.filename: since this process can be memory intensive, we store all samples
from the chain in an external text file with name given by output.filename;

• mcmc.options: an array of integers specifying a couple of options. Entry mcmc.options[1]

specifies the level of verbosity of the output, from no output (1) to printing a mes-
sage at each sample (4). Set mcmc.options[2] to 1 if you want to generate a file
with samples of the latent variables, named <output.filename>.latents.mcmc.
WARNING: this file can get very large quickly, since it will generate a sample with
as many datapoints as train for each iteration of the Markov chain;

4

• test: an optional parameter providing another dataset. If provided, the poste-
rior samples (using the burn in and step constraints) will be used to compute the
predictive log-likelihood of test;

Information about how to structure the matrices and arrays described above is given in
Section 4.3. A log containing all sampled points will be generated as <output.filename>.mcmc.
This allows the user to estimate other posterior functionals and to generate plots. This
file

Besides generating file <output.filename>.mcmc (and <output.filename>.latents.mcmc,
if mcmc.options[2] is set to 1), this function returns an array of two entries. The first
entry is equal to 1 if the procedure was concluded without any errors and 0 if some
error happened (e.g., invalid graph). The second entry returns the average predictive
log-likelihood of the test set if provided.

The current version of dmgBayes does not allow for models with directed cycles, i.e.,
no model where there is a path X → · · · → X.

4.1.1 Reading the output

At the end of the run of the Markov chain, the corresponding .mcmc file is created. This
file is structured such that it can be loaded within R as a data frame using the read.table
command. The header in this file is encoded as follows. There are three types of variable
names used:

• x.D.y: here, x and y are integers. The integers are indices for the entries in
var.names. This column of the MCMC data frame contains the samples of the
coefficient corresponding to the directed edge from the xth variable into the yth
variable. For instance, if the xth variable is AGE and the yth variable is INCOME,
then the column x.D.y corresponds to samples of the coefficient associated with
AGE → INCOME;

• .D.y: as before, y is an integer indicating that the corresponding variable is the
yth entry of var.names. Columns of this type contain samples of the intercepts of
the corresponding structural equations. Continuing the previous example, since AGE
corresponds to the yth variable, this column would contain samples for the intercept
of the structural equation of AGE;

• x.B.y: as before, but corresponding to the bi-directed edges. In our example, this
would correspond to the bi-directed edge AGE ↔ INCOME. That is, samples of the
covariance of the error terms of the structural equations for AGE and INCOME (notice
that all samples are positive for x.B.x, which correspond to variances of the error
terms).

4.2 dmgbayes.gaussian.marginal.bidirected

Simpler than the previous procedure, this assumes that the model is a Gaussian model
that factorizes according to a DMG containing only bi-directed edges and no latent vari-
ables. The data is assumed to be centered at its empirical mean. This class computes
the log-marginal likelihood of the given graph. Call this function with the following ar-
guments:

5

• var.names: an array of strings providing the name of the variables;

• bidirected: a matrix indicating which bi-directed edges exist;

• train: the data;

• prior.V: the matrix hyperparameter for the prior distribution over the error covari-
ance matrix V;

• dmg.df: the degrees of freedom hyperparameter for the prior distribution of V;

• mc.num.samples: the total number of Monte Carlo steps used in the procedure;

• mc.options: an array of integers specifying a couple of options. Entry mcmc.options[1]

specifies the level of verbosity of the output, from no output (1) to printing a mes-
sage at each sample (4).

This function returns an array of two entries. The first entry is equal to 1 if the
procedure was concluded without any errors and 0 if some error happened (e.g., invalid
graph). The second entry returns the desired marginal log-likelihood estimate.

4.3 Formatting the input

Different kinds of R objects are used to represent input information. Some are straight-
forward: datasets train and test are R data frames. Still, some care needs to be taken
while providing this information. Also, refer to the examples discussed at the end of this
document as an easy way of visualizing the formatting requirements.

4.3.1 Data frames and name arrays

The name information for all variables is passed through the standard array of strings
var.names. The reason why we do not use the header information of the data frames
is due to the possibility of latent variables. In this case, the array var.names should
include all variables, observed or latent.

When providing train and test, two main points have to be observed:

• currently, we do not support missing data. No NA values are admitted;

• the order of the columns in the data frame should correspond to the order of
the observed variables in var.names. For instance, if var.names is the vector
(“X1”,“X2”,“H”,“X3”,“X4”), where H is the only latent variable, then the columns
of the datasets should be correspond to the order (“X1”,“X2”,“X3”,“X4”),

The ordering within the integer array islatent should also correspond to the ordering
in var.names.

4.3.2 Graph matrices

The graph matrices directed and bidirected are provided as integer matrices of two
columns and as many rows as there are edges. Each row will correspond to an edge, and
the numbers entered in the matrices correspond to their position in var.names.

For instance, suppose we have a graph with the directed edges X → Y → Z and the
bi-directed edge Y ↔ Z. Suppose also that var.names is (“X”, “Y ”, “Z”). In the edge
matrices, we refer to X, Y and Z as 1, 2 and 3, respectively.

6

The first row in directed corresponds to some arbitrary directed edge of this graph.
Say, X → Y . We encode this row as [2 1], corresponding to the convention that first
we specify the node at the arrowhead ending of the edge. The directed matrix in our
example becomes

[

2 1
3 2

]

(4)

The 2-column matrix bidirected is specified in exactly the same way, except that
the order of the elements in each row is not relevant.

4.3.3 Prior matrices

The matrix hyperparameter prior.V for the prior over the error covariance matrix is
a regular R matrix. The number of rows and columns should correspond to the total
number of variables (observed and latent). Again, for consistency it is required that the
row/column order should correspond to the entries in var.names.

Arrays b.priormean and bprior.var are standard numerical arrays, but extra care
should be taken while constructing these arrays.

Consider first b.priormean. Once again we follow the order defined by var.names.
Let Yi correspond to the ith variable according to this order. We add to b.priormean the
prior means to all the edges into Yi before considering any edges into Yj, j > i. Within
the edges into Yi, we also order them according to the index of its parents.

For instance, suppose we are adding the edges into Y5, which has parents Y2 and Y4.
We add to b.priormean the mean hyperparameter for Y2 → Y5 before Y4 → Y5, since Y2

precedes Y4.
We also have to add the prior mean for the intercept term. We add this prior after

adding the mean hyperparameters for all parents of Yi. In our example, we add the prior
mean for the intercept of Y5 after the one corresponding to Y4 → Y5.

The ordering within b.priorvar is completely analogous.
Finally, the integer array b.fixed indicates which coefficients are fixed to constants.

The entries in b.fixed correspond to the entries in b.priormean, so the same ordering
requirements apply. Use 1 to indicate that a particular coefficient is fixed, 0 otherwise.
The fixed value will be the corresponding mean hyperparameter passed in b.priormean.

5 Using the stand-alone software

When calling dmgBayes directly from the command line (i.e., bypassing R), you will need
to add the tetrad*.jar file to you classpath. This can be done directly from your com-
mand line using the option -cp. For instance:

> java -cp .:tetrad-4.3.8-6.jar rbas.dmg.app.RunGibbsGaussian

The current version (1.0) provides two applications:

5.1 rbas.dmg.app.RunGibbsGaussian

This application does Bayesian inference for Gaussian mixed graph models using a
MCMC algorithm. The basic functionality consists on generating estimates of the covari-
ance matrix (defined as the posterior mean) and predictive log-likelihood. Much more

7

can be done by using the generated samples, which are stored in a output file. Marginal
likelihood computation will be added in the future.

Call the Java interpreter with the following arguments:

> RunGibbsGaussian <domain name> <number of samples> <burn in> <step size>

The meaning of the parameters is as follows:

• domain name: this indicates which graph, priors and datasets to use. More on that
later;

• number of samples: number of MCMC steps;

• burn in: number of initial steps from the chain that will be thrown out;

• step size: if desired, set this to any integer value greater than 1 if one wants to
use only some of the sampled points for the estimates. Setting step size to n means
that, given that point i was kept, the next point to be stored will be point i + n.
The first point to be kept is the first one after the burn-in period.

RunGibbsGaussian will access the following files:

• <domain name>.train, the dataset that we will condition on to generate the pos-
terior distribution over parameters;

• <domain name>.test, an optional data file. If present, RunGibbsGaussian will
calculate the log-likelihood of this dataset given the training data and the graph1;

• <domain name>.graph, the directed mixed graph;

• <domain name>.priors, the prior for the parameters;

Information about the file formats is given in Section 5.3. A log containing all sampled
points will be generated as <domain name>.mcmc. This allows the user to estimate other
posterior functionals and to generate plots.

The current version of dmgBayes does not allow for models with directed cycles, i.e.,
no model where there is a path X → · · · → X.

5.2 rbas.dmg.app.RunGaussianBidirectedScoring

Simpler than rbas.dmg.app.RunGibbsGaussian, this assumes that the model is a Gaus-
sian model that factorizes according to a DMG containing only bi-directed edges. The
data will be centered at its empirical mean automatically. This class computes the log-
marginal likelihood of the given graph. Call the Java interpreter with the following
arguments

> RunGaussianBidirectedScoring <domain name> <number of samples>

which will sample <number of samples> points using the Monte Carlo method of Silva
and Ghahramani (2008), and use it to calculate the log-marginal likelihood of the model.
As before, it assumes that the following files are on the path:

1The predictive log-likelihood is calculated individually for each test point. The computed log-

likelihood of the test set is the sum over each individual log-likelihood.

8

• <domain name>.train, the dataset whose probability will be calculated given the
graph;

• <domain name>.graph, the bi-directed graph;

• <domain name>.priors, the prior for the covariance matrix;

5.3 File Formats

There are three different types of files: data, graphs and priors. All of them are in plain
text format.

5.3.1 Data files

The data file should contain the name of the variables in the first line, separated by a
tab or space character. The data points themselves should start in the second line. Each
data point should be in a single individual line, with variable values separated by a tab
or space character.

5.3.2 Graph files

Each line should contain an edge (directed or bi-directed). The name of each node should
be exactly the name of the corresponding variable in the data file. Nodes with names that
do not correspond to any variable in the data file will be assumed to be latent variables
automatically.

The syntax for a directed edge is as follows:

<variable 1> -> <variable 2>

where a valid name for a variable can be anything that does not include any space or tab
character.

The syntax for a bi-directed edge is as follows:

<variable 1> <-> <variable 2>

5.3.3 Prior files

Each parameter corresponds to a particular edge, making the prior distribution file similar
to the graph file: each parameter appears in an individual line, starting by the description
of the parameter through its edge, followed by the hyperparameters.

For a coefficient associated with edge X → Y , the corresponding line in the file should
be

X -> Y <mean> <variance> [true]

This encodes that the coefficient associated with edge X → Y has a Gaussian prior dis-
tribution with the respective mean and variance. Optionally, adding the token true to
the end of the line means that this parameter is actually fixed at its mean value and is
not allowed to vary. For instance,

9

X -> Y 0 10

means that the parameter for X → Y has as a prior distribution a Gaussian of zero mean
and variance 10, while

X -> Y 1 10 true

means that the parameter for X → Y has the fixed value of 1 (the variance value of 10
is ignored).

One of the parameters that defines the distribution of a variable Y given its parents is
the intercept term in the respective linear equation (namely, the mean of Y conditioning
on its parents is given by a linear combination of its parents plus the intercept). To
indicate the prior for the intercept term, use the keyword INT. For example,

INT -> Y 0 10

gives a Gaussian prior of zero mean and variance 10 as the prior for the intercept term
of Y .

If no prior is given for X → Y , it takes a standard Gaussian prior as default.
Priors for variances and covariances of error terms are similar. For example, use

Y <-> Y 2

to indicate that the respective variance entry in the matrix hyperparameter of the G-
Inverse Wishart is 2. Use

X <-> Y 1

to indicate a (X, Y) entry of 1 in the matrix hyperparameter of the error terms.
If no variance and covariance hyperparameters are given, variance hyperparameters

will have a default of 1. Covariance hyperparameters will have a default of zero.
Finally, the degrees of freedom for the G-Inverse Wishart prior should be set in the

first line of the priors file. Use

df <number>

to set the degrees of freedom accordingly. As explained in Silva and Ghahramani (2008),
this parameterization already takes into the account the dimensionality of the dataset
(some inverse Wishart parameterizations need the minimum number of degrees of freedom
to be bounded by the dimensionality).

6 Examples

Included with the source code and compiled classes is a small example, analogous to the
democratization/industrialization domain discussed in Silva and Ghahramani (2008) and
Bollen (1989). It includes both directed and bi-directed edges, as well as latent variables.

10

The data is simulated: in order to obtain the real data used in the given references, please
contact Kenneth Bollen from University of North Carolina.

In this example, we fix the coefficients L1 → X1, L2 → X4 and L3 → X8 to 1, since
the scale and sign of the latents is arbitrary. Fixing such coefficients will anchor the sign
and scale of the latents to the observed variables.

Another example with synthetic data is included: a simple demonstration of the
method for computing marginal likelihoods (i.e., the G-Inverse Wishart normalizing con-
stant).

7 TO DO List

These are several extensions of this software that are planned for the future:

• probit models for binary and ordinal variables, and mixtures of binary/ordinal/Gaussian
variables;

• variational approximations for Gaussian and probit models;

• structure learning: searching for graphical structures with high posterior value;

• better interface: generate more detailed log files, “real-time” traces of Markov
chains, etc.;

• Gaussian cyclic models;

• nonparametric models;

Useful extensions and modifications that are not my priority:

• code optimization: use of sparse matrix inversion methods, message-passing schemes,
etc. Virtually no use of special patterns (triangular, banded, etc.) in the error co-
variance matrix has been implemented (we did implement the district factorization
− see Silva and Ghahramani, 2008 − that takes care of block-diagonal structures).
The code can be much faster if it explores the graphical structure better;

• integration with the Tetrad project at Carnegie Mellon University;

• treatment of missing data;

• parallel implementation;

DISCLAIMER

This software is provided “as is” and free of charge. Feel free to modify and reuse the
code in any way you want. There is certainly a lot of room for code optimization, which
was not my main goal. Comments are welcome.

ACKNOWLEDGEMENTS

Funded in part by the Gatsby Charitable Foundation and the EPSRC grant #EP/D065704/1.

11

