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Abstract

Several finite-difference time-domain (FDTD) algorithms using the additional dif-
ferential equation (ADE) method were analysed and tested in order to solve Maxwell’s
equations in non-trivial (linear and non-linear dispersive) materials. A novel and
efficient algorithm has been derived that allows to simulate electromagnetic wave
propagation in non-trivial materials that have an arbitrary number of linear Drude-
and Lorentz-poles and exhibit non-linear Kerr-effect and Raman-scattering. The ad-
vantage of this new algorithm is its modularity, that is, each dispersion contribution
can be computed separately which allows parallelisation. Moreover, it has improved
speed compared with other similar algorithms. A concrete example of materials in-
corporating several non-trivial properties are the so-called double negative materials
(DNMs). Such DNMs were analysed in numerical experiments in order to test the
new algorithm.





Summary

Emerging applications of photonics in general and of DNMs in particular involve materials
having frequency- and intensity dependent polarisations. The goal of this work was to
study the feasibility of the simulation of electromagnetic wave propagation in non-trivial
(linear and non-linear dispersive) materials with finite-difference time-domain (FDTD). To
this end, several algorithms which, allow the simulation of a specific effect based on the
additional differential equation (ADE) method, were analysed and tested. Because it is
planned to extend the commercial software Semcad X [1] with advanced dispersion models
in future projects, it is of particular interest to know their stability conditions, accuracies
and computational costs (memory, speed). It has been found that ADE FDTD is also a
possible mean of solving problems related to materials with several non-trivial properties
as shown by [2]. The problem of this approach [2] is that it is slow and not modular which
is desirable for parallelisation.

The outcome of this thesis is the derivation of a novel and efficient ADE FDTD algo-
rithm that allows to simulate electromagnetic wave propagation in materials that have
an arbitrary number of linear Drude- and Lorentz-poles and exhibit non-linear Kerr-effect
and Raman-scattering. This new algorithm is designated ADM , standing for arbitrary
dispersive materials algorithm. The novel approach is based on the introductino of the
intensity as a new variable which allows to update the contribution from the Kerr-effect
separately. The update equation for the intensity can then be solved by a fixed-point iter-
ation. Stability conditions of ADM and a convergence criteria for the fixed-point iteration
were derived analytically.

ADM has the following advantages:

• Material-Models: linear Drude- and Lorentz-polarisation, non-linear Kerr-effect and
Raman-scattering

• Improved Speed: faster than any other similar algorithm

• Modularity: each polarisation contribution can be computed separately (allows par-
allelisation)

An exemplary application are materials incorporating linear and non-linear dispersion
like the so-called double negative materials (DNMs). Such DNMs were analysed in numer-
ical experiments in order to test the new algorithm.



Thesis Outline

In Part I, the physical principles of electromagnetic fields, of electromagnetic properties
of matter and of electromagnetic field-matter interaction are discussed. Section 1, which
briefly reviews Maxwell’s equations, is followed by a discussion of linear and non-linear
dispersion models in section 2. The basic physical concepts and the important equations
that describe the Drude-, Lorentz- and Debye-models of matter as well as of the non-linear
Kerr-effect and Raman-scattering are introduced. The properties of DNMs, which are
artificial materials, is reviewed in section 3. The interaction of electromagnetic waves with
DNMs as well as actual experiments and numerical simulations of other research groups are
described. The first part is closed by the presentation of results of numerical experiments
of DNMs performed with Semcad X.

Part II covers the discussion of FDTD algorithms that allow to simulate non-trivial
materials. Section 4 reviews the standard Yee-algorithm which solves Maxwell’s equations
in trivial materials. In Section 5, the auxiliary differential equation method (ADE-FDTD)
is introduced which allows to model non-trivial materials. Several algorithms that cover
Drude-, Lorentz-, Debye-materials and their stability conditions and accuracies are derived
and discussed. The second part is closed by a review of an ADE-FDTD algorithm that
allows to simulate a material with non-linear Kerr-effect, Raman-scattering and Lorentz-
dispersion. This algorithm forms the basic concept of the formulation of an advanced
algorithm that is able to simulate any combination of dispersive effects.

In Part III, a new algorithm which allows to simulate electromagnetic wave propagation
in arbitrary dispersive materials (ADM) such as DNMs is derived. The presented algorithm
is as accurate as the one derived in Part II but requires significantly less computational
time. The derivation of this new algorithm in section 6 is followed by a stability and
accuracy analysis of the ADM -algorithm in section 7. Section 8 presents one-dimensional
simulations of DNMs and other non-linear materials that demonstrate the quality of the
ADM-algorithm and show some special effects that occur in such materials. The work is
concluded by section 9 where a short summary recapitulates the thesis and section 10 which
describes upcoming projects based on this thesis and discusses further possible extensions
of the new algorithm by inclusion of other effects.
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Part I

Electrodynamics of Media

In this introductionary part, different material models to describe the interaction of elec-
tromagnetic waves with matter are introduced. Main focus is put on non-trivial (linear
dispersive or non-linear dispersive) materials. These models will be used afterward to
derive a finite-difference time-domain (FDTD) algorithm to solve Maxwell’s equations in
these materials. Trivial materials are covered by the standard Yee-algorithm and described
at length in [3] and will hence not be discussed here.

1 General Inspection of Maxwell’s Equations

Maxwell’s Equations Classically, i.e. not quantum-mechanically or relativistically, the
electromagnetic field is described by Maxwell’s equations:

∇∧ E = −∂B

∂t
(1.1a)

∇∧ H =
∂D

∂t
+ j (1.1b)

∇ · D = ρ (1.1c)

∇ · B = 0 (1.1d)

The electric current density j is connected to E via Ohm’s law (where valid, i.e. at
sufficiently low intensities):

j = σE (1.2)

where σ is the electric conductivity.
The magnetic field H and the magnetic flux density B as well as the electric field E and

the electric flux density D are connected via the following equations:

B = µH (1.3a)

D = ǫE. (1.3b)

The magnetic permeability µ and the electric permittivity ǫ are in the most general case
time-dependent and imaginary second order tensors. Such a permittivity or permeability
gives rise to dispersion, absorption and anisotropy. The free space values will be designated
with ǫ0 and µ0. In this work, only isotropic materials with dispersion and absorption are
considered.
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1 General Inspection of Maxwell’s Equations

Short Excursion on the Fourier Transform and Convolutions Time-dependent func-
tions can be mapped bijectively with the Fourier transform (F) onto functions depending
on spectral frequency:

F : f(t) 7→ f̂(ω)

F−1 : f̂(ω) 7→ f(t).

The .̂ shall be ignored in future notation as it is all well defined by the function’s argument.
Hence, dispersion will be described by ǫ(ω), µ(ω) and by the refractive index n(ω) (see
also equation (1.4)). It has to be pointed out that the signs occurring when applying the
Fourier transform to partial derivatives depend on the definition of the Fourier transform.
Conventionally, the Fourier transform with negative sign will be used:

E(t) =

∫

E(ω)e−iωtdω

With this definition the following conversion is valid: ẋ(t) → −iωx(ω).
The convolution of two functions f(x) and g(x) which are defined on R

n is defined as

f(x) ∗ g(x) =

∫

Rn

f(x − y)g(x)dy

If f(x) and g(x) are Riemann-integrable functions on R
n, i.e. if

f(x), g(x) ∈ L1(Rn) =

{

f measurable|
∫

Rn

|f(x)|dx < ∞
}

then the following holds

i) f ∗ g ∈ L1(Rn)

ii) f ∗ g = g ∗ f

iii) ˆf ∗ g = (2π)
n
2 f̂ ĝ

Point iii) is important for upcoming discussions: the Fourier transform of a convolution of
two functions is equal to the product of the two Fourier-transformed functions.
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Electromagnetic Wave Propagation The most simple solutions of Maxwell’s equations
(1.1) are plane waves

E(t) ∝ e−i(ωt−nk0·x)

where k0 is the free space wave vector and n is the refractive index which is defined as

n =
√

ǫµ. (1.4)

Thus, the dielectric constant ǫ(ω) and the magnetic permeability µ(ω) are fundamental
quantities which determine the propagation of electromagnetic waves in matter.

Consider a plane wave E(t) ∝ e−i(ωt−nk0·x). The real parts of ǫ(ω) and µ(ω) are respon-
sible for refraction, the imaginary parts of ǫ(ω) and µ(ω) result in absorption of the wave.
The imaginary parts of ǫ(ω) and µ(ω) can be ignored for wave-propagation because their
contribution is only the diminution of the wave’s amplitude, any altering of phase velocity
origins from the real parts. Thus, in the following discussion, only purely real ǫ(ω) and
µ(ω) are considered. If both, ǫ(ω) and µ(ω) change sign, the sign of n remains unchanged.
If they have opposite signs, the refractive index becomes imaginary. The dispersion rela-
tion of a monochromatic wave, which describes the connection between the wave vector k

and the frequency ω, is:

k2 =
ω2

c2
n2. (1.5)

If n is purely imaginary, the wave will not propagate in the medium but decay exponen-
tially (evanescent waves, compare for example with total internal reflection) because the
dispersion relation 1.5 can only be satisfied for imaginary k (imaginary ω are non-physical).
This is the case if only ǫ(ω) is negative which is found in an electrical/gaseous plasma like
metals at UV- to Optical frequencies or thin wires structures at GHz frequencies. This
will be shown in the sections 2.2 and 3.2.1. An imaginary k results also if only µ(ω) is
negative which is the case in a ’magnetic plasma’ to be found in structured materials which
will be shown in section 3.2.2. On the opposite, materials with equal signs in the real parts
of ǫ(ω) and µ(ω) allow propagating waves.
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2 Dispersion Models

2.1 Introductionary Remarks

Dispersion is in first order a material property due to which electromagnetic waves with
different frequencies propagate at different velocities. This property can also be described
by a frequency dependence of the refractive index. As a result in a dispersive material,
a light-pulse, which is a large sum (or an Integral) over many single waves of different
wavelengths, is broadened because some waves travel at a higher speed than the others.
This is why the group velocity, which is given in one dimension by

vg =
∂ω

∂k
=

(

∂k

∂ω

)

−1

, (2.1)

is altered when the refractive index depends on ω. The relation between k and ω is given
by the dispersion relation (1.5) where n = n(ω) =

√

ǫ(ω)µ(ω). At higher orders, the
refractive index may also depend on the intensity of the electromagnetic wave.

In the following sections, the properties of the electromagnetic field inside dielectric
materials are described more in detail and the dispersion relations are derived. The spectral
properties of the permittivity ǫ(ω) are connected to the atomistic properties of a material.
The linear contributions of a free electron gas and of harmonically bound electrons to
the permittivity ǫ(ω) are derived. Finally, a brief discussion of the non-linear Kerr- and
Raman-effect are provided.

In a dielectric, equations (1.3) can be rewritten as

B = µH = µ0(H + M) (2.2a)

D = ǫE = ǫ0(E + P). (2.2b)

Generally, the magnetic polarization M is negligible, the magnetic susceptibility being
small compared to the electric permittivity.

For the components of the electric polarization P in the frequency domain one can write
using the Einstein convention

Pi = ǫ0

(

χ1j
i Ej + χ2jk

i EjEk + χ3jkl
i EjEkEl + · · ·

)

(2.3)

where χn are the dielectric susceptibility tensors of order n. In the time domain, the right
hand side of equation (2.3) takes the form of a convolutions.
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2 Dispersion Models

2.2 Linear Dispersion

Ignoring higher order terms in the series on the right hand side of equation (2.3), yields a
polarization P that depends linearly on E. Frequency dependent first order susceptibilities
χ1(ω) that relate E to P give rise to linear dispersion. The term linear refers to the linearity
of P in E and not to frequency dependence of the susceptibility χ1(ω). A more thorough
discussion of the basic physical concepts and their contribution to linear dispersion than
the one presented next can be found in [4] or [5].

2.2.1 Drude Media

The dielectric behaviour of metals and semi-conductors with high electron concentration
as well as of plasmas is determined by the collective excitation of the free charges. The
displacement x(t) of the free charges against the ionic trunks results in positively and
negatively charged clouds which exert an attractive force on each other. This so-called
Drude-model yields the following equation of motion:

nmẍ(t) + δDẋ(t) = neE(t) (2.4)

where δ is a damping constant (pole relaxation time), m is the reduced mass, e is the
effective charge and n is the charge density. The electric conductivity σ is related to δD.
To see this, a stationary current, j̇ ∝ ẍ(t) = 0, is assumed for which the following equation
is valid:

j = enẋ(t) =
n2e2

δD

E(t) = σE(t)

Now the Fourier transform of equation (2.4) is taken and solved for x(ω). For the polar-
ization P one finds the following relations

P (ω) = nex(ω) (2.5)

= −
ω2

p

ω2 + iω
ω2

pǫ0
σ(ω)

E(ω) (2.6)

= ǫ0χ
1
DE(ω) (2.7)

where the first equation is given by definition and the third equation defines the sus-
ceptibility χ1

D which is the linear contribution of Drude-Oscillators to the polarization.
Furthermore, the Drude-pole frequency is introduced as

ω2
p =

ne2

ǫ0me

.

Introducing the high frequency limit ǫ∞ = ǫ(ω = ∞) one obtains as final expression for
the permittivity

ǫ(ω) = ǫ∞ −
ω2

p

ω2 + iω
ω2

pǫ0
σ(ω)

(2.8)
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2.2 Linear Dispersion

The real and imaginary part of the derived permittivity ǫ(ω) are shown in figure 1. It can
be readily seen that at low frequencies the permittivity becomes negative and imaginary,
i.e. absorption is high for low frequencies. A closer look at the Drude model with focus on
the frequency regime of negative permittivity will be taken in section 3.2.1. An illustrative

0 

0   

spectral frequency ω

pe
rm

itt
iv

ity
 ε

Figure 1: The graph shows ǫ(ω) as a Drude-oscillator with damping (in arbitrary scales).
The solid line is the real, the dashed line the imaginary part of ǫ(ω).

example of a light-pulse traversing a Drude-medium is shown in section 5.1.5.

2.2.2 Lorentz Media

The excitation of a harmonic oscillator is assumed to produce a dipole-moment

p(t) = ex(t) (2.9)

where x(t) is the amplitude of the excitation. This situation can be found in systems
with electrons that are bound harmonically to the atomic trunks, natural frequencies of
molecules with dipole-moment or lattice oscillations of ionic crystals.

Consider the equation of motion for a damped harmonic oscillator (in this context one
speaks of a Lorentz-oscillator)

ẍ(t) + δLẋ(t) = −ω2
0x(t) +

e

m
E(t) (2.10)

where δL is a damping constant (which can be calculated quantum-mechanically), ω0 is
the resonance frequency, m is the reduced mass and e is the effective charge of the dipole.
Taking the Fourier transform of equation (2.10) yields

−ω2x(ω) − iωδLx(ω) = −ω2
0x(ω) +

e

m
E(ω)

7



2 Dispersion Models

which can be readily solved for x(ω). For the polarization one finds

P (ω) = nex(ω) (2.11)

=
e2n
m

ω2
0 − ω2 − iωδL

E(ω) (2.12)

= ǫ0χ
1
LE(ω) (2.13)

where n is the charge density. Here, χ1
L is the linear contribution of Lorentz-oscillators to

the polarization.
By introducing the static dielectric constant ǫs = ǫ(ω = 0), the high frequency limit ǫ∞

and ∆ǫ = ǫs − ǫ∞ the final expression for the permittivity is given by

ǫ(ω) = ǫ∞ +
∆ǫω2

0

ω2
0 − ω2 − iωδL

. (2.14)

The real and imaginary part of the derived permittivity ǫ(ω) are given in figure 2. The real
part first increases rapidly when approaching the resonance and then drops well bellow 0
forming a frequency band in which the permittivity is negative before it increases again
to ǫ∞ = ǫ(ω = ∞). The imaginary part has a peak at the resonance giving rise to high
absorption. A closer look at the Lorentz model with focus on the frequency regime of
negative permittivity can be found in section 3.2.2. An illustrative example of a light-pulse

0 

0  

spectral frequency ω

pe
rm

itt
iv

ity
 ε

Figure 2: The graph shows ǫ(ω) with damping (in arbitrary units). The solid line is the
real, the dashed line the imaginary part of ǫ(ω).

traversing a Lorentz-medium is shown in section 5.2.5.
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2.2 Linear Dispersion

2.2.3 Debye Media

In the Debye model of a medium, absorption does arise due to dipole relaxation. Assuming
a medium of ideal, non-interacting dipoles in a slowly varying electric field, the dipoles’
orientation can easily follow the field and the system is always in equilibrium. If the
field varies too fast, the dipoles cannot change their orientations fast enough (e.g., due to
viscosity) and hence dissipation of the field energy sets in and the field gets absorbed.

The temporal change of the polarization P due to relaxation of ideal dipoles can be
described by the following differential equation

∂P(t)

∂t
= −P(t)

τ
,

where τ is the relaxation time of the dipoles. The stronger the polarization is, the faster
is the relaxation. Assuming linear polarization by the electric field E with an amplitude
given by ∆ǫ = ǫs − ǫ∞ gives

P(t) = ǫ0∆ǫE(t) + τ
∂P(t)

∂t
. (2.15)

Taking the Fourier transform of the above equation results in

P(ω) =
ǫ0∆ǫ

1 − iωτ
E(ω) = ǫ0χ

1
D2

E(ω) (2.16)

where the linear contribution to the polarization by Debye dipoles χ1
D2

is recovered. The
course of ǫ(ω) = ǫ∞ + χ1

D2
in a Debye medium is shown in figure 3. For further details and

aspects of non-Debye relaxation reference is made to [6].

0  
0 

12

spectral frequency ω

pe
rm

itt
iv

ity
 ε

Figure 3: The graph shows ǫ(ω) of a Debye medium (in arbitrary scales). The solid line
represents the real and the dashed line the imaginary part of ǫ(ω).
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2 Dispersion Models

2.3 Non-linear Effects

The higher order terms on the right hand side of equation (2.3) yield a polarization P that
depends non-linearly on E. As shown below, the second order susceptibility χ2 cannot
exist in an isotropic medium. Therefore, only third order susceptibilities will be discussed.

2.3.1 Second Order Susceptibilities

Isotropy means that the material properties do not depend on the orientation of the co-
ordinate system. Vector-values like the polarization P and the electric field E depend on
the coordinate system. Let P be the inversion of space (reflection at the origin). E and P

transform as follows under P :

P(x) = −x

P(E(x)) = E(−x) = −E(x)

P(P(x)) = P(−x) = −P(x)

Thus, for the second order susceptibility one finds

P(P2(x)) = −P2(x) = ǫ0χ
2E2

which can not be satisfied. Thus, the second order susceptibility in an isotropic material
is equal to zero.

2.3.2 Kerr-Effect and Raman-Scattering

In this section, third-order susceptibility contributions to the total polarization will be
derived. These susceptibility contributions give rise to an intensity-dependent refractive
index. A detailed discussion of these third order non-linear effects would be beyond the
scope of this work and the reader is referred to technical literature such as [5] for de-
tails. For reasons of brevity, only the derivation of the formulas for the Kerr-effect and
Raman-Scattering which will be required for the FDTD formalism (see section 5.5) will be
reproduced here following [7] and [2].

In general, the third order non-linear polarization is

P(t) = ǫ0

∫

χ3(t − t1, t − t2, t − t3)E(t1)E(t2)E(t3)dt1dt2dt3 (2.17)

where χ3 is the third-order susceptibility tensor. For a simple model of the electron response
accounting for non-resonant intensity-dependent nonlinear effects, the above equation re-
duces to the Born-Oppenheimer approximation:

P(t) = ǫ0χ
3
0

∫

g(t − t′)E(t′)2dt′ (2.18)

where g(t) is the normalized causal response function. The induced polarization is assumed
to lie in the same direction as the electric field. The non-resonant third-order processes

10



2.3 Non-linear Effects

that will be modeled include phonon interactions and non-resonant electronic effects. The
response function can then be described as

g(t) = αδ(t) + (1 − α)gRaman(t)

where α ∈ [0, 1] represents the relative strengths of the Kerr and Raman polarizations, δ(t)
is a Dirac delta function modeling the instantaneous Kerr non-resonant virtual transitions,
and

gRaman(t) =
τ 2
1 + τ 2

2

τ 2
1 τ 2

2

e
−

t
τ2 sin(

t

τ1

)U(t)

is an approximation of the Raman response function with parameters τ1 and τ2 chosen to fit
the Raman-gain spectrum, and U(t) is the Heaviside function. gRaman(t) models transient
Raman scattering. Effectively, gRaman(t) models a single Lorentzian line centered on the
optical phonon frequency 1

τ1
having a bandwidth of 1

τ2
, the reciprocal phonon lifetime.

Thus, the polarisation due to Kerr-effect is given by

PKerr(t) = ǫ0χ
3
0E(t)

∫

αδ(t − t′)|E(t′)|2dt′

= αǫ0χ
3
0|E(t)|2E(t) (2.19)

and the polarisation by Raman-scattering is

PRaman(t) = ǫ0E(t)
[

χ3
Raman(t) ∗ |E(t)|2

]

(2.20)

where

χ3
Raman(t) = (1 − α)χ3

0gRaman(t)

The Kerr-effect is simply a frequency-independent, intensity-dependent contribution to
the permittivity. Despite that its contribution looks trivial, its effects are very complex.
The strength of the Kerr-effect is intensity dependent and depends therefore also on the
field amplitude. Thus, different parts of a light-pulse are differently affected by the Kerr-
effect. Depending on the sign of the susceptibility χ3, the Kerr-effect is either focusing,
when positive, or defocusing, when negative. In a well balanced case it is possible that the
pulse-broadening due to dispersion is neutralised by the Kerr-effect such that the light-
pulse retains its shape. Such wave-pulses that retain their shape are called solitons. Some
illustrative results of solitons are shown in section 8.2.
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3 Double Negative Materials

Materials with a permeability µ(ω) and a permittivity ǫ(ω) both negative are called dou-
ble negative materials (DNMs). Such materials have many surprising, counter-intuitive
properties that can be derived analytically. As there are no known natural DNMs at any
wavelength, they have to be produced artificially. The most important properties of DNMs
will be discussed in this section as well as their construction and analysis.

3.1 Requirements and Properties of a DNM

In this section, the work of V. G. Veselago [8] is recapitulated in a nutshell. Despite
having no possibility to produce a DNM in 1968, Veselago derived some properties of such
a material.

3.1.1 Electromagnetic Field Energy in a Medium

In order to achieve negative ǫ(ω) and µ(ω) it is essential to have a dispersive medium. To see
this, assume first a non-dispersive medium for which the total energy of the electromagnetic
field W is given by

W = ǫE2 + µH2. (3.1)

Hence, if both ǫ(ω) and µ(ω) are negative, the total energy of the field is negative. However,
if there is dispersion, then the total electromagnetic field energy W is determined by

W =
∂(ǫ(ω)ω)

∂ω
E2 +

∂(µ(ω)ω)

∂ω
H2. (3.2)

In order to achieve a positive total energy W only the partial derivatives in the above
equation have to be positive, the values of ǫ(ω) and µ(ω) can be negative at the same time.

Thus, if a medium shows a certain dispersive behaviour, it is possible to obtain negative
ǫ(ω) and µ(ω) at the same time, which allows propagating waves (see equation (1.5)).

3.1.2 Electromagnetic Wave Propagation in a DNM: Negative Refraction

This section discusses the consequences for the electromagnetic waves entering and travers-
ing a DNM. To this end, first Maxwell’s equations are considered

∇∧ E = −∂B

∂t
(3.3a)

∇∧ H =
1

c

∂D

∂t
(3.3b)

and the constitutive equations

B = µH (3.4a)

D = ǫE (3.4b)

13



3 Double Negative Materials

which reduce for a plane wave into

k ∧ E =
ω

c
µH (3.5a)

k ∧ H = −ω

c
ǫE. (3.5b)

It is readily seen from the above equations that if ǫ(ω) and µ(ω) both are positive then E,
H and k form a right-handed set of vectors and if they are both negative, then they form
a left-handed set. That is the reason why DNMs are also often called left-handed media
(LHMs) in literature. The energy-flux of an electromagnetic wave is given by Poynting’s
vector S, which is defined via

S =
1

c
E ∧ H (3.6)

stating, that S, E and H always form a right-handed system. Thus, in a DNM the wave
vector k and Poynting’s vector S are anti-parallel, i.e. point in opposite directions. The
point is, that the phase-velocity, which is parallel to k, points in the opposite direction of
the energy flux, which is parallel to S. This behaviour is called negative phase velocity and
some authors call DNMs also backward-wave materials. It is though not unique to DNMs
as it is known to occur in anisotropic media or media with anomalous dispersion (see also
[9]).

The most interesting feature of DNMs for technical applications is the negative refrac-
tion that occurs in such media. An incident wave on a interface of two media undergoes
refraction. While the strength (angle) of the refraction depends on the absolute values of µ
and ǫ, the sign of the refraction (positive or negative) depends on the sign of the refraction
angle φ2 which again depends on the signs of µ and ǫ.

Consider the boundary conditions at the interface of two media i = 1, 2:

Et1 = Et2 (3.7a)

ǫ1En1
= ǫ2En2

(3.7b)

Ht1 = Ht2 (3.7c)

µ1Hn1
= µ2Hn2

(3.7d)

where Eti and Hti are the electric and magnetic field components parallel to the interface
in medium i and Eni

and Hni
are the electric and magnetic field components normal to the

interface in medium i. The directions of the parallel components of the electromagnetic
field are independent of the handedness of the media. But if the handedness of the two
media is not equal, then the normal components have to change sign in order to satisfy
the above equations. In fact, this change of sign of the normal field components results in
a change of sign of the refractive index of the DNM, i.e. the refractive index n of a DNM
is negative.

14



3.2 Making a DNM

Despite this change of signs, Snell’s law is still valid as sin(.) is an odd function. Assuming
φ2 ∈

[

−π
2
, 0
]

, the following is valid:

n1 sin(φ1) = n2 sin(φ2) = n2 sin(−|φ2|) = −|n2| sin(|φ2|). (3.8)

In that sense, there are two equivalent interpretations available:

1. Snell’s law remains unchanged if the refractive index n2 and the refractive angle φ2

change sign simultaneously. Hence, negative refraction is generally allowed by Snell’s
law.

2. If there is a negative refractive index n2, then there has to be negative refraction
(negative refraction angle φ2) in order to comply with Snell’s law and vice versa.

Again, it has to be pointed out, that negative refraction is not unique to DNMs as it is
known to occur also in anisotropic media. The difference of DNMs and anisotropic media
that show negative refraction is, that in DNMs the phase vector k points exactly into
the opposite direction of Poynting’s vector S while in anisotropic media k and S are not
parallel nor anti-parallel.

3.2 Making a DNM

DNMs do not exist in nature and have hence to be synthesised. To create a DNM, the
artificial material not only requires dispersive ǫ(ω) and µ(ω) with frequency bands at which
they become negative, these frequency bands also need to overlap.

One can create a DNM by implementing metallic structures into the material. All these
artificially created materials that contain micro- or even nano-structures are summarised by
the term metamaterials. The structures have to react to electromagnetic waves in a certain
manner resulting in an effective negative ǫ(ω) and µ(ω). As diffraction and refraction of
the traversing wave at structures inside the material are undesired, the structures have
to be much smaller than the probing wavelength. It is technically desirable to have such
materials in the optical, infrared and microwave regimes. Hence, the structures have to
be very small (down to few 100 nm). This is also the reason why the first DNMs were
obtained at microwave wavelengths.

In the following sections, the underlying structures inside a DNM and their character-
istics are introduced. To this end, the important results of Pendry’s basic papers of the
years 1996 [10] and 1999 [11] will be recapitulated in brief.
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3 Double Negative Materials

3.2.1 Making Negative Permittivity

In this section, Pendry’s paper [10] is summarized. An extended calculation of the Drude-
oscillator model was provided in section 2.2.1.

It is known that metals whose permittivity ǫ(ω) is dominated by the plasma-like response
of the free electron gas have negative permittivity ǫ(ω) in the optical and near ultraviolet
(NUV) bands. This behaviour originates in the presence of so-called plasmons, a collective
oscillation of the electron-density. Below the optical frequency band, dissipation destroys
the plasmons and typical Drude behaviour sets in.

A displacement of the electron gas inside a metal results in a excess of positive charge
from the atomic nuclei. These two charge clouds exert a restoring force on each other
resulting in harmonic oscillation at the plasma frequency

ω2
p =

ne2

ǫ0me

where n is the electron density and me the electron mass. To have plasmons also present
at lower frequencies than they occur in natural materials, their oscillation frequency has
to be decreased to the desired one, i.e. the density n has to be decreased and the effective
electron mass meff has to be increased.

The effect of these plasmons on the permittivity is described by a Drude-oscillator model
(section 2.2.1):

ǫ(ω) = 1 −
ω2

p

ω(ω + iδ)
(3.9)

where δ is a damping parameter characterising dissipation of the plasmon’s energy into
the system. The characteristics of the real (solid line) and imaginary (dashed line) parts
of ǫeff (ω) are shown in figure 1.

From equation (3.9) and the above graphs one can see, that the real part of ǫ(ω) is
negative when ω < ωp and the imaginary part becomes dominant when ω ≪ δ

ω2
p
.

In metals, the electromagnetic response in the optical and NUV bands is determined
by the negative ǫ whilst at lower frequencies, i.e. below near infrared (NIR), the dielectric
function becomes essentially imaginary and dissipation dominates.

Again, decreasing ωp extends the regime of negative ǫ(ω) with negligible dissipation.
Considering the material as a composite of lattice cells containing any arbitrary structure,
the main idea is, that an effective permittivity of the material ǫeff (ω) can be defined
by averaging fields over one of these lattice cells (details see [11]). Thus, to apply this
effective permittivity concept, it is important that the lattice cells are much smaller than
the traversing wavelength such that the wave does not see the cell’s structure but only its
averaged response. The effective permittivity ǫeff is then defined via the fields that are
averaged over one lattice cell as:

Dave = ǫeff ǫ0Eave (3.10)
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3.2 Making a DNM

where Dave is the averaged electric flux density, which is the resulting field from the reac-
tion of lattice cell to the averaged impinging electric field density Eave. With this concept,
the structured material can be regarded to be homogeneous. Consider the following ar-
rangement: thin (order µm) metal wires with radius r assembled in a periodic lattice where
the wires are separated by a(order mm). The lattice cells are hence of the size a3 and their
inner structure is a thin wire. The use of thin wires instead of a solid block decreases the
effective electron density of the material.

Furthermore, the self-induction of the wire structure will act as additional force acting
against any restoring force. This effect is included by a new contribution to the effective
mass meff of the electrons in the wires. The final expression for the plasma frequency is
then

ω2
p =

neffe
2

ǫ0meff

=
2πc2

0

a2 ln(a/r)
(3.11)

The overall effect of this wire structure is a decrease of ωp allowing to tune the real part
of ǫ(ω) in a broader frequency range. The permittivity provided by such a wire-lattice is
generally given by equation (3.9) whose parameters are determined by the geometry of the
wire-lattice via equation (3.11).

3.2.2 Making Negative Permeability

In this section Pendry’s breakthrough work [11] will be recapitulated briefly. An extended
calculation of the Lorentz-oscillator model which emerges here again was provided in section
2.2.2.

Some natural magnetic materials exhibit negative permeability µ(ω) up to GHz frequen-
cies. At higher frequencies, any magnetic activity vanishes. Hence, the problem here is to
extend the magnetic activity of the material to higher frequencies.

The material is again considered as a composite of lattice cells containing structures.
These cells shall be much smaller than the traversing wavelength such that the concept of
an effective µ(ω) of the material can be applied. The effective permeability µeff is then
defined via the fields that are averaged over one lattice cell as:

Bave = µeffµ0Have (3.12)

where Bave is the averaged magnetic flux density, which is the resulting field from the
reaction of lattice cell to the averaged impinging magnetic field density Have. While there
was a very simple structure for the cells in the effective permittivity case above, there are
now aplenty of possible structures that result in a negative permeability. The main idea is
that the structures form a LC-circuit in which capacitance C and inductance L balance each
other resulting in a resonant form. The most prominent among these resonant structures
are the split ring resonator (SRR) whose behaviour results in a effective permeability
described by a Lorentz-oscillator:

µ(ω) = 1 −
Fω2

p

ω2 − ω2
p − iωδ

(3.13)
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3 Double Negative Materials

where ωp is the resonance frequency and δ a damping parameter. The constant F and ωp

depend on the geometry of the structure within the lattice cells. The characteristics of the
real (solid line) and imaginary (dashed line) parts of µeff (ω) are shown in figure 2.

From equation (3.13) one can see, that the real part of µ(ω) is equal to 1 for all ω ≫ ωp.
The course of this permeability is similar to the course of the permittivity shown in figure 2.
Approaching ωp from the low frequency side, µ(ω) first increases, is equal to 1 at resonance,
becomes less than 1 (or even negative) and approaches again 1. For the imaginary part of
µ(ω), one can see that it is small except near the resonance. At the resonance it reaches
its maximum yielding large absorption. This large absorption near the resonance is quite
problematic for the production of transmitting DNMs as the band, where µ(ω) is negative,
is near the same frequency.

3.3 Non-linear Effects in DNMs

Recent developments in this field pointed out that a non-linear dispersion relation might
be useful. Nonlinearities might allow to control the effective parameters of the DNM over
a broader frequency spectrum and could be used to produce tunable DNMs. Non-linear
effects which give rise to an intensity-dependent permittivity ǫ are readily obtainable by
simply using materials that exhibit such a response. Furthermore, the non-linearities can
be amplified by inserting a non-linear material in the SRR-gaps because the electric field
at these points is extraordinarily strong compared with the field strength of the rest of the
cell. It was shown by [12] that there exists non-linearity in the split ring resonators such
that the effective magnetic permeability depends on the field intensity. In a very simple
approximation for low field-intensities, this intensity-dependence can be described by a
Kerr-type non-linear response of the permeability, i.e. [13]:

µeff ≈ µ + α|H|2. (3.14)

[12] showed that the non-linearity in µ arises due to a field intensity-dependence of the
Lorentz-pole frequency ωp ∝ H−2. i.e. the resonant frequency of the artificial magnetic
structure depends on the amplitude of the external magnetic field which leads in turn to
an intensity-dependent permeability µ(H2, ω).
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3.4 Overview on Current Experiments with DNMs

3.4 Overview on Current Experiments with DNMs

Todays DNM structures are extensively two-dimensional, as three-dimensional, isotropic
structures are difficult to produce (so far). Experimental verification of double negativ-
ity of a suspected DNM structure is not feasible directly as the phase inside a DNM
structure cannot be measured. But the measurement of a transmission band in which a
negative refractive index is observed is a strong indication of left-handed behaviour [14]
and [15](negative refraction alone is not unique to DNMs [9]). Hence, experiments and
simulations are generally performed in parallel to confirm each other mutually. In a 2D-
DNM also field scanning at the interior of the DNM can be used to reveal the material’s
properties [16]. Furthermore, [17] reports the production of an electromagnetic cloak at
microwave frequencies.

3.5 Overview on Current FDTD Simulations of DNMs

Finite-Difference Time-Domain (FDTD, see part II) simulations of DNMs can be divided
into two groups:

• Structure Simulations

• Material Simulations

In the first group, the two-dimensional DNMs are simulated by implementing the entire
resonant structures in three dimensions. This technique is used as a validation of experi-
mental findings as well as a means of engineering DNMs (c.f. [18], [19], [20] and [21]).

In the second group, DNMs are unstructured, homogeneous, isotropic and, in particular,
dispersive materials. The present real DNMs are best characterized by a dispersive permit-
tivity ǫ(ω) described by Drude-oscillators and a dispersive permeability µ(ω) described by
Lorentz-oscillators. Realistic models include these two different dispersion relations [22].
For simplicity, also double-Drude and double-Lorentz (i.e. ǫ(ω) and µ(ω) have the same
dispersion relations) DNMs are simulated. A recent development is the use of nonlinear
effects originating from SRRs giving rise to new effects such as solitons [23], [24].

Big efforts are made in theoretical studies to understand the physics of DNMs and its
applications. Hence, there are many theoretical predictions can be tested. As there are only
few DNMs at limited wavelengths available, many experiments are performed numerically.
These are done with 2D-FDTD models (c.f. [25] and [26]), while 3D-simulations are just
emerging [27]. Especially the possibility of perfect lensing and the associated effects lead
to copious theoretical and numerical studies [28] [29].
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3.6 DNM Simulations with Semcad X

In the following section, results of simulations of DNMs obtained with the commercial
software Semcad X [1] are presented. The DNMs were modelled as structured, three-
dimensional media. Besides that it has been shown that Semcad X is able to perform such
simulations very efficiently, the concepts of DNMs have been confirmed. These simulations
will form a basis for further investigations on DNMs where these results will be compared
with those obtained with the new algorithm derived later in this work which can model
DNMs as structureless media (see part III). In essence, the findings of [21] and [18] were
verified. Despite that the DNMs were modelled fully in three dimensions, the DNM-
behaviour occurs only in two dimensions.

In the first numerical experiment, the phase velocity inside the DNM was measured at
the frequencies where a negative phase velocity can be expected as proposed in [21] and
[18]. To this end, a wave was launched by a dipole onto an array of unit cells which form
the DNM (see figure 8). The first investigated DNM consisted of unit cells containing the
split ring resonator (SRR) and wire described in [21] and are called therein as ’type 3’, the
second DNM consisted of those described in [18]. Subsequently, the former DNM structure
will be called DNM-1, the latter will be called DNM-2. Both investigated unit cells are
shown in the figure 4 and 5 below. The material of the structures in the unit cells was
modelled as metal, i.e. as perfect electric conductors (PEC), surrounded by free space.

Figure 4: Configuration of the unit cell of DNM-1 consisting of metallic split ring resonators
and wires as described in [21]

Figure 5: Configuration of the unit cell of DNM-2 consisting of metallic split ring resonators
and wires as described in [18].

20



3.6 DNM Simulations with Semcad X

In order to measure the phase velocity, several edge sensors were set into the unit cells
inside the array along one single line. Edge sensors monitor several field entities at one
location. Edge sensors do not record the electric field E(t) with respect to time directly,
but they are able to record the induced currents which are simply proportional to E(t). If
the phase velocity is positive, then the electric field in the sensor closer to the wave source
always has an advance to the sensors located farther away. If the phase velocity is negative,
then the opposite is true, i.e. the recorded phase in the edge sensor farther away from the
source precedes the phase recorded at the one closer to the source. With this method,
negative phase velocity was confirmed for DNM-1 at 9 GHz and for DNM-2 at 14.5 GHz.
The experimental setup is shown in the figures 6, 7 and 8. For DNM-1, a 12x6 array of
unit cells was used, for DNM-2 an array of 12x7 (due to reasons of simulation size).

Figure 6: Side on view of the experimental setup for DNM-1. On the very right side of
the image is the location of the radiation source, a dipole. The small rectangles
within the array are the edge sensors with which the induced current, and thus
the electric field E, at these points was measured.

Figure 7: Side on view of the experimental setup for DNM-2. On the very right side of
the image is the location of the radiation source, a dipole. The small rectangles
within the array are the edge sensors with which the induced current, and thus
the electric field E, at these points was measured.
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3 Double Negative Materials

Figure 8: View from above on the experimental setup of DNM-1. On the very right side of
the image is the location of the radiation source, a dipole. The small rectangles
within the array are the edge sensors with which the induced current, and thus
the electric field E, at these points was measured. The experimental setup for
DNM-2 is similar.
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3.6 DNM Simulations with Semcad X

The records of two edge sensors in DNM-1 that are separated by 1 mm are shown in
figure 9. The upper figure shows the records of two edge sensors in a unit cell of DNM-1
over 40 periods at 9 GHz. The figure on the lower left shows how the wavefront first
encounters the edge sensor closer to the wave source (dashed line), where the induced
current is excited somewhat earlier. the lower left figure shows the sensors in steady state,
where it can be readily seen, that the phase of the edge sensor farther away from the source
(solid line) precedes the phase of the edge sensor closer to the source. This confirms the
negative phase velocity at 9 GHz inside DNM-1.

Figure 9: The upper figure shows the records of two edge sensors in a unit cell of DNM-1
over 40 periods at 9 GHz. The figure on the lower left shows how the wavefront
first encounters the edge sensor closer to the wave source (dashed line), where the
induced current is excited earlier. The figure on the lower left shows the sensors
in steady state, where it can be readily seen, that the phase of the edge sensor
farther away from the source (solid line) precedes the phase of the edge sensor
closer to the source. This confirms the negative phase velocity at 9 GHz.
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Also the records of two edge sensors in DNM-2 that are separated by 2 mm are shown
in figure 10. The upper figure shows the records of two edge sensors in a unit cell of
DNM-2 over 40 periods at 14.5 GHz. The figure on the lower left shows that left handed
behaviour in DNM-2 sets in immediately. In DNM-2 there is no tune in time to reach
left-handed behaviour, which is unlike in DNM-1. The record of the edge sensor farther
away from the source (solid line) reveals that the phase at this point is somewhat ahead of
the phase measured at the sensor closer to the source (dashed line). These findings confirm
the negative phase velocity at 14.5 GHz inside DNM-2.

Figure 10: The upper figure shows the records of two edge sensors in a unit cell of DNM-2
over 40 periods at 14.5 GHz. The figure on the lower left shows that left handed
behaviour in DNM-2 sets in immediately. In DNM-2 there is no tune in time
to reach left-handed behaviour, which is unlike in DNM-1. The record of the
edge sensor farther away from the source (solid line) reveals that the phase at
this point is somewhat ahead of the phase measured at the sensor closer to the
source (dashed line). These findings confirm the negative phase velocity at 14.5
GHz inside DNM-2.
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The negative phase velocity is though also directly visible in snapshots of the entire
electric field, as well as in animations of the field which are for obvious reasons not shown
here. Figure 11 and 12 show such a snapshot of a sliced field view across the entire
experiment for DNM-1 and DNM-2 respectively. The thin lines indicate the position of
the zero phase. As it can be seen, the deflection of the phasefront inside the DNM is in the
opposite direction to the one on the outside, which is a direct manifestation of negative
phase velocity.

Figure 11: A snapshot of a sliced field view across the entire experiment using DNM-1.
The thin lines indicate the position of the zero phase. As it can be seen, the
deflection of the phasefront inside the DNM is in the opposite direction than
outside, which is a direct manifestation of negative phase velocity.

Figure 12: A snapshot of a sliced field view across the entire experiment using DNM-2.
The thin lines indicate the position of the zero phase. As it can be seen, the
deflection of the phasefront inside the DNM is in the opposite direction than
outside, which is a direct manifestation of negative phase velocity.
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In a second numerical experiment, the negative refraction has been verified. The elec-
tromagnetic wave was launched through a waveguide onto a wedge of DNM-1 of 26.6◦ and
the refraction angle has been measured. The experimental setup is shown figure 13 where
the solid line indicates the direction of the refracted beam, and the dot-dashed line the
normal to the refraction plane. As it can be readily seen the refraction angle is negative
and approximately equal to −5◦.

Figure 13: The electromagnetic wave was launched through a waveguide onto a wedge
of DNM-1 of 26.6◦ and the refraction angle has been measured: the solid line
indicates the direction of the refracted beam, and the dot-dashed line the normal
to the refraction plane. As it can be readily seen the refraction angle is negative
and approximately equal to −5◦.

Summary of Validation The findings of [21] and [18] were verified. It has been shown
by modelling the metamaterial’s structures in three dimensions and performing standard
FDTD simulations that for frequencies around 9.5 GHz, DNM-1 exhibits double negative
behaviour by measuring negative phase velocity as well as negative refraction. The same
is true for DNM-2 at frequencies around 14.5 GHz.
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3.7 Summary on DNMs

In the following, the properties of DNMs that were discussed so far are summarised:

1. DNM Characteristics

• Negative µ(ω) and ǫ(ω) (both negative allows wave propagation: equations (1.4)
and (1.5))

• Dispersion (field energy (3.2) needs to be positive)

µ(ω) described by Lorentz-oscillator (3.13) (SRR, Swiss rolls)

ǫ(ω) described by Drude-oscillator (3.9) (metal wires)

• Non-linear effects arise through intensity-dependence of µ(H2, ω) (3.14)

2. Electromagnetic Waves in a DNM

• left-handed electromagnetic waves (from Maxwell’s equations (3.5))

• Poynting’s vector (3.6) and wave vector point in opposite directions
(from Maxwell’s equations (3.4), negative phase velocity)

• Negative refraction (from field continuity across medium-boundaries: equation
(3.7))

The discussion about DNMs will be continued in section 8.1 where further numerical
DNM-experiments performed by the author with a new algorithm are reviewed. The
reader is also referred to that section to see further illustrations of light traversing a DNM.
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Part II

The Finite-Difference Time-Domain

Method

This section concentrates on the very successful numerical method for the integration of
Maxwell’s equations in arbitrary structures called the finite-difference time-domain method
(FDTD) which bases on the Yee-algorithm [30]. For the description of the basic ideas of
FDTD the derivations in [3] are largely followed.

4 Yee-Algorithm

Yee’s algorithm which was introduced in 1966 to solve Maxwell’s equation (1.1) is very
successful as it is very robust. The algorithm solves for both electric and magnetic fields
in time and space using the coupled Maxwell’s curl equations. The usage of both E and
H information turns the algorithm particularly robust [3].

The Yee-algorithm centers its E and H components in three dimensional space so that
every E component is surrounded by four circulating H components and every H compo-
nent is surrounded by four circulating E components. Hence, the algorithm simultaneously
simulates the pointwise differential form and the macroscopic integral form of Maxwell’s
equations. The finite-difference expressions for the space derivatives used in the curl oper-
ators are central-difference in nature and second-order accurate. Continuity of tangential
E and H is naturally maintained across an interface of dissimilar materials if the interface
is parallel to one of the lattice coordinate axes. The Yee-mesh is divergence-free with re-
spect to its E and H fields in absence of free electric and magnetic charge, i.e. it satisfies
naturally the Gauss laws. The finite-difference expressions for the time derivatives are
central-difference in nature and second-order accurate. The centering of E and H compo-
nents in time results in a leapfrog time stepping scheme. The Yee-algorithm is explicitly
given by the following update equations which have to be solved for any grid point inside
the Yee-mesh at every time step n:

Hn+1

2 = Cµ
1 Hn−1

2 + C
µ
2

(

∇∧ En − Kn−1

2

)

(4.1a)

En+1 = Cǫ
1E

n + Cǫ
2

(

∇∧ Hn+1

2 − Jn
)

(4.1b)

where J and K are source currents for the electric and the magnetic field respectively
(electric and magnetic currents are included in the equations via conductivities σm,e using
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Ohm’s law). The update coefficients are given by the following expressions:

Cµ,ǫ
1 =

1 − σe,m∆t
2ǫ,µ

1 + σe,m∆t
2ǫ,µ

Cµ,ǫ
2 =

∆t
ǫ,µ

1 + σe,m∆t
2ǫ,µ

where either ǫ or µ at the specific grid position has to be chosen. It can be shown analyti-
cally, that the Yee-algorithm in one dimension is stable if

S =
c0∆t

∆x
≤ 1, (4.2)

where S is called the Courant-number. For two and three dimensions, similar stability
conditions can be found.
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5 Auxiliary Differential Equation Finite-Difference

Time-Domain Method

The auxiliary differential equation (ADE) method to model dispersive materials in FDTD
utilises time-domain auxiliary differential equations linking polarization and the electric
flux density. These equations are time-stepped in synchronism with Maxwell’s curl equa-
tions, yielding a composite, self-consistent system. ADE methods have second order ac-
curacy. Their time-domain basis makes modeling of arbitrary nonlinear dispersive media
particularly attractive. Furthermore, this method bypasses the computation of convolu-
tions which are present when solving equation (2.3) in the time domain. The ADE-FDTD
formulation will only be derived for the electric field, but it is analogously applicable to
the magnetic field.

5.1 Drude Medium with ADE-FDTD

Two different ADE-FDTD algorithms for Drude dispersive media will be introduced next.
The difference lies in the number of stored variables and in accuracy while computational
speed is similar.

5.1.1 Formalism with Polarisation

Consider a multiterm Drude dispersive medium having a total of D poles in its susceptibility
response. Ampere’s law is given by:

∇∧ H = ǫ0ǫ∞
∂E

∂t
+

D
∑

d=1

∂Pd

∂t
+ σE. (5.1)

where Pd is the polarization associated with the dth Drude pole. The goal of the ADE
technique is to develop a simple time-stepping scheme for Pd that can be updated syn-
chronously with (5.1). Recalling equation (2.4) of the Drude-oscillator one can write in the
frequency domain

Pd(ω) = ǫ0χ
1
DE(ω)

= − ǫ0ω
2
d

ω2 + iωδd

E(ω). (5.2)

Multiplication of both sides of the above equation with (ω2 + iωδd) gives

ω2Pd(ω) + iωδdPd = −ǫ0ω
2
dE

Taking the Fourier transform of the above equation yields the desired ADE:

P̈d + δdṖd = ǫ0ω
2
dE (5.3)

Applying finite-difference expressions to (5.3) centered at time step n and some algebraic
manipulation yields the desired update scheme for Pp:

Pn+1
d = αdP

n
d + βdP

n−1 + γdE
n (5.4)
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5 Auxiliary Differential Equation Finite-Difference Time-Domain Method

with the update coefficients

αd =
4

δd∆t + 2

βd =
δd∆t − 2

δd∆t + 2

γd =
2ǫ0∆t2ω2

d

δd∆t + 2

The update equation for the electric field can then be derived by evaluating Ampere’s
law (5.1) at time step n + 1

2
:

En+1 = C1E
n + C2

(

∇∧ Hn+1

2

)

− C3

D
∑

d=1

(

Pn+1
d − Pn

d

)

(5.5)

with the update coefficients

C1 =
2ǫ0ǫ∞ − σ∆

2ǫ0ǫ∞ + σ∆

C2 =
2∆t

2ǫ0ǫ∞ + σ∆

C3 =
2

2ǫ0ǫ∞ + σ∆

Thus, the algorithm starts with the electric field update via (5.5), then the polarization
currents are updated via (5.4). In the concluding step, the magnetic field is updated via
equation (4.1a), which completes the algorithm. We will refer to this algorithm in the
rest of this document as DADE+ algorithm. The + indicates that this algorithm is more
accurate and needs to store one more variable than the DADE algorithm which will be
derived next.

5.1.2 Formalism with Polarisation Current

The same approach as in the previous section is taken again. Thus, consider again a
multiterm Drude dispersive medium having a total of D poles in its susceptibility response.
One can write Ampere’s law also in the following form:

∇∧ H = ǫ0ǫ∞
∂E

∂t
+

D
∑

d=1

Jp + σE. (5.6)

Here, Jd is the polarization current associated with the dth Drude pole, i.e. J = Ṗ. Using
again equation (2.4) of the Drude-oscillator one can write in the frequency domain

Jd(ω) = −iωǫ0χ
1
DE(ω)

= iω
ǫ0ω

2
d

ω2 + iωδp

E(ω). (5.7)

32



5.1 Drude Medium with ADE-FDTD

Multiplication of both sides of the above equation with (ω2 + iωδd) gives

ω2Jd(ω) + iωδdJd = iωǫ0ω
2
dE

Taking the Fourier transform of the above equation returns it into the time-domain where
an integration over time yields the desired ADE:

J̇d + δdJd = ǫ0ω
2
dE (5.8)

Applying finite-difference expressions for the partial derivations to (5.8) and some algebraic
manipulation yields the desired update scheme for Jd:

Jn+1
d = αdJ

n
d + βd

(

En+1 − En
)

(5.9)

with the update coefficients

αd =
1 − δd∆t

2

1 + δd∆t
2

βd =

ω2
d
ǫ0∆t

2

1 + δd∆t
2

The update equation for the electric field can then be derived by evaluating Ampere’s
law (5.6) at time step n + 1

2
:

En+1 = C1E
n + C2

(

∇∧ Hn+1

2 − 1

2

D
∑

d=1

(1 + αd)Jn
p

)

(5.10)

with the update coefficients

C1 =
2ǫ0ǫ∞ − ∆t

∑D
d=1 βd − σ∆t

2ǫ0ǫ∞ + ∆t
∑D

d=1 βd + σ∆t

C2 =
2∆t

2ǫ0ǫ∞ + ∆t
∑D

d=1 βd + σ∆t

Thus, the algorithm starts with the electric field update via (5.10), then the polarization
currents are updated via (5.9). In the concluding step, the magnetic field is updated via
equation (4.1a), which completes the algorithm. We will refer to this algorithm in the rest
of this document as DADE algorithm.
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5 Auxiliary Differential Equation Finite-Difference Time-Domain Method

5.1.3 Stability of DADE+ Algorithm

In this section, the stability and phase error of DADE+ will be derived. The used method-
ology is presented in [3] and [31]. As a result, a stability condition is found which determines
how to chose the spatial sampling ∆ and the temporal sampling ∆t.

An algorithm is stable if it remains bounded for any time, it is unstable if its absolute
values grow to ∞. If an algorithm is unstable, the instability often grows exponentially.
Apparently, if an algorithm is unstable, the results are wrong. The phase error of the
algorithm describes how much faster or slower a numerical wave front is compared with
the physical wave front. While stability depends on complex dependencies between the
material parameters and the spatial and temporal grid resolution, the phase error solely
depends on the spatial grid resolution and it disappears if the spatial grid resolution tends to
∞. The algorithm’s accuracy also depends on the temporal resolution, i.e. on the size of the
time-step because only in the limes where the time-step tends to 0, the numerical dispersion
relation becomes equal to the physical dispersion relation of the simulated material.

First, the numerical dispersion relation which, in fact, represents the phase error of
the algorithm is derived. Assume that each unknown in the system is represented as a
plane wave of the form e−i(ωt−kx). Then, derivatives in the time-domain are replaced with
multiplications of −iω in the frequency domain, ∇ is replaced with ik. With respect to the
discretised space, ∂t is replaced with −iΩ and ∇ with iK where (in a uniform grid with
∆ = ∆x,y,z and axis along the unit vectors ex,y,z)

Ω =
2

∆t
sin

(

ω∆t

2

)

K =
2

∆

[

sin

(

kx∆

2

)

ex + sin

(

ky∆

2

)

ey + sin

(

kz∆

2

)

ez

]

Clearly, as the step size and the cell size tend to 0, the above expressions reduce to their
analytical counterparts. Using equations (5.1),(5.3) and (1.1b), applying the above ex-
pressions as described before and solving the resulting system, the numerical dispersion
relation is found:

K · Kc2 = Ω2ǫnum (5.11)

where the numerical permittivity is given by

ǫnum = ǫ∞ −
D
∑

d

ω2
d

Ω2 + iδdΩ
. (5.12)

Apparently, the loss term as well as the resonance frequency are misrepresented by the
central difference expressions as the numerical spectral frequency Ω is only equal to the
physical spectral frequency ω if ∆t = 0, which is never the case. Thus, to obtain accurate
solutions it is suggested that ∆t should be chosen such that ωmax∆t is small (∼ 0.1; ωmax

is the maximum frequency in the initial waveform).
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5.1 Drude Medium with ADE-FDTD

To derive a stability condition for DADE+, (5.11) has to be solved for ω. Equation
(5.11) is a complicated expression of frequency and wave number (and has to be solved
numerically in the most general case of the algorithm). In order to solve it for ω analytically,
it has to be assumed that the dielectric is lossless, i.e. δ = 0, and the number of Drude-poles
D = 1. This yields

ω =
2

∆t
arcsin

√

S2

ǫ∞

[

sin2

(

kx∆

2

)

+ sin2

(

kx∆

2

)

+ sin2

(

kx∆

2

)]

+
ω2

1∆t2

4ǫ∞
(5.13)

.
=

2

∆t
arcsin ζ (5.14)

where S is the Courant-number. As soon as ζ > 1, ω becomes imaginary and the algorithm
enters the unstable regime. While the first term under the square root of the above equation
can be made arbitrarily small by decreasing the grid resolution ∆, the second term indicates
that the algorithm is only stable if

ω1∆t ≤ 2
√

ǫ∞. (5.15)

This is only the largest value for which the algorithm is stable. Above this value, the
algorithm is unstable independent of the grid resolution ∆. If the sin-terms do not vanish,
then the above threshold value has to be reduced accordingly.

Next, the numerical wave number shall be derived and analysed. To this end, the one-
dimensional case is considered and equation (5.11) is solved for k:

k =
2

∆
arcsin

√

1

S2

[

ǫ∞ sin2

(

πS

Nλ

)

− ω2
1∆t2

4

]

(5.16)

.
=

2

∆
arcsin ξ (5.17)

where the sampling number Nλ = λ/∆ was used. Again, if ξ > 1 the numerical wave
vector k becomes imaginary which leads to an aphysical exponential decay of the wave. As
a result, a lower limit for the spatial grid sampling number Nλ is found to be

Nλ ≥ πS

arcsin

√

(

S2

ǫ∞
+

ω2
1
∆t2

4ǫ∞

)

. (5.18)

It is interesting to note that in the case of the absence of any Drude-pole, i.e. ω1 = 0,
the above expression reduces to the same expression that is obtained for the standard
Yee-algorithm [3] (as one would expect). One has to be aware that S and Nλ depend
on or determine ∆. A sufficiently large sampling of the traversing wave ensures that
the wave will not aphysically decay and that the phase velocity is accurate. This fact
is shown in figure 14 where the real (solid) and imaginary (dashed) parts of the phase
velocity v = ω/k are shown as functions of the grid sampling number Nλ. For Nλ larger
than the above threshold (5.18) (here around 2.7), the imaginary part vanishes and the
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5 Auxiliary Differential Equation Finite-Difference Time-Domain Method

numerical phase velocity approaches the physical phase velocity. As it can be seen from
figure 15, a higher grid sampling number increases the accuracy. Thus, the numerical phase
velocity approaches the physical phase velocity to an arbitrary accuracy as long as the grid
sampling number is large enough. All the results derived here were observed and verified
using one-dimensional simulations in Matlab.
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Figure 14: The real (solid line) and imaginary (dashed line) parts of the phase velocity
v = ω/k of DADE+ are shown as functions of the grid sampling number Nλ.
For Nλ larger than ∼ 2.7 (given by (5.18)), the imaginary part vanishes and the
numerical phase velocity approaches the physical phase velocity.
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Figure 15: The plot shows the percental error of the phase velocity as a function of the
grid sampling number Nλ of DADE+. A higher Nλ ensures a higher accuracy.
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5.1 Drude Medium with ADE-FDTD

5.1.4 Stability of DADE Algorithm

The stability and phase error of DADE are very similar to those of DADE+. The only
difference is that due to central averaging a new factor arises which modifies the numerical
permittivity. The numerical dispersion relation is given by

K · Kc2 = Ω2ǫnum (5.19)

where the numerical permittivity is given by

ǫnum = ǫ∞ −
D
∑

d

ω2
dΛ

Ω2 + iδdΩ
. (5.20)

where ∆ǫ = ǫs − ǫ∞ (ǫs is the static permittivity, i.e. permittivity at zero frequency). Λ is
the factor mentioned above which has its origins in the central averaging and is given by

Λ = cos

(

ω∆t

2

)

.

Apparently, the loss term as well as the resonance frequency are misrepresented by the
central difference expressions as the numerical spectral frequency Ω is only equal to the
physical spectral frequency ω if ∆t = 0, which is never the case. Thus, to obtain accurate
solutions it is suggested that ∆t should be chosen such that ωmax∆t is small (∼ 0.1; ωmax

is the maximum frequency in the initial waveform).
The dispersion relation can not be solved analytically for ω and has therefore to be solved

numerically in the most general case of the algorithm. In order to derive an analytical
solution for ω, it has to be assumed that the dielectric is lossless, i.e. δ = 0, and the
number of Lorentz-poles is L = 1. Furthermore it has to be assumed that ω∆t ≈ 0 such
that the approximation Λ = 1 is valid. Under these conditions, the same conditions as for
DADE+ are valid and are hence not repeated.

5.1.5 Results

In the following, results of one-dimensional simulations performed with Matlab are shown.
The interpretation of these results shall be explained here briefly and is shown in figure
16. The source is a ’hard source’ which starts radiating at t=0 outside the medium in
free space and stops radiating after a certain time. The generated light pulse moves away
from the source when time passes. On the left hand side of the source, a first order mur
simulates infinite free space, on the right hand side of the source begins the medium at 0
µm. A part of the beam is reflected, the rest is transmitted and phase- and group-velocity
change. While the group-velocity is defined as traversed distance of the entire pulse over
the passed time, i.e. by the inclination of the pulse-propagation, the group-velocity is
defined as traversed distance of a phase-front over the passed time, i.e. by the inclination
of the phase-fronts (thin lines) inside the pulse. In the explained example, one can readily
see, that in free space, phase- and group-velocity are equal, as pulse and phase-fronts are
parallel. Inside the medium, the phase-velocity is negative (as a DNM is simulated), while
group-velocity is still positive, but slower than in free space.
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5 Auxiliary Differential Equation Finite-Difference Time-Domain Method

Figure 16: The source is a ’hard source’ which starts radiating at t=0 outside the medium
in free space and stops radiating after a certain time. The generated light pulse
moves away from the source when time passes. On the left hand side of the
source, a first order mur simulates infinite free space, on the right hand side of
the source begins the medium at 0 µm. A part of the beam is reflected, the
rest is transmitted and phase- and group-velocity change. While the group-
velocity is defined as traversed distance of the entire pulse over the passed time,
i.e. by the inclination of the pulse-propagation, the group-velocity is defined as
traversed distance of a phase-front over the passed time, i.e. by the inclination
of the phase-fronts (thin lines) inside the pulse. One can readily see, that
in free space, phase- and group-velocity are equal, as pulse and phase-fronts
are parallel. Inside the medium, the phase-velocity is negative (as a DNM is
simulated), while group-velocity is still positive, but slower than in free space.
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5.1 Drude Medium with ADE-FDTD

DADE and DADE+ were implemented in Matlab in a one-dimensional model. Figure
17 shows how a pulse generated in free space enters a medium with a single Drude pole.
Absorption was neglected by setting the damping of the Drude-oscillator to δ = 0. It can
be readily seen that the longer the pulse propagates through the medium, the stronger
it gets broadened. Furthermore it can be seen that the phase velocity remains the same
because the slope of the phase-fronts (small lines inside the pulse) remains the same. This
is because the dispersion parameters were chosen in a manner such that ǫ(ω0) = 1 inside
the medium where ω0 is the carrier frequency. The group velocity, however, which is the
propagation velocity of the pulse is reduced compared with the free space propagation
speed. This is seen because the slope of the pulse propagation is increased.

Figure 17: Left: Course of the permittivity in a Drude-medium with indicated location
of the carrier-frequency of the pulse. Right: A light-pulse is generated in free
space and enters a Drude-medium at 0. Pulse-broadening and change of group-
velocity can be readily seen.
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Figure 18: The light-pulse of the previous figure 17 inside the Drude-medium at 64 fs (solid)
and 160 fs (dotted) after pulse generation. Pulse broadening can be readily seen.
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5.2 Lorentz Medium with ADE-FDTD

Two different ADE-FDTD algorithms for Lorentz dispersive media will be introduced next.
The difference lies in the number of stored variables and in accuracy while computational
speed is equal.

5.2.1 Formalism with Polarisation

The derivation of the Lorentz auxiliary differential equation is analogous to the above
derivation of the Drude differential equation for DADE+ algorithm. Consider a multiterm
Lorentz dispersive medium having a total of L poles in its susceptibility response. Again,
Ampere’s law (5.1) can be used with Pl the polarization current associated with the lth

Lorentz pole. Recalling equation (2.10) of the Lorentz-oscillator one can write in the
frequency domain

Pl(ω) = ǫ0χ
1
LE(ω)

=
ǫ0∆ǫlω

2
l

ω2
l − ω2 − 2iωδl

E(ω). (5.21)

Multiplication of both sides of the above equation with (ω2
l − ω2 − 2iωδl) gives

ω2
l Pl(ω) − 2iωδlPl(ω) − ω2Pl(ω) = ǫ0∆ǫlω

2
l E(ω).

Now, a Fourier-transformation yields the desired ADE:

ω2
l Pl(t) + P̈l(t) + 2δlṖl(t) = ǫ0∆ǫlω

2
l E(t) (5.22)

Applying finite-difference expressions for the partial derivations to (5.22) and some alge-
braic manipulation yields the desired update scheme for Pp:

Pn+1
l = αlP

n
l + βlP

n−1
l + γlE

n (5.23)

with the update coefficients

αl =
2 − ω2

l ∆t2

1 + δl∆t

βl =
1 − δl∆t

1 + δl∆t

γl =
ǫ0∆ǫlω

2
l (∆t)2

1 + δl∆t

The update equation for the electric field can then be derived by evaluating Ampere’s law
(5.1) at time step n + 1

2
, which was already derived in the previous section and is given by

equation (5.5).
Thus, the algorithm starts with the electric field update via (5.5), then the polarization

currents are updated via (5.23). In the concluding step, the magnetic field is updated
via equation (4.1a), which completes the algorithm. In the rest of this document, this
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algorithm will be referred to as LADE+ algorithm. The + indicates that this algorithm
has better performance as it requires to store one variable less than the LADE algorithm
which will be derived next. It is not clear whether LADE+ has also increased accuracy
like DADE+ has or not. But higher accuracy can be expected because, as it will be
shown in the sections 5.2.3 and 5.2.4, the numerical permittivity of LADE+ is closer to
the exact permittivity than LADE because no central averaging has to be done. While
numerical experiments did not exhibit any drastic differences, further experimental analysis
of LADE+’s exactness is suggested.

5.2.2 Formalism with Polarisation Current

The derivation of the Lorentz auxiliary differential equation is analogous to the above
derivation of the Drude differential equation for the DADE algorithm. Consider a mul-
titerm Lorentz dispersive medium having a total of L poles in its susceptibility response.
Again, Ampere’s law (5.6) can be used with Jl the polarization current associated with
the lth Lorentz pole. Recalling equation (2.10) of the Lorentz-oscillator one can write in
the frequency domain

Jl(ω) = −iωǫ0χ
1
LE(ω)

= −iω
ǫ0∆ǫlω

2
l

ω2
l − ω2 − 2iωδl

E(ω). (5.24)

Multiplication of both sides of the above equation with (ω2
l − ω2 − iωδl) gives

ω2
l Jl(ω) − 2iωδlJl(ω) − ω2Jl(ω) = −iǫ0∆ǫlω

2
l ωE(ω).

Now, a Fourier-transformation brings the above equation back to the time-domain and
yields the desired ADE:

ω2
l Jl(t) + J̈l(t) + 2δlJ̇l(t) = +ǫ0∆ǫlω

2
l Ė(t) (5.25)

Applying finite-difference expressions for the partial derivations to (5.25) and some alge-
braic manipulation yields the desired update scheme for Jl:

Jn+1
l = αlJ

n
l + βlJ

n−1
l + γl

(

En+1 − En−1

2∆t

)

(5.26)

with the update coefficients

αl =
2 − ω2

l (∆t)2

1 + δl∆t

βl =
δl∆t − 1

1 + δl∆t

γl =
ǫ0∆ǫlω

2
l (∆t)2

1 + δl∆t
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The update equation for the electric field can then be derived by evaluating Ampere’s
law (5.6) at time step n + 1

2
:

En+1 = C1E
n−1 + C2E

n + C3

(

∇∧ Hn+1

2 − 1

2

L
∑

l=1

[

(1 + αl)J
n
l + ξlJ

n−1
l

]

)

(5.27)

with the update coefficients

C1 =
1
2

∑L
l=1 γl

2ǫ0ǫ∞ + 1
2

∑L
l=1 γl + σ∆t

C2 =
2ǫ0ǫ∞ − σ∆t

2ǫ0ǫ∞ + 1
2

∑L
l=1 γl + σ∆t

C3 =
2∆t

2ǫ0ǫ∞ + 1
2

∑L
l=1 γl + σ∆t

Thus, the algorithm starts with the electric field update via (5.27), then the polarization
currents are updated via (5.26). In the concluding step, the magnetic field is updated
via equation (4.1a), which completes the algorithm. This algorithm will be referred to as
LADE algorithm in the rest of this document.

5.2.3 Stability of LADE+ Algorithm

In this section, the stability and phase error of LADE+ will be derived. The used method-
ology is presented in [3] and [31]. The analysis is completely analogous to the one performed
in section 5.1.3. As a result, a stability condition is found which determines how to chose
the spatial sampling ∆ and the temporal sampling ∆t. Using the same notation as in
section 5.1.3 and applying the previously described analysis to equations (5.1),(5.22) and
(1.1b) yields the numerical dispersion relation

K · Kc2 = Ω2ǫnum (5.28)

where the numerical permittivity is given by

ǫnum = ǫ∞ +
L
∑

l

∆ǫω2
l

ω2
l − Ω2 − 2iδlΩ

(5.29)

where ∆ǫ = ǫs − ǫ∞ (ǫs is the static permittivity, i.e. permittivity at zero frequency).
Apparently, the loss term as well as the resonance frequency are misrepresented by the
central difference expressions as the numerical spectral frequency Ω is only equal to the
physical spectral frequency ω if ∆t = 0, which is never the case. Thus, to obtain accurate
solutions it is suggested that ∆t should be chosen such that ωmax∆t is small (∼ 0.1; ωmax

is the maximum frequency in the initial waveform).
To derive a stability condition for LADE+, (5.28) has to be solved for ω. Equation (5.28)

is a complicated expression of frequency and wave number (and has to be solved numerically
in the most general case of the algorithm). In order to solve it for ω analytically, it has
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5.2 Lorentz Medium with ADE-FDTD

to be assumed that the dielectric is lossless, i.e. δ = 0, and the number of Lorentz-poles
L = 1. First, equation (5.28) is solved for Ω2 giving

Ω2 =
K · Kc2 + ǫsω

2
1 +

√

(K · Kc2 + ǫsω2
l )

2
+ ǫ∞K · Kc2ω2

l

2ǫ∞
. (5.30)

Now, solving the above equation for ω yields

ω =
2

∆t
arcsin

√

∆tΩ

2
(5.31)

.
=

2

∆t
arcsin ζ (5.32)

where (in one dimension)

ζ =

√

1

2ǫ∞

(

χ1 +
√

χ2
1 + χ2

2

)

(5.33)

with

χ1 = S2 sin2

(

k∆

2

)

+
ǫs

4
∆t2ω2

1

χ2 = 2S sin

(

k∆

2

)

∆tω1.

As soon as ζ > 1, ω becomes imaginary and the algorithm enters the unstable regime.
While the terms of the above equation proportional to sin can be made arbitrarily small
by decreasing the grid resolution ∆, the remaining terms indicate that the algorithm is
only stable if

∆tω1 ≤ 2

√

ǫ∞
ǫs

(5.34)

This is only the largest value for which the algorithm is stable. Above this value, the
algorithm is unstable independent of the grid resolution ∆. If the sin-terms do not vanish,
then the above threshold value has to be reduced accordingly.

Next, the numerical wave number shall be derived and analysed. To this end, the one-
dimensional case is considered and equation (5.28) is solved for k:

k =
2

∆
arcsin







1

S
sin

(

πS

Nλ

)

√

√

√

√ǫ∞ +
∆ǫω2

1∆t2

ω2
1∆t2 − 4 sin2

(

πS
Nλ

)






(5.35)

.
=

2

∆
arcsin ξ (5.36)
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where the sampling number Nλ = λ/∆ was used. Again, if ξ > 1 the numerical wave
vector k becomes imaginary which leads to an aphysical exponential decay of the wave.
The above equation cannot be solved analytically for Nλ. Nevertheless, a lower limit for
the sampling number Nλ can be derived for the physically relevant case ǫs ≥ 1. This will
be done next. First, some abbreviations are introduced:

y = sin2

(

πS

Nλ

)

z = ω2
1∆t2.

The condition for stability (no aphysical exponential decay of the wave) ξ ≤ 1 can then be
rewritten as

y(ǫsz − 4y) ≤ S2(z − 4y) (5.37)

which cannot be solved for y. The problems of the above equation can be bypassed by
introducing an arbitrary constant b and having in mind that ǫs ≥ 1:

z =
b

ǫs

≤ b (5.38)

Where the first equality defines the constant b. This is now applied to inequality (5.37).

y (ǫsz − 4y) = y(b − 4y)

≤ S2

(

b

ǫs

− 4y

)

≤ S2(b − 4y). (5.39)

Thus, the condition for the sampling number Nλ to prevent a wave from aphysically de-
caying is

Nλ ≥ πS

arcsin S
. (5.40)

This is the same condition that is found for the standard Yee-algorithm [3]. This equality
has probably to be attributed to the fact that a second inequality , i.e. b ≤ bǫs, had
to be used in its derivation. The course of the numerical phase velocity as a function
of the grid sampling number is very similar to the one of DADE+ presented in section
5.1.3 and are hence analogue to figure 14. Also the percental phase velocity error is very
similar to the one of DADE+ and its course as a function of the grid sampling number
are hence analogue to figure 15. One has to be aware here that S and Nλ depend on or
determine ∆. A sufficiently large sampling of the traversing wave ensures that the wave
will not aphysically decay. All the results derived here were observed and thus verified in
a one-dimensional simulation in Matlab.
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5.2 Lorentz Medium with ADE-FDTD

5.2.4 Stability of LADE Algorithm

The stability and phase error of LADE are very similar to those of LADE+. The only
difference is that due to central averaging a new factor arises which modifies the numerical
permittivity. The numerical dispersion relation is still given by

K · Kc2 = Ω2ǫnum (5.41)

where the numerical permittivity is given by

ǫnum = ǫ∞ +
L
∑

l

∆ǫω2
l Λ

ω2
l − Ω2 − 2iδlΩ

(5.42)

where ∆ǫ = ǫs − ǫ∞ (ǫs is the static permittivity, i.e. permittivity at zero frequency). Λ is
the factor mentioned above which origins in the central averaging and is given by

Λ = cos

(

ω∆t

2

)

.

Apparently, the loss term as well as the resonance frequency are misrepresented by the
central difference expressions as the numerical spectral frequency Ω is only equal to the
physical spectral frequency ω if ∆t = 0, which is never the case. Thus, to obtain accurate
solutions it is suggested that ∆t should be chosen such that ωmax∆t is small (∼ 0.1; ωmax

is the maximum frequency in the initial waveform).
The dispersion relation can not be solved analytically for ω and has therefore to be solved

numerically in the most general case of the algorithm. In order to derive an analytical
solution for ω, it has to be assumed that the dielectric is lossless, i.e. δ = 0, and the
number of Lorentz-poles L = 1. Furthermore it has to be assumed, that the term ω∆t ≈ 0
such that the approximation Λ = 1 is valid. Under these conditions, the same conditions
as for LADE+ are valid and are hence not repeated.

5.2.5 Results

LADE and LADE+ were implemented in Matlab in a one-dimensional model. Figure
19 shows how a pulse generated in free space enters a medium with a single Drude pole
in its permittivity and the course of the latter. Absorption was neglected by setting the
damping of the Lorentz-oscillator δ = 0. It can be seen readily that the longer the pulse
propagates through the medium, the stronger it gets broadened 20. Furthermore it can be
seen that the phase velocity changes slightly because the slope of the phase-fronts (small
lines inside the pulse) is increased. This is because the dispersion parameters were chosen
in a manner such that ǫ(ω0) = 1.1 inside the medium where ω0 is the carrier frequency.
The group velocity which is the propagation velocity of the pulse is reduced compared with
the free space propagation speed. This is seen because the slope of the pulse propagation
is increased.
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5 Auxiliary Differential Equation Finite-Difference Time-Domain Method

Figure 19: Left: Course of the permittivity in a Lorentz-medium with indicated location
of the carrier-frequency of the pulse. Right: A light-pulse is generated in free
space and enters a Lorentz-medium at 0. Pulse-broadening and change of group-
velocity can be readily seen.

11 22 33 44 56 67 78

0   

distance  [µm]

fie
ld

 a
m

pl
itu

de

Figure 20: The light-pulse of the previous figure 19 inside the Lorentz-medium at 237 fs
(solid) and 593 fs (dotted) after pulse generation. Pulse broadening can be
readily seen.
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5.3 Debye Medium with ADE-FDTD

5.3 Debye Medium with ADE-FDTD

For the sake of completeness the ADE-FTDT update schemes of a Debye medium are
reproduced here. The derivation is not repeated, as it is analogous to the derivation of the
previous algorithms where the derivation was performed already at length.

5.3.1 Formalism with Polarisation

Ampere’s Law (5.1) is used again. The update of the polarization Pp of the pth Debye
dipole with relaxation time τp is given by the finite-difference expression of equation (2.15)
centered at time step n:

Pn+1
p = αpP

n
p + Pn−1

p − βpE
n (5.43)

with update coefficients

αp =
2∆t

τp

βp =
2ǫ0∆t∆ǫ

τp

.

The electric field update equation is then given by (5.5). This algorithm will be referred
to as ADeb+.

5.3.2 Formalism with Polarisation Current

Ampere’s Law (5.6) is used again. The update of the polarization current Jp of the pth

Debye dipole with relaxation time τp is given by

Jn+1
p = αpJ

n
p + βp(En+1 − En) (5.44)

with update coefficients

αp =
1 − ∆t

2τp

1 + ∆t
2τp

βp =
∆ǫδt/τp

1 + ∆t
2τp

.

The electric field update equation is then given by

En+1 = C1E
n + C2

[

∇∧ Hn+1

2 − 1

2

N
∑

p=1

(1 + αp)Jn
p

]

(5.45)

with update coefficients

C1 =
2ǫ0ǫ∞ +

∑N
p=1 βp − σ∆t

2ǫ0ǫ∞ +
∑N

p=1 βp + σ∆t

C2 =
2∆t

2ǫ0ǫ∞ +
∑N

p=1 βp + σ∆t
.

This algorithm will be referred to as ADeb.
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5.4 Comparison of Algorithms

The six algorithms presented so far are compared briefly and their most interesting aspects
are pointed out.

Drude ADE-FDTD DADE+ needs to store one variable per grid point more than
DADE. [32] reports higher accuracy for the DADE+ algorithm at the same compu-
tational speed. DADE+ shows excellent stability when the conditions derived in section
5.1.3 are satisfied. DADE algorithm is stable with similar conditions that are a little bit
less restrictive (this was found empirically).

Lorentz ADE-FDTD LADE+ needs to store one variable per grid point more than
LADE. Also [32] reports higher accuracy for the LADE+ algorithm at the same compu-
tational speed. LADE+ shows excellent stability when the conditions derived in section
5.2.3 are satisfied. LADE algorithm is stable with similar conditions that are a little bit
less restrictive (this was found empirically).

Debye ADE-FDTD ADeb+ needs to store one variable per grid point more than ADeb.
It was found empirically that ADeb+ is only stable as long as ω > 4 · 2π/τp and for
approximately 500 time steps. After these 500 time steps instability oscillations at the
material boundary start to increase exponentially. ADeb is stable in all regimes as long as
S ≤ 1.
It can be said generally that the algorithms involving the polarisation-current instead of
the polarisation are more stable in the sense that their stability conditions seem to be less
restrictive. However, stability can always be ensured by decreasing the time step.
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5.5 Non-linear Effects with ADE-FDTD

In order to implement a non-linear material model with ADE-FDTD, the approach of
[2] will be followed who proposed a full-vector Maxwell’s equations solution incorporating
multiple-pole linear Lorentz, non-linear Kerr and non-linear Raman polarization. This
algorithm can be easily applied to other material models, but it requires a Newton-iteration
to solve a non-linear equation and hence computation time is drastically increased. This
algorithm will be called GV ADE (General Vector ADE) hereafter, as done by [2].

As there are now several different contributions of polarisation currents to Ampere’s law,
it is rewritten as

∇∧ H = ǫ0ǫ∞
∂E

∂t
+

N
∑

p=1

JLorentzp
+ JKerr + JRaman + σE. (5.46)

Centering of the above equation at time-step n + 1
2

yields

∇∧ Hn+1

2 = ǫ0ǫ∞
En+1 − En

∆t
+

N
∑

p=1

J
n+1

2

Lorentzp
+ J

n+1

2

Kerr + J
n+1

2

Raman + σ
En+1 + En

2
, (5.47)

which is in fact the update equation for the electric field E.
Next, the update equations for the different polarization currents have to be derived. As

it can be seen in equation (5.47), all polarization currents have to be centered at time-step
n + 1

2
.

5.5.1 Lorentz-Dispersion

The contribution to the polarisation currents by the pth Lorentz-pole JLorentzp
was derived

in section 5.2. [2] uses a simpler version (without electric currents, i.e. σ = 0) of the update
equation (5.26) for JLorentzp

of the LADE-algorithm.

5.5.2 Kerr-Effect

The contribution to the polarisation currents by the Kerr-effect JKerr was derived in section
2.3.2. Thus, the equation for JKerr is obtained directly by the finite-difference expression
of equation (2.19) centered at time-step n + 1

2
:

J
n+1

2

Kerr = αǫ0χ
3
0

(

|En+1|2En+1 − |En|2En
)

(5.48)

5.5.3 Raman-Scattering

The contribution to the polarisation currents by Raman-scattering JRaman was derived in
section 2.3.2. Equation (2.20) is solved by introducing a scalar auxiliary variable for the
convolution:

R(t)
.
= χ3

Raman(t) ∗ |E(t)|2. (5.49)
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Taking the Fourier transform of the above equation brings it to the frequency domain,
where χ3

Raman(ω) is described by

χ3
Raman(ω) =

(1 − α)χ3
0ω

2
R

ω2
R + 2iωδR − ω2

with

ωR =

√

τ 2
1 + τ 2

2

τ 2
1 τ 2

2

,

δR =
1

τ2

.

Multiplying both sides with (ω2
R + 2iωδR − ω2) and transforming back to the time domain

yields

ω2
RR(t) + 2δRṘ(t) + R̈(t) = (1 − α)χ3

0ω
2
R|E(t)|2. (5.50)

Applying finite-difference expressions centered at time step n to this equation yields the
update equation for R(t):

Rn+1 =

(

2 − ωR∆t2

δR∆t + 1

)

Rn +

(

δR∆t − 1

δR∆t + 1

)

Rn−1 +

(

(1 − α)χ3
0ω

2
R∆t2

δR∆t + 1

)

|En|2. (5.51)

Herewith the finite-difference expression of equation (2.20) centered at time step n + 1
2

becomes

J
n+1

2

Raman = ǫ0
En+1Rn+1 − EnRn

∆t
. (5.52)

Now that all variables of the finite-difference expression of Ampere’s law (5.47) are
known, it can be solved for En+1. One notices that equation (5.47) is non-linear in En+1

as could be expected because of the non-linear effects that are modelled by this algorithm.
In order to solve this non-linear equation, [2] uses a simple Newton-iteration which solves for
En+1. This approach gives accurate results but is quite expensive in terms of computational
operations (computation of an inverse 3×3-matrix plus iteration) that have to be performed
at each Yee-mesh-point. It is hence very slow compared to the standard Yee algorithm or
algorithms that only include linear dispersion.

In order to have one algorithm covering as many different material effects as possible,
the Newton-iteration proposed by [2] is bad from a view of computational speed because
Newton-iteration is only necessary for the non-linear term which origins from the Kerr-
effect. All other effects such as Lorentz- and Drude-dispersion or the Raman-scattering are
linear in E (as can be seen from their update equations) and do not require the Newton-
iteration. For the latter, the Newton-iteration produces accurate results but at a very high
computational cost.

In Part III (section 6 ff) a new algorithm is proposed that allows to control which material
properties are included while at the same time computational speed is increased and the
accuracy maintained.
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5.5 Non-linear Effects with ADE-FDTD

5.5.4 Stability of GVADE

Both Kerr-effect and Raman-scattering result in a intensity dependent refractive index.
Therefore, it can be expected that the stability conditions for GV ADE also depend on the
intensity of the field.

Stability of Kerr-Effect For the Kerr-effect one finds the simple numerical dispersion
relation

ǫnum = ǫ∞ + αχ3I. (5.53)

Which is similar to the standard Yee-algorithm dispersion with an intensity dependent
permittivity. Solving the numerical dispersion relation

K · Kc2 = Ω2ǫnum (5.54)

for ω in one dimension yields

ω =
2

∆t
arcsin

√

S2 sin2
(

k∆
2

)

ǫ∞ + αχ3I
(5.55)

=
2

∆t
arcsin ζ. (5.56)

As a consequence, ω becomes imaginary if ζ > 1. Using the maximal value ζ can reach
(sin = 1), the following stability condition is found

S ≤
√

ǫ∞ + αχ3I (5.57)

As expected, this condition depends on the field intensity and it seems that stability is
increased with increasing intensity as the Courant-number S is not limited by ǫ∞, but
by the intensity. But this condition only ensures stability of the FDTD-algorithm itself.
Solving the update equation for the Kerr-effect requires to solve a non-linear equation.
This has to be done either by the Newton-method used in [2] or by applying a fixed-point
iteration as described in section 6. If these iterations converge depends on the intensity of
the applied field as shown in section 7.1. As a consequence, the above condition does not
ensure stability of the entire algorithm, but it needs to be satisfied.

To determine the minimal grid sampling number Nλ, the numerical phase vector k which
is given by

k =
2

∆
arcsin

[

√

ǫ∞ + αχ3I

S
sin

(

πS

Nλ

)

]

(5.58)

=
2

∆
arcsin ξ (5.59)

has to be analysed. If ξ > 1, then k becomes imaginary which results in an aphysical
exponential decay of the wave. This is the case if the grid sampling number Nλ is too
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small, i.e. it is required that

Nλ ≥ πS

arcsin
(

S
ǫ∞+αχ3I

) . (5.60)

As the intensity is increased, the sampling number Nλ has to be increased as well. The
course of the numerical phase velocity is very similar to the one presented in section 5.1.3
and can thus be seen in figure 14. The phase velocity error is analogous to the one found
for the standard Yee-algorithm and can be seen in figure 15. All the results derived here
were observed and hence verified in a one-dimensional simulation in Matlab.

Stability of Raman-Scattering It can be readily seen that the Raman-scattering is pro-
portional to a Lorentz-pole with pole-frequency ωR whose stability was already discussed in
section 5.2.3. The only difference is, that the term ∆ǫ has to be replaced by (1−α)χ3|E|2
and hence ǫs = (1−α)χ3|E|2 + ǫ∞. The rest of the analysis is completely analogous to the
one performed in section 5.2.3. Because the same conditions remain valid the results shall
not be repeated.
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Part III

Novel Approach for an Algorithm for

Arbitrary Dispersive Materials

In this part, a novel and efficient algorithm is proposed which covers the linear Lorentz-
and Drude-dispersion as well as the non-linear Kerr-effect and Raman-scattering. While
it maintains the accuracy of the previously introduced algorithms DADE+ and LADE+

it is faster than the GV ADE algorithm proposed by [2] especially when the Kerr-effect is
included.

6 Arbitrary Dispersive Material Algorithm

The algorithm for a general dispersive material is derived first. The algorithm will be
referred to as ADM+ in the rest of this document. Most of the required update equations
were already derived in Part II and will not be reproduced here.

6.1 Arbitrary Dispersive Permittivity

Consider Ampere’s law

∇∧ H =
∂D

∂t
+ j

= ǫ0ǫ∞
∂E

∂t
+

∂Ptot

∂t
+ σE (6.1)

assuming that Ohm’s law j = σE is valid. For a medium with L Lorentz-poles, D
Drude-poles exhibiting Raman-scattering and Kerr-effect, the total polarisation Ptot can
be written as

Ptot =
L
∑

l=1

Pl +
D
∑

d=1

Pd + PKerr + PRaman (6.2)

The finite-difference expression of Ampere’s law (6.1) centered at time step n + 1
2

is

∇∧ Hn+1

2 = ǫ0ǫ∞
En+1 − En

∆t
+

Pn+1
tot − Pn

tot

∆t
+ σ

En+1 + En

2

which can be rewritten as

2∆t∇∧ Hn+1

2 = En+1(2ǫ0ǫ∞ + σ∆t) − En(2ǫ0ǫ∞ − σ∆t) + 2(Pn+1
tot − Pn

tot). (6.3)

The algorithm models the dispersion effects through the polarisations. In state-of-the-art
research, computer resources like memory are much less restrictive issues than the accuracy
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of the results. Thus, the algorithm is presented using LADE+ and DADE+ (although it
works equally well with LADE and DADE). The update equations for the Lorentz-
polarisation (5.23) and for the Drude-polarisation (5.4) are used again. The polarisation
current from Raman-scattering is given by equation (5.52). In order to avoid the Newton-
iteration needed to solve the non-linear equation (6.3) for En+1 when the Kerr-effect is
present, a new variable has to be introduced in equation (5.48):

In .
= |En|2.

The updating of In will be described later in this section. Failed attempts as well as other
possible solutions to this ’Kerr-problem’ will be discussed at the end of this section. The
polarisation-term in equation (6.3) can now be written as

Pn+1
tot − Pn

tot =
L
∑

l=1

(Pn+1
l − Pn

l ) +
D
∑

d=1

(Pn+1
d − Pn

d)

+ αǫ0χ
3
0(I

n+1En+1 − InEn) + ǫ0(R
n+1En+1 − RnEn) (6.4)

Inserting the polarisation equation (6.4) into (6.3) gives the final expression of the ADM+

algorithm:

En+1 = C1E
n + C2∇∧ Hn+1

2 + C3

[

L
∑

l=1

(Pn+1
l − Pn

l ) +
D
∑

d=1

(Pn+1
d − Pn

d)

]

(6.5)

with update coefficients

C1 =
2ǫ0ǫ∞ − σ∆t + 2ǫ0R

n + 2αǫ0χ
3
0I

n

2ǫ0ǫ∞ + σ∆t + 2ǫ0Rn+1 + 2αǫ0χ3
0I

n+1

C2 =
2∆t

2ǫ0ǫ∞ + σ∆t + 2ǫ0Rn+1 + 2αǫ0χ3
0I

n+1

C3 =
2

2ǫ0ǫ∞ + σ∆t + 2ǫ0Rn+1 + 2αǫ0χ3
0I

n+1

The big advantage of the update equation (6.5) is that each polarisation contribution
can be switched on and off separately. This means that if there is only Lorentz-dispersion,
then ADM+ reduces to LADE+. If there is only Drude-dispersion, then ADM+ reduces
to DADE+. While the modelling of Raman-scattering requires almost no additional com-
putation, the Kerr-effect is an expensive extension. In order to update the Kerr-effect
coefficient I, a fixed point iteration has to be performed because a Newton-iteration does
not converge in this particular problem. The equation for this fixed point iteration is

In+1
k+1 = En+1

k · En+1
k

=

(

Ck
1E

n + Ck
2∇∧ Hn+1

2 + Ck
3

[

L
∑

l=1

(Pn+1
l − Pn

l ) +
D
∑

d=1

(Pn+1
d − Pn

d)

])

·
(

Ck
1E

n + Ck
2∇∧ Hn+1

2 + Ck
3

[

L
∑

l=1

(Pn+1
l − Pn

l ) +
D
∑

d=1

(Pn+1
d − Pn

d)

])

(6.6)
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where

Ck
1 =

2ǫ0ǫ∞ − σ∆t + 2ǫ0R
n + 2αǫ0χ

3
0I

n

2ǫ0ǫ∞ + σ∆t + 2ǫ0Rn+1 + 2αǫ0χ3
0I

n+1
k

Ck
2 =

2∆t

2ǫ0ǫ∞ + σ∆t + 2ǫ0Rn+1 + 2αǫ0χ3
0I

n+1
k

Ck
3 =

2

2ǫ0ǫ∞ + σ∆t + 2ǫ0Rn+1 + 2αǫ0χ3
0I

n+1
k

are updated at each iteration. In the one dimensional case it was found empirically that
16 iterations were required to obtain sufficient accuracy. With every iteration the result’s
accuracy was increased by one order of magnitude. With 16 iterations machine accuracy is
reached. The fixed point iteration, which requires the most computational time of the up-
dating process, can be skipped when there is no Kerr-effect needed such that computational
speed is retained.

Remarks on the ’Kerr-Problem’ In the following discussion it is assumed that the
Newton-iteration method presented by [2] (GV ADE algorithm, section 5.5) would con-
verge to the correct result if enough iterations are performed. The result of the one dimen-
sional algorithm after 4 iterations was hence used as reference-accuracy for other, faster
possible solutions of a medium with linear Lorentz-dispersion, Raman-scattering and Kerr-
effect. These other attempts to avoid the expensive Newton-iteration shall be described
here briefly. The Newton-iteration reached after 4 iterations machine accuracy. This com-
putation time is therefore set as reference time of the problem. The terms fast and very
fast will mean in this context that the computational time was 2, or at least 4 times shorter
respectively, while slow and very slow will mean that computational time is 2 times and at
least 4 times longer respectively. The accuracy of these other approaches is described as
the maximum difference of the field amplitudes between the new approach and the refer-
ence occurred during 1000 time steps which is normalized to the maximum field amplitude
inside the medium of the reference method.

• Using In instead of In+1: the algorithm is stable, very fast and requires no new
variable to be stored. The result deviates by an order of 30%.

• Linear extrapolation from En−1 and En to En+1 → In+1: the algorithm is stable,
very fast and requires no new variable to be stored. The result deviates by an order
of 10%.

• Linear extrapolation from En−2,En−1 and En to En+1 → In+1 where the two differ-
ences are weighted differently, e.g. 2-1-weighted:

En+1 =
(

En + (2En − 2En−1 + 1En−1 − En−2)/3
)

This algorithm is stable, very fast and requires no new variable to be stored. The
result deviates by an order of 3%.
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• Performing quadratic interpolation between En−2,En−1 and En which is then used
as extrapolation to En+1 → In+1. This algorithm is stable, very slow and requires
no new variable to be stored. The result deviates by an order of 3%.

• Including spatially neighbouring field information (instead of only temporal extrap-
olation) and performing then interpolations is slower and has an accuracy of approx-
imately 5%.

• Using the constitutive equations which relate E to H via impedance turns the algo-
rithm unstable.

• Using a doubled Yee-grid such that both E and H are present in every grid-point

and then approximating En+1
1 by E

n+1

2

2 and vice-versa is only ’stable’ for very few
time steps.

• Using a Lorentz-oscillator and solve it like the Raman-scattering. By setting the
Lorentz-pole far enough away from the traversing pulse frequencies, then the polari-
sation contribution can be considered to be constant (this is what is done in fact to
derive the Kerr-effect physically). Going far above the resonance (which is physically
incorrect), the algorithm is stable and very fast, but the results are completely wrong.
Going far below resonance, the time-step ∆t has to be decreased by some orders of
magnitude (in order to obtain stability) such that the simulation time and space is
increased tremendously. This approach is hence not practicable.

• Using Newton-iteration instead of simple fixed point iteration in order to reduce
the number of iterations is not practicable, as the problem is badly conditioned for
Newton-iteration (and as an inverse matrix has to be computed for every iteration).

• Using other means to find the roots of equation (6.6) (a third-order polynomial in
In+1) like the ones provided by Matlab is very slow and the automatic choice of the
correct root for the update is difficult (which is true for any root-finding approach to
this problem).

The linear extrapolation approaches presented above as well as other variations of extrap-
olations (3-1 weighting, linear least square fitting, etc.) resulted in very fast computation
but no smaller deviation than 3% was reached and as a consequence, these approaches
were considered as not working.
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6.2 Arbitrary Dispersive Permeability

6.2 Arbitrary Dispersive Permeability

As it was pointed out in section 3 about the double negative materials, it might be desir-
able to allow the magnetic permeability not only to be unequal to 1 but even dispersive.
Furthermore it might proof useful to include the nonlinear Kerr-effect as suggested by [13].
It was shown in section 3 that dispersion relations for the magnetic permeability µ(ω) are
given by a Lorentz-oscillator. As it is imaginable, that also other dispersive behaviours of
µ(ω) are possible, a Lorentz- and Drude-behaviour will be implemented in ADM+. This
approach also allows to analyse the wave propagation in a left-handed band of a Lorentz-
Lorentz or a Drude-Drude-material instead of a finely tuned Lorentz-Drude-model. The
derivation of the update equations is completely analogous to the derivation performed in
the previous section for the electric permittivity and.

First, consider Faraday’s law

∇∧ E = −∂B

∂t
+ jm

= µ0µ∞

∂H

∂t
+

∂Mtot

∂t
+ σ∗H (6.7)

where jm = σ∗H are possible magnetic currents. For a medium with L Lorentz-poles, D
Drude-poles and Kerr-effect the total magnetisation Mtot can be written as

Mtot =
L
∑

l=1

Ml +
D
∑

d=1

Md + MKerr (6.8)

Performing the steps described in the previous section at length, and introducing the new
variable Kn− 1

2
.
= |Hn− 1

2 |2 to describe the Kerr-effect-like response of the permeability, the
update equations for the magnetic field is given by

Hn+1

2 = C1H
n−1

2 − C2∇∧ En + C3

[

L
∑

l=1

(M
n+1

2

l − M
n−1

2

l ) +
D
∑

d=1

(M
n+1

2

d − M
n−1

2

d )

]

(6.9)

with update coefficients

C1 =
2µ0µ∞ − σ∗∆t + 2χ3

Mµ0K
n− 1

2

2µ0µ∞ + σ∗∆t + 2χ3
Mµ0K

n+ 1

2

C2 =
2∆t

2µ0µ∞ + σ∗∆t + 2χ3
Mµ0K

n+ 1

2

C3 =
2

2µ0µ∞ + σ∗∆t + 2χ3
Mµ0K

n+ 1

2

,

where χ3
M is the strength of the Kerr-effect-like response of the permeability. The mag-

netisations are updated with the same equations as the polarisations just by replacing P

by M and ǫ0/∞ by µ0/∞: Lorentz-magnetisation is updated via equation (5.23), Drude-
magnetisation is updated via equation (5.4) and Kerr-magnetisation is updated via a fixed
point iteration similar to the one given by equation (6.6).
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6.3 The Arbitrary Dispersive Material Algorithm

Now that all update equations were derived, the complete ADM+ algorithm can be for-
mulated as follows:

1. Magnetisation update is performed (in arbitrary order):

• Lorentz update: M
n−1

2

l → M
n+1

2

l via equation (5.23) (replace µ, M)

• Drude update: M
n−1

2

d → M
n+1

2

d via equation (5.4) (replace µ, M)

• Kerr update: Kn− 1

2 → Kn+ 1

2 via fixed point iteration (6.6) (replace µ, M)

2. Magnetic field Hn−1

2 is updated via equation (6.9) to Hn+1

2

3. Polarisation update is performed (in arbitrary order):

• Lorentz update: Pn
l → Pn+1

l via equation (5.23)

• Drude update: Pn
d → Pn+1

d via equation (5.4)

• Raman update: Rn → Rn+1 via equation (5.51)

• Kerr update: In → In+1 via fixed point iteration (6.6)

4. Electric field En is updated via equation (6.5) to En+1

The accuracy of the proposed algorithm was tested by comparing the results obtained with
ADM+ with those of [2] and they were found to be in good agreement. Thus, ADM+ is
considered to be accurate.

6.3.1 Remarks on the ADM-Algorithm

The ADM+ algorithm is highly modular. Any dispersive effect can be removed or added
if desired without changing the algorithm’s update equations. ADM+ can be split such
that different contributions to update equations are computed separately. For example the
standard Yee-algorithm part can be computed on the acceleration hardware Acceleware
while the polarization terms are computed on the local machine. This is one of the big
advantages ADM+ has compared to the approach in [2].

It is straightforward to add also Debye-dispersion to ADM+ using the formulas de-
rived in section 5.3. As it is unphysical to have all three linear dispersions present in one
medium, Debye-dispersion is not covered by this thesis. To model Debye-dispersion, it is
recommended to use the formulation with polarisation currents J instead of the polarisa-
tions P because the latter is only stable above resonance, i.e. ω > 2π/τ while the former
is stable in any regime. On the other hand, it is not known which formalism yields more
accurate results when both are stable.

The solution of a material exhibiting the Kerr-effect presented in [2] (GV ADE using
Newton-iteration) and the one presented in this thesis (using fixed point iteration) are so
far the only known solutions to the problem in three dimensions. Besides that the ADM+

algorithm is faster than the one presented by [2] it is also expected to show higher accuracy
as ADM+ incorporates LADE+ and DADE+ while [2] uses LADE.
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7 Stability of the ADM-Algorithm

7.1 Fixed Point Iteration Convergence

The convergence of the fixed point iteration which is needed to solve for the Kerr-effect is
proven by using Banach’s fixed point theorem [33].

To reduce notational complexity, the convergence of the fixed point iteration will be
shown for the one-dimensional case. For brevity, equation (6.6) can be written as

In+1 =
a2

(b + cIn+1)2
= f(In+1) (7.1)

where

a = (ǫ∞ − σ∆t

2ǫ0

+ Rn + αχ3In)En +
∆t

ǫ0

∇∧ Hn+ 1

2 +
1

ǫ0

∆P

b = ǫ∞ +
σ∆t

2ǫ0

+ Rn+1

c = αχ3.

The term ∆P stands for the polarisation contributions by Lorentz- and Drude-poles. For
simplicity, the third-order susceptibility χ3 shall be written without the susceptibility in-
dex,i.e. χ = χ3, for the rest of this section. The fixed point theorem is then applied to
f(In+1). To this end, it has to be shown that the first derivation of f(I) is limited ∀In+1

at least within an interval D:

f ′(In+1) =
−2a2c

(b + cIn+1)3
. (7.2)

Apparently, the supremum of |f ′(In+1)| is given where In+1 = 0 and is

S = sup
In+1∈D

|f ′(In+1)| =
2a2c

b3
(7.3)

(the infimum is given where In+1 = ∞ and is equal to 0). However, one has to be very
careful with these remarks because the ’constant’ a is in fact dependent on In as

√
In = En.

Thus, in reality, the course of a(In) has to be considered. As it will be shown later on,
this dependence on In of a results in a condition which limits the fixed point convergence
to an electric amplitude interval, i.e. D = [0, In

max]. It has now to be shown that the
above supremum S is smaller than 1 such that f(In+1) is Lipschitz-continuous with a
Lipschitz-constant L ≤ 1 and consequently, f(In+1) is a contraction on D and the fixed
point iteration will be convergent ∀In+1 ∈ D. The condition for f(In+1) to be a contraction
on the interval D can be written as

a2c ≤ b3

2
. (7.4)
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7 Stability of the ADM-Algorithm

Two extremal cases for the Kerr-effect can be considered:

1. α = 0: no Kerr-effect, only Raman-scattering is present ⇒ c = 0 and equation (7.4)
is always satisfied (but the fixed point iteration would not be required)

2. α = 1: only Kerr-effect is present, no Raman-scattering ⇒ Rn = 0 ∀n

For the second case, the inequality (7.4) has to be further analysed. A first remark can be
made on the conductivity σ. The following holds: σ∆t ≥ 0 (as long as σ ≥ 0; otherwise,
one has to argue that σ∆ is small compared to all other present terms in (7.4)). Thus, the
inequality (7.4) will be strengthened by the presence of conductivity, as b will be increased
and a decreased. Thus, in order to further reduce the complexity, set σ = 0.

Due to the nature of continuity of the used equations, respectively because the temporal
and spatial grid have accurately high resolutions, the terms containing spatial and temporal
derivations can be considered small compared with the term proportional to the electric
field and can hence be neglected. Thus, the contraction condition (7.4) can now be written
as

[(ǫ∞ + χIn)En]2 χIn ≤ ǫ3
∞

2
.

In one dimension In = (En)2 and the final expression is given by

En4(1 + 2χEn + χ2En2) ≤ ǫ3
∞

2χ
. (7.5)

Apparently, the amplitude of the electric field En has to be limited to an upper value
which is determined by the amplitude of the third-order susceptibility χ in order to assure
convergence of the fixed point iteration. In this context it is interesting to note, that also
the Newton-iteration used by [2] becomes unstable for field amplitudes larger than En

max.
Equality in (7.5) is reached at En

max, such that the convergence interval D = [0, In
max =

En2
max]. En

max can be raised to any desired value by decreasing χ. But for a specific material
where χ is fixed, only a limited range of intensities can by applied. Furthermore, one has
to be aware that the above result is an upper limit which lies too high because some terms
were neglected. As a consequence, it is recommended to choose amplitudes that are enough
below the above limit.

An example of the definition of the convergence interval D can be seen in figure (21).
The upper interval-limit is given where the lines cross each other. The figure shows the
limits for three different values of χ (solid: χ = 0.1, dotted: χ = 0.2, dashed: χ = 1) where
ǫ∞ = 1. It can be seen, that the smaller the value of χ the larger is the upper limit for the
field amplitude.
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Figure 21: The graph shows how the convergence interval D is limited by the electric field
amplitude. It shows the upper interval-limits (where the lines cross each other)
for three different values of χ (solid: χ = 0.1, dotted: χ = 0.2, dashed: χ = 1)
where ǫ∞ = 1.

7.2 Dispersion-Relation and Phase-Error

It has to be emphasised again, that ADM+ incorporates LADE+ and DADE+. The
stability of these two algorithms is hence important to be understood. The dispersion
relation, which yields information on the algorithm’s stability, and the phase error, which
gives information on the algorithm’s accuracy, of ADM+ were already derived in section
5.1.3 about the stability of DADE+ and 5.2.3 about the stability of LADE+. The influence
on the stability of the Kerr-effect and the Raman-scattering were discussed in section 5.5.4.

As a rule of thumb, one might say that which ever polarisation contributions, i.e. Drude-,
Lorentz-polarisation, Kerr-effect or Raman-scattering, are required in the simulation, the
more restrictive conditions of either of these has to be satisfied at least to ensure stability.
But this must not always be the case, because as soon as different effects are combined,
the stability conditions are altered. It is though not possible to give analytical solutions
which answer the question of stability and accuracy as it was possible for cases with one
single effect. It is though possible to solve the resulting equations numerically which will
be done next.

After the derivations in the previous sections about algorithm stability, it should be no
surprise that the dispersion relation can be written in the most general case as

Ω2ǫnumµnum = K · Kc2 (7.6)

where ǫnum and µnum are the numerical permittivity and numerical permeability respec-
tively.

Assuming a medium with a permeability µ with one Drude- (with pole frequency ωdµ,
damping factor δdµ), one Lorentz-pole (with pole frequency ωlµ, damping factor δlµ and
amplitude ∆µ) and Kerr-effect (with amplitude χ3

µ) and with a permittivity ǫ incorporating
one Drude- (with pole frequency ωdǫ, damping factor δdǫ), one Lorentz-pole (with pole
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7 Stability of the ADM-Algorithm

frequency ωlǫ, damping factor δlǫ and amplitude (1 − α)χ3
ǫ), Kerr-effect (with amplitude

αχ3
ǫ) and Raman-scattering (with pole frequency ωR, damping factor δR). For ADM+

algorithm, numerical permittivity and numerical permeability are given by

ǫnum = ǫ∞ + αχ3
ǫ |E|2 +

∆ǫω2
lǫ

ω2
lǫ − Ω2 − 2iΩδlǫ

− ω2
dǫ

Ω2 + iΩδdǫ

+
(1 − α)χ3

ǫ ω
2
R|E|2

ω2
R − Ω2 + 2δRiΩ

, (7.7)

µnum = µ∞ + χ3
µ|H|2 +

∆µω2
lµ

ω2
lµ − Ω2 − 2iΩδlµ

−
ω2

dµ

Ω2 + iΩδdµ

. (7.8)

Inserting these expressions into the numerical dispersion relation (7.6) and solving it for
the numerical phase vector k yields

k =
2

∆
arcsin

[√
ǫnumµnum

S
sin

(

πS

Nλ

)]

. (7.9)

This equation can be solved numerically. A sufficiently large sampling of the travers-
ing wave ensures that the wave will not aphysically decay and that the phase velocity is
accurate. This fact is shown in figure 22 where the real (solid) and imaginary dashed)
parts of the phase velocity v = ω/k are shown as functions of the grid sampling number
Nλ. For Nλ large enough, the imaginary part vanishes and the numerical phase velocity
approaches the physical phase velocity. The phase velocity is though somewhat different
than the one shown in figure 14. While the imaginary part is there always larger than 0,
it is here always below 0. This behaviour seems to be attributed to the presence of the
damping terms in the Drude-dispersions. However, one has to be aware that the exact
course of numerical phase velocity as a function of the grid sampling number depends on
the used values and can hence show some deviation of the curve shown in figure 22. As
it can be seen from figure 23, a higher grid sampling number increases the accuracy. This
behaviour is, as expected, independent of the chosen values for the problem. Thus, the
numerical phase velocity approaches the physical phase velocity to an arbitrary accuracy
as long as the grid sampling number is large enough. All the results derived here were
observed and thus verified in a one-dimensional simulation in Matlab.

Due to the high complexity of the numerical permittivity and permeability of an arbitrary
dispersive material it is not possible to derive a simple stability condition like the ones found
for DADE+ and LADE+. The dispersion relation (7.6) has to be solved for Ω but as it
is a high-order odd polynomial in Ω this is not possible. It seems that this is not even
feasible numerically. It is though possible to derive stability conditions, i.e. a condition
for the time-step ∆t such that the algorithm is stable, for special cases of the ADM+

such as Drude-Drude- (µ and ǫ follow a single Drude-pole with no absorption, i.e. δ = 0),
Drude-Lorentz-materials, Lorentz-Lorentz-materials. These special solutions can give at
least an indication of the stability conditions valid for the ADM+-algorithm.
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Figure 22: The real (solid line) and imaginary (dashed line) parts of the phase velocity
v = ω/k are shown as functions of the grid sampling number Nλ of ADM+.
For Nλ larger than ∼ 2.5 (given by (5.18)), the imaginary part vanishes and the
numerical phase velocity approaches the physical phase velocity.
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Figure 23: The plot shows the percental error of the phase velocity as a function of the
grid sampling number Nλ of ADM+. A higher Nλ ensures a higher accuracy.
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8 Results of ADM+

The ADM+ algorithm incorporates DADE+ and LADE+. The effects of a light-pulse
traversing a dispersive medium with either a single Drude- or a single Lorentz-pole was
already discussed and illustrated in the sections 5.1.5 and 5.2.5. Due to the ability of
ADM+ to model linear dispersion as well as non-linear Raman-scattering and Kerr-effect,
it is possible to simulate non-linear materials, and especially non-linear double negative
materials. The effects that occur in such materials are now accessible with ADM+ and
will be discussed and shown in this section. An explanation of the interpretation of the
shown results is given in section 5.1.5 in figure 16.

8.1 DNMs with ADM+

After the extensive discussion of double negative materials in section 3 it is now time to
test the predictions. In one dimension it is only possible to test whether a negative phase
velocity is present or not, because in order to show negative refraction more than one
dimension is needed.

As it was pointed out in section 3, a DNM has permittivity ǫ(ω) and a permeability
µ(ω) that are represented by a Drude- and by a Lorentz-pole respectively. For simplicity,
first a DNM where the permittivity ǫ(ω) and the permeability µ(ω) follow the same single
Drude-pole shall be considered. Afterward the same case is considered with Lorentz-poles.
These cases will be called Drude-Drude and Lorentz-Lorentz respectively. These cases are
particularly simple because such materials have only two transmission bands. In one band
both ǫ and µ are positive, in the other band both are negative. Thus, it makes sense to call
these bands positive or negative transmission bands. While the positive band is naturally
present in all transmissive materials, the negative band is unique to DNMs.

Figure 24 and 25, which is a zoom of the former, show how a light-pulse with carrier
frequency ω0 generated in free space enters a DNM consisting of a Drude-Drude material
with ǫ(ω0) = µ(ω0) = −1. It can be readily seen that the development of the phase fronts
which is seen as lines inside the light-pulse undergoes a drastic transition when passing
across the DNM boundary. The angle of the development of the phase fronts changes sign
when entering the DNM which is equivalent to the change of sign in the phase-velocity.
While the phase velocity undergoes a sign-change, the group-velocity remains positive but
it is strongly slowed down due to the dispersion from ǫ(ω) and µ(ω). Furthermore it can be
seen that the light-pulse is broadened and diminished like in a normal dispersive medium.
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8 Results of ADM+

Figure 24: Left: Course of ǫ(ω) and µ(ω) and indication of location of ω0. Right: A
light-pulse with carrier frequency ω0 generated in free space enters at 0 a DNM
consisting of a Drude-Drude material with ǫ(ω0) = µ(ω0) = −1.

Figure 25: A light-pulse with carrier frequency ω0 generated in free space enters at 0 a
DNM consisting of a Drude-Drude material with ǫ(ω0) = µ(ω0) = −1.

Figure 26 shows how a light-pulse with carrier frequency ω0 generated in free space enters
a DNM consisting of a Lorentz-Lorentz material with ǫ(ω0) = µ(ω0) = −1. Exactly the
same phenomenons can be observed as in the Drude-Drude case. The biggest difference
is that the group-velocity is altered stronger because a permeability or permittivity that
follows a Lorentz-pole varies stronger across a certain frequency interval than one following
a Drude-pole.
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8.1 DNMs with ADM+

Figure 26: Left: Course of ǫ(ω) and µ(ω) and indication of location of ω0. Right: A
light-pulse with carrier frequency ω0 generated in free space enters at 0 a DNM
consisting of a Lorentz-Lorentz material with ǫ(ω0) = µ(ω0) = −1.

In a next step, a more realistic DNM can be simulated by defining a Drude-Lorentz
material. The course of ǫ(ω) and µ(ω) of the considered material follows a Drude-pole and
a Lorentz-pole respectively. Both are shown in figure 27.
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Figure 27: Course of the permittivity ǫ(ω) following a Drude-pole where the real part is
dashed and the imaginary part dotted and of the permeability µ(ω) following a
Lorentz-pole where the real part is solid and the imaginary part dash-dot. Such
conditions can be found in a realistic DNM. Furthermore the location of the
carrier frequency of the light pulse used in figure 29 is indicated.

67



8 Results of ADM+

In such a material several different frequency bands are present which are shown in figure
28. Again, there are the positive and negative pass bands but also two new bands. A light
pulse with a carrier frequency ω0 entering the negative band, i.e. in the DNM regime, is
shown in figure 29. In the new bands, ǫ(ω) and µ(ω) have opposite signs and waves at these
specific frequencies cannot travel inside the medium because the refractive index becomes
imaginary (see also section I). That is why these bands are also called stop bands. As
the waves cannot traverse, respectively, not even enter the material, total reflection of the
wave occurs as shown in figure 30.

Figure 28: Course of the permittivity ǫ(ω) following a Drude-pole where the real part is
dashed and the imaginary part dotted and of the permeability µ(ω) following
a Lorentz-pole where the real part is solid and the imaginary part dash-dot.
Pass-bands are present where ǫ(ω) and µ(ω) have the same signs, stop bands
where ǫ(ω) and µ(ω) have opposite signs. The narrow pass-band in the middle
is where the material is a DNM.
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8.1 DNMs with ADM+

Figure 29: A light-pulse with carrier frequency ω0 generated in free space enters at 0 a
DNM, i.e. ω0 lies within the negative pass band, consisting of a Drude-Lorentz
material with ǫ(ω0) = µ(ω0) = −1.

Figure 30: A light-pulse with carrier frequency ω0 generated in free space enters at 0 a
Drude-Lorentz material with ǫ(ω0) = −0.4 and µ(ω0) = 0.4. ω0 lies within a
stop band and thus, the pulse cannot enter the material and total reflection
occurs.
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8 Results of ADM+

Allowing now that the inspected metamaterial exhibits a self-focusing Kerr-effect it is
possible to produce gap solitons as described by [34]. As it has been shown and explained
before, in a realistic DNM there exist stop and pass bands. It has been shown that in a stop
band no waves are supported. However, if the DNM exhibits a self-focusing Kerr-effect,
the transmission properties of the material become intensity dependent. The Kerr-effect
is simply an intensity dependent refractive index, more precisely, it can be regarded as
an intensity dependent contribution to ǫ∞. Thus, if the Kerr-effect is positive, i.e. self-
focusing, it lifts the entire course of the permittivity ǫ(ω0) or permeability µ(ω0). Assume
the same material as the one used before depicted in figure 28 and that the Kerr-effect acts
on the permeability. The higher the pulse-intensity the higher is the permittivity lifted by
the Kerr-effect and the smaller becomes the stop band. This is shown in figure 31.
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Figure 31: Course of the permittivity ǫ(ω) following a Drude-pole where the real part is
dotted and of the permeability µ(ω) following a Lorentz-pole where the real part
is solid. The imaginary parts were omitted. The effect of the Kerr-nonlinearity
is to lift the course of the permittivity depending on the beams intensity. This
lifting is shown by the dashed line which represents the actual permittivity of
the material for a certain intensity.

If the pulse-intensity is high enough then the positive pass band expands at the costs
of the stop band and a gap soliton can transverse the DNM. The formation of such a gap
soliton is depicted in figure 32 where the same material parameters were used as before,
but additionally the Kerr-effect is present.

It is possible to expand the negative pass band in the very same manner by using a
defocusing Kerr-effect. But in this case, the pulse gets broadened and diminished by
dispersion and Kerr-effect such that only few of the initial intensity is transmitted.
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8.1 DNMs with ADM+

Figure 32: A light-pulse with carrier frequency ω0 generated in free space enters at 0 a
Drude-Lorentz material with ǫ(ω0) = −0.4 and µ(ω0) = 0.4 and with self-
focusing Kerr-effect. ω0 lies within a stop band which is reduced by the Kerr-
effect. Hence, a gap soliton can form and traverse the stop band.
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8.2 Solitons with ADM+

A light-pulse entering a material suffers pulse-broadening due to linear dispersion because
every frequency that supports the light-pulse travels at a slightly different velocity. As an
example, pulse-broadening due to a single Lorentz-pole is shown in figure 33.

Figure 33: Left: Permittivity of the material with a single Lorentz-pole the position of the
carrier-frequency of the pulse. Right: A light-pulse is formed outside a material
with a permittivity given by the left figure. The pulse enters the material at 0
and gets broadened afterward.

Allowing non-linear effects such as the Kerr-effect results in self-focusing of the pulse.
If the broadening due to dispersion and the focusing due to Kerr-effect are well balanced,
then the pulse retains its shape while traversing the material which is shown in figure 34.
Because of the high complexity of soliton formation, a more thorough discussion of solitons
would be far beyond the scope of this work. The material used in figure 34 has exactly
the same Lorentz-pole like the one used in figure 33 but it also exhibits Kerr-effect and
Raman-scattering.

Figure 35 shows snapshots of the soliton shown in figure 34 at different times. Addi-
tionally, a so-called precursor-pulse which proceeds the soliton is observed. This precursor-
pulse is in the previous image not visible because its amplitude is too small. These results
reproduce those of [35].

Summary of Validation The new algorithm ADM+ has been validated in various one-
dimensional simulations. It has been shown, that ADM+ allows to simulate linear dis-
persive materials such as DNMs correctly as pulse broadening as well as negative phase
velocities have been observed and occurred as expected. Also non-linear effects were tested
and it has been shown that ADM+ is able to simulate solitons and that it reproduces the
results of [35]. Furthermore, ADM+ allowed to test the predictions of [34] who described
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8.2 Solitons with ADM+

Figure 34: Left: Permittivity of the material with a single Lorentz-pole and the position
of the carrier-frequency of the pulse. Right: A light-pulse is formed outside
a material with a permittivity given by the left figure. The pulse enters the
material at 0 and forms a pulse which does not change its shape, i.e. a soliton
is formed.
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Figure 35: Snapshots of the soliton’s electric field shown in figure 34 at different times.
Additionally a so-called precursor-pulse which proceeds the soliton is observed.

the new phenomenon of gap-solitons which occur in non-linear DNMs. This phenomenon
could be confirmed.
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9 Conclusions

9 Conclusions

The following tasks have been accomplished:

• Discussion of physical material-models and electromagnetic wave interaction with
these materials (parts I)

• Derivation of ADE FDTD algorithms for material models of one non-trivial dispersion
relation (part II) and their stability conditions

• Derivation of a new algorithm and its stability conditions (part III)

• Simulations of DNMs (sections 3.6 and 8)

After the analysis of several algorithms of which each allowed to solve Maxwell’s equa-
tions in a material that exhibits only one particular dispersion relation or intensity depen-
dence of the refractive index, it was found that it is possible to cover all of these effects with
the novel and efficient ADM algorithm. The novel approach bases on the introductino of
the intensity as a new variable which allows to update the contribution from the Kerr-effect
separately. The update equation for the intensity can be solved by a fixed-point iteration.
Stability conditions of ADM and a convergence criteria for the fixed-point iteration were
derived analytically.

ADM has the following advantages:

• Material-Models: ADM+ covers linear Drude- and Lorentz-polarisation, non-linear
Kerr-effect and Raman-scattering (section 6).

• Speed: ADM+ is faster than any other similar algorithm (section 6).

• Modularity: each polarisation contribution can be computed separately facilitating
parallelisation (section 6).

• Stability: Stability conditions for ADM+ were derived analytically for some special
cases while for the most general case of ADM+ it is not feasible. Furthermore, a
convergence criteria of the fixed-point iteration was derived by applying Banach’s
fixed-point theorem (section 7).

Its high computational speed and complete modularity are its main advantages compared
with other similar algorithms. The proposed algorithm allows to simulate electromagnetic
wave propagation in a material with an arbitrary number of Drude- and Lorentz-poles in
its dispersion relation and, additionally, non-linear Kerr-effect and Raman-scattering.

The new algorithm allows in particular to simulate double negative materials. Different
effects such as negative phase velocity and gap-solitons that occur in such DNMs were
demonstrated in one-dimensional tests of the algorithm.
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10 Outlook

It is intended to implement the full three-dimensional ADM-algorithm into Semcad X
[1] opening all new fields of applications. Among these are very active, fast growing re-
search fields such as non-linear DNMs and the formation of so-called light-bullets, three-
dimensional solitons.

Future developments of the ADM+ could include further non-linear third-order effects
such as sum- and difference-frequency generation, two-photon absorption and Cotton-
Mouton effect. Non-linear intensity-dependencies of the refractive index are imaginable as
discussed in [36]. If anisotropic materials are included, non-linear second-order effects such
as sum- and difference-frequency generation, Pockels-effect, Faraday-effect and parametric
amplification. Furthermore it would be possible to implement more exact (less general)
models of metamaterial components such as the split ring resonators (as described by [23]).
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List of Abbreviations

List of Abbreviations

Abbreviation Denotation

ADE Auxiliary Differential Equation
ADeb Debye Auxiliary Differential Equation Algorithm derived

using polarisation currents
ADeb+ Deby Auxiliary Differential Equation Algorithm derived

using polarisation
ADM Arbitrary Dispersive Material Algorithm
ADM+ Arbitrary Dispersive Material Algorithm incorporating

DADE+ and LADE+

DADE Drude Auxiliary Differential Equation Algorithm derived
using polarisation currents

DADE+ Drude Auxiliary Differential Equation Algorithm derived
using polarisation

DNM Double Negative Material
FDTD Finite-Difference Time-Domain
GVADE General Vector Auxiliary Differential Equation Algorithm

derived by [2]
LADE Lorentz Auxiliary Differential Equation Algorithm derived

using polarisation currents
LADE+ Lorentz Auxiliary Differential Equation Algorithm derived

using polarisation
LHM Left-Handed Material
NIR Near Infrared
NUV Near Ultraviolet
SRR Split-Ring Resonator
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