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We investigate the thermoelastic properties of close-packed phases of iron at pressures up to 400 GPa and
temperature to 6000 K using a tight-binding total-energy method and the cell model of the vibrational partition
function. The calculated properties are in good agreement with available static and shock-wave experimental
measurements. The compressional behavior of a number of thermoelastic parameters is found to resemble that
of a prototypical oxide~MgO! supporting some aspects of universal behavior at high compression: the product
of thermal expansivitya and bulk modulus is found to be nearly independent of compression at high pressure
and the logarithmic volume derivative ofa is found to decrease with compression. In contrast to the behavior
of MgO, aKT and dT of iron are found to depend strongly on temperature due to contributions from the
thermal excitation of electrons. Significant decrease of the elastic constants of hcp iron with temperature was
found.

I. INTRODUCTION

Understanding the properties of transition metals at high
pressures and temperatures is a central problem of high pres-
sure physics. Our relatively poor understanding of transition
metals in these conditions contrasts with that of the simple
oxides, where substantial progress has been made in recent
years.1–3 Experimental and theoretical investigation of
simple oxides and silicates has revealed nearly universal be-
havior of a number of thermoelastic parameters at high tem-
peratures and pressures. The productaKT appears to be
nearly independent of pressure and temperature for large
compressions, and temperatures above the Debye tempera-
ture. Here we investigate whether similar universal behavior
exists in transition metals. We apply an accurate tight-
binding model to the investigation of the high pressure and
temperature thermoelastic properties of iron and compare its
properties with those of a simple oxide~MgO!. We examine
electronic and vibrational contributions to the thermal equa-
tion of state, and compare the thermoelastic behavior of Fe
and MgO under high pressure and temperature conditions.
The most important sources of experimental information on
the thermal properties and subsolidus phase diagram of iron
at high pressures and temperatures are shock-wave
experiments,4 and static compression in the diamond anvil
cell.5–7 The highest pressure and temperature data are from
dynamic shock experiments. However, the measurements of
temperature in shock experiments are extremely difficult for
nontransparent materials like iron. The results of different
groups~Refs. 4, 8, and 9! on the Hugoniot temperature at a
given pressure differ by more than a thousand degrees. Theo-
retical calculations of thermal properties can help to resolve
this issue but have so far been limited to simplified~e.g., pair
potential! models of interatomic interactions, which contain
substantial uncertainties.10

First-principles band structure calculations show that den-
sity functional theory in the generalized gradient approxima-

tion ~GGA! yields a good description of the static equation
of state and the low temperature phase diagram of iron.11 The
study of high temperature properties, however, is not feasible
with the linearized augmented plane wave~LAPW! method
used in this study. Simplified models of the electronic struc-
ture, in the form of low order moment approximations to the
density of states, or effective potentials, are unlikely to be
successful for predicting the high temperature properties of
transition metals due to the complicated many-body nature
of the interactions. For this reason, only a few molecular
dynamics studies have addressed the thermodynamics of
iron.10,12,13

Here, we use a different approach to the study of transi-
tion metals at high pressures and temperatures. We combine
an accurate tight-binding total-energy~TBTE! method with
the cell model of the vibrational partition function. The
TBTE method is grounded in accurate first-principles
calculations—the parameters of the model are fitted to
LAPW band structures and equations of state of nonmagnetic
bcc, fcc, and hcp phases of iron over a wide range of vol-
umes~40–90 bohr/atom!. It has been previously shown that
the TBTE model precisely reproduces LAPW results for Fe
and accurately predicts equations of state, phase stabilities,
elastic constants, and phonon dispersion curves of a number
of transition metals.14,15The TBTE model is nonorthogonal,
and does not include pair potential or other structurally de-
pendent non-band-structure terms. The parametrization is not
performed in terms of coordination shells, since coordination
shells are poorly defined in liquids and high temperature sol-
ids, rather the interactions decay smoothly with distance and
vanish at 16.5 bohr. The tight-binding model is thousands of
times more efficient computationally than LAPW calcula-
tions.

The cell model16–18 ~also known as the particle in a cell
method! is a mean field approximation to the thermal contri-
bution to the Helmholtz free energy of crystalline phases.
Each atom is confined to the Weigner-Seitz cell formed by its
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nearest neighbors.16 Interatomic correlations and diffusion
are ignored, so that the translational degrees of freedom of
the atoms are separable. The partition function is then written
in terms of a three-dimensional integral over the position of
a single atom. Although interatomic correlations are ne-
glected, the cell model includes anharmonic terms which are
ignored in quasiharmonic lattice dynamics and which are
likely important for temperatures which are a substantial
fraction of the melting temperature. The cell model as ap-
plied here is a classical method for the vibrational degrees of
freedom, and is applicable at temperatures above the Debye
temperature where vibrational states are essentially fully
populated, and below the melting temperature where collec-
tive motions and diffusion become important. The cell model
has been demonstrated to match successfully the thermody-
namic properties of the fcc Lennard-Jones crystal17 and so-
dium chloride18 calculated from Monte Carlo simulations.
Moreover, the cell model permits very efficient computation
of thermal properties as compared, for instance, with mo-
lecular dynamics simulations. This allows us to investigate a
wide range of thermoelastic parameters, including high order
derivatives of the free energy, over the entire range of pres-
sures and temperatures relevant to the earth and to high pres-
sure experiments.

II. TIGHT-BINDING TOTAL-ENERGY MODEL

The TBTE model used14 is based on a two-center, nonor-
thogonal Slater-Koster formulation. This TBTE model is dif-
ferent from previous models in that the total energy is given
by the eigenvalue sum and there are no pair potentials or
other structure-dependent terms. This avoids the ambiguity
by choice of energy zeros for different band structures, as
discussed by Cohenet al.14 The hopping Hamiltonian and
overlap tight-binding interaction parameters betweens, p,
andd orbitals~like sss, sps, etc.! are assumed to have the
form

Pi5~ai1bi !exp@2ci
2r # f ~r !, ~1!

where r is the interatomic distance, andf (r )5$1
1exp@(r2r0)/l #%21 is a cutoff function with parameters
r 0516.5 bohr andl 50.5 bohr. ThePi represent 20 param-
eters, ten each for the Hamiltonian and overlap matrices. The
interactions are relatively long range, extending to more than
three times the nearest-neighbor distance. This feature con-
trasts significantly with many conventional TB models which
include only the nearest-neighbor interactions.19 The onsite
termsDlk of the Hamiltonian matrix~the indexl5s,p, and
d labels orbitals, andk labels atoms! are assumed to vary as
a function of local ‘‘density’’ around each atom,rk , defined
as

rk5(
j
exp~2d2r jk! f ~r jk! ~2!

according to a finite strain polynomial

Dlk5el1glrk
2/31hlrk

4/31 ilrk
2 . ~3!

Altogether, there are 73 fit parametersai , bi , ci , d, el ,
gl , hl , and i l for a monoatomic substance. The parameters
are determined by fitting to more than 4000 weighted input

data consisting of the total energy and band structures of
nonmagnetic bcc, fcc, and hcp iron over a more than twofold
range of volumes as well as a set of tetragonal strained struc-
tures between fcc and bcc at two volumes.14

The TBTE model used here is nonmagnetic. The reason
for this is that the LAPW calculations demonstrate that local
magnetic moments for fcc and hcp phases vanish for all non-
negative pressures,20,21 and the magnetic effects are known
to become unimportant at high pressure.

Since occupied and unoccupied states~up to 1 Ry above
the static Fermi energy! were included in the fit, the method
is appropriate to high temperature calculations where thermal
excitations of electrons are important.14 The total energy at
finite temperatureT for the case of the TBTE model is given
as the sum over the eigenvalues of the ideal latticee i :

Etotal~V,T!5Eband~V,T!5E0~V!1Eel~V,T!52(
i
f ie i ,

~4!

where

f i5$exp@~e i2m!/~kBT!#11%21 ~5!

is the Fermi-Dirac occupation number,m is the chemical
potential,kB is the Boltzmann constant, and the eigenvalues
e i are assumed to be independent of temperature at constant
lattice and nuclear positions. The sum is over all energy lev-
els. The factor 2 is due to the spin degeneracy. The chemical
potential m is determined from the particle conservation
equation

2(
i
f i5Nel , ~6!

whereNel58N is the total number of electrons in the system
andN is the number of atoms.

III. CALCULATION OF THERMAL PROPERTIES

The Helmholtz free energy of the system can be written as

F~V,T!5E0~V!1Eel~V,T!2TSel~V,T!1Fvib~V,T!,
~7!

whereE0(V) is the zero-temperature energy,Eel(V,T) is the
contribution due to thermal electronic excitations,Sel(V,T)
is the electronic entropy, andFvib(V,T) is the phonon con-
tribution to the free energy. To evaluate the first three terms
on the right-hand side we assume that the existence of the
lattice vibrations does not affectEel and Sel and calculate
these terms for the ideal lattice. The corresponding thermal
properties of interest are then found from the appropriate
thermodynamic expressions involving volume and tempera-
ture derivatives ofF(V,T). Whenever practical, these de-
rivatives are evaluated analytically. The computational de-
tails of the electronic contribution toF are given in the next
section. The phonon contribution to the free energy and other
thermodynamic properties are treated with the cell model
and are discussed in the succeeding section.
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A. Electronic thermodynamics

The electronic entropySel is given by22

Sel522kB(
i
f i lnf i1~12 f i !ln~12 f i !. ~8!

This expression is valid for the entropy of a Fermi gas of
~not necessarily free! particles.23 Eband(V,T) and Sel(V,T)
were calculated using primitive unit cells and the
Monkhorst-Pack 16316316 mesh of specialk points for the
Brillouin zone integration,24 yielding 408 and 240k points in
the irreducible wedge of the Brillouin zone for fcc and hcp
lattices, respectively. Tests showed that this mesh size is suf-
ficient to reach convergence of the energy to within 0.1 mRy
and of electronic entropy to within 0.003kB/atom.

The method for calculating the electronic entropy and en-
ergy is based on the assumption that the eigenvalues are
temperature independent—only the occupation numbers de-
pend on temperature, through the Fermi-Dirac distribution.
We verify the validity of this approximation by comparing to
self-consistent high temperature LAPW calculations. The
Mermin theorem25 generalizes the Hohenberg-Kohn density
functional theory~DFT! to finite temperatures: the expres-
sion for the charge density is modified to include occupation
numbers according to the Fermi-Dirac distribution. Possible
explicit temperature dependence of the exchange-correlation
energy is ignored. Following McMahan and Ross,22 we esti-
mated the difference in the electronic contribution to thermo-
dynamic properties calculated self-consistently from LAPW
calculations at high temperature and those based on static
eigenvalues. The self-consistent LAPW calculations with
the GGA approximation for the exchange-correlation
functional26 were performed on hcp iron for volumes ranging
from 40 to 90 bohr3/atom at temperaturesT56000 K and
9000 K. The Brillouin zone integration was carried out using
the same 16316316 mesh of specialk points as for the TB
calculation. The electronic entropy was then calculated from
the eigenvalues and chemical potential according to Eq.~8!.
The comparison of calculatedSel is given in Fig. 1. As one
can see from Fig. 1, the agreement between self-consistent
LAPW calculations and TBTE calculations based on static
eigenvalues is within 1%. We therefore confirm that this ap-

proximation is justified not only for iodine,22 but also for a
transition metal. Therefore the TBTE model fitted to static
band structures can be used to describe the electronic ther-
modynamics of the system with the required accuracy.

The electronic heat capacityCV
el5(]Eband/]T)V is found

by differentiating~4! with respect to temperature:

CV
el52(

i
f i~ f i21!e i S 2

1

kBT

]m

]T
2

~e i2m!

kBT
2 D . ~9!

The temperature derivative ofm is determined by differenti-
ating the conservation equation~6!:

2
1

kBT

]m

]T
5

1

kBT
2

(
i

( f i~ f i21!~e i2m!

(
i
f i~ f i21!

. ~10!

This is then substituted in Eq.~9!.
The volume derivatives of the first three, nonvibrational,

terms of the Helmholtz free energy~7! ~denoted here as
FNV) were calculated using symmetric finite differences for
2]F/]V or alternatively by fitting the Birch-Murnaghan
equation27 to theFNV(V) isotherms and then differentiating
the fit. Both methods agree within 0.3 GPa.

B. Vibrational contributions

Despite recent progress in the development of order-N
methods for electronic structure calculations,19 TB molecular
dynamics~TBMD! calculations of transition metals remain
computationally very intensive. This stems from the fact that
nine orbitals per atom have to be considered rather than four
for s-p materials, and due to the long-range nature of the
interactions in metals. In contrast, the computational burden
of the cell model calculations is significantly less. At high
temperatures the cell model becomes highly accurate. It in-
cludes on-site anharmonicity and neglects only defects, dif-
fusion processes, and interatomic correlations. The cell
model approximation yields a fairly accurate description of
the equation of state of solid argon~represented with the
Lennard-Jones model!.17 It was also reasonably successful in
describing the thermal expansivity and bulk modulus of an
alkali halide crystal.18 Considering the computational limita-
tions of TBMD for transition metals, we also believe that the
cell model calculations may yield better estimates of the
thermoelastic properties than averaging over necessarily
short phase trajectories. Moreover, theG-point approxima-
tion to the Brillouin zone integrations, commonly used in
TBMD, is questionable in a transition metal. Cell model cal-
culations are a convenient tool to check the influence of this
approximation and the effect of system size on the calculated
thermal equation of state.

The cell model16,17 is an approximate way to evaluate the
vibrational contributionFvib to the Helmholz free energy.
The idea of the cell model is that the vibrational contribution
to the partition function Zcell5exp(2bFvib) where
b5(kBT)

21, is calculated by having one ‘‘wanderer’’ par-
ticle move in the potential field of an otherwise ideal, static
lattice:17

FIG. 1. Electronic entropy of hcp iron~in units of R) from
self-consistent high temperature LAPW calculations~symbols! and
from the TBTE method assuming temperature-independent eigen-
values~lines!.
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Zcell5l23NF E
D
exp@2b~U~r !2U0!#dr GN, ~11!

wherel5h/(2pmkBT)
1/2 is the de Broglie wavelength of

the atoms,U0 is the potential energy of the system with all
atoms on ideal lattice sites,U(r ) is the potential energy of
the system with the wanderer atom displaced by the radius
vector r from its equilibrium position, andN is the total
number of atoms in the system. The integration is over the
Wigner-Seitz cellD, centered on the equilibrium position of
the wanderer atom. Since the cell model treats vibrations
classically, it is expected to be a good approximation for
temperatures greater than the Debye temperature of the solid
but lower than the melting temperature.

We performed careful convergence tests of the perturba-
tion energy with respect to the size of the supercell and the
number ofk points used in the Brillouin zone integrations. In
a cubic 32-atom fcc supercell with periodic boundary condi-
tions, we displaced one atom towards its nearest-neighbor
and calculated the energy as a function of the nearest neigh-
bor distance~Fig. 2!. The perturbation energy is the energy
difference between the distorted and the ideal lattice. The
electronic temperature for this calculation wasT54000 K,
and the volumeV548 bohr3/atom. We found that a
43434 k-point mesh~32 k points! was sufficient to accu-
rately determine the energy of displacement in this supercell
— denser meshes did not significantly alter the results. We
investigate the effect of the size of the supercell by perform-
ing calculations in 32-, 64- and 128-atom supercells, using
the G point only. The 64- and 128-atom supercells were
formed by stacking two and four 32-atom cubic supercells
together, respectively. In the 64- and 128-atom supercells
two and four atoms were displaced, so that the geometrical
configuration was the same in all cases. As one can see from
Fig. 2, for small supercells (N,100) the energy of displace-
ment depends strongly on the size of the system when the
Brilluoin zone is sampled at a single point. Agreement be-
tween the 128-atomG point-only calculation and the 32-
atom supercell withk points (43434 mesh! calculation is
excellent. Tests with even larger supercells~256 atoms!
showed no significant change in the energy of displacement.

We therefore used;100 atom supercells for our cell model
calculations. Our results also imply that molecular dynamics
calculations of transition metals which use only theG-point
require at least;100 atoms in the unit cell.

The cell model calculations were performed on supercells
of N5108 atoms for the fcc lattice andN5128 atoms for the
hcp lattice with periodic boundary conditions. The distance
between the ‘‘wanderer’’ atom and its nearest image was
greater than the cutoff radius of the TB model. Integration
over the Wigner-Seitz cell was replaced by integration over
the inscribed sphere of radius equal to half the nearest-
neighbor separation. We evaluate the effect of this spherical
approximation by plotting the radial part of the integrand in
Eq. ~11!, namely,r 2exp@2b(U2U0)#, in Fig. 3 for two rep-
resentative temperatures. As one can see from Fig. 3, the
integrands decay rapidly and are essentially zero at the radius
of the inscribed sphere. Similar decay of the integrands was
found for the case of NaCl.18 The integration over the cell
was therefore performed in spherical coordinates. The radial
integration was performed using standard Gauss-Legendre
quadrature. For the radial integration a 20-node quadrature
was found to be sufficient for all properties, including the
vibrational heat capacityCV

lat , which we found to be most
sensitive to the precision of integration.

To perform the integrations over the solid angle, we took
advantage of the symmetry of the integrands. The integrands,
being scalar functions, possess the point group symmetry of
the lattice and the method of special directions28 is appropri-
ate. The numerical quadrature formulas are available for cu-
bic lattices,28 and we generalized this method for the hcp
lattice ~see the Appendix!. The idea of this method is analo-
gous to the Gauss-Legendre method in one dimension~1D!.
The integrand with the appropriate lattice symmetry is ex-
panded in orthogonal lattice harmonics~cubic harmonics for
the case of a cubic lattice!. A quadrature formula~a set of
directions and weights! for the solid angle integration
*0
2pdf*0

psinuf(f,u)du is constructed in such a way that it
exactly integrates as many lattice harmonics as possible for
the given number of directions.

The convergence of the integration with respect to the
number of special directions for the solid angle integration
and the number of nodes for the radial integration is demon-
strated in Tables I–III. Most of the calculations were per-

FIG. 2. Dependence of the perturbation energy for the fcc lattice
when one atom is displaced towards its nearest neighbor. Note that
the calculation withN5128 atoms and theG point ~four supercells
of 32 atoms stacked together! is adequate, while smaller supercells
are not. The calculation withk-point sampling was done using a
43434 mesh of specialk points.

FIG. 3. Integrand in Eq.~11! along the first special direction~see
text and Appendix! for the fcc phase (V560 bohr3/atom! at tem-
peraturesT52000 K andT54000 K. Note the rapid decay of the
integrand so that integration over the inscribed sphere is a good
approximation to integration over the Wigner-Seitz cell.
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formed with a two-directional quadrature formula for the fcc
lattice28 ~exact up to the cubic harmonic withlmax510) and
a four-directional quadrature formula for the hcp lattice~ex-
act up to the lattice harmonicC7

3). The computational effi-
ciency of the special directions method is over an order of
magnitude better than that of straightforward 3D integration;
e.g., that of Cowleyet al.,18 who used triple nine-point
Gauss-Hermite quadrature with 935729 nodes.

The thermodynamic quantities of interest for the case of
the cell model are calculated as derivatives ofF(V,T). Ana-
lytical derivatives were used in most cases. For the properties
defined as temperature derivatives ofF ~e.g., latticeCV) the
expressions for the vibrational contribution have been given
previously and are identical to those for systems interacting
with pair potentials.17 The vibrational contribution to pres-
surePvib is given by

Pvib52S ]Fvib

]V D
T

5
N

bV

2
N

3V

*D~J2J0!exp@2b~U2U0!#dr

*Dexp@2b~U2U0!#dr
, ~12!

whereJ is the virial of the system with the wanderer atom
displaced by the radius vectorr from its equilibrium posi-
tion, andJ0 is the virial of the system with all atoms at their
equilibrium positions. The virial is defined as the trace of the
stress tensor.29 This expression is obtained by differentiating
Fvib52kBTlnZ with Z given by Eq.~11!. The calculation of
the virial is discussed in detail below. Consider a periodic
system with unit-cell volumeV0 and atoms at positionsRi ,
and also the scaled system with atoms ataRi and volume
V5a3V0 . Then the derivative of an arbitrary function of the
atomic positions,g(R), with respect to volume can be re-
placed by the derivative with respect to this scaling param-
eter :

]g~R!

]V
5 lim

a→1
S ]g~R!

]a

]a

]VD5
1

3V
lim
a→1

S a ]g~R!

]a D . ~13!

TABLE II. Electronic entropy~in units ofR! for the hcp phase
calculated from self-consistent LAPW calculations at given tem-
perature and from the TB fit to eigenvalues atT50 K considering
energy levels as independent of temperature.

Self-consistent TB
V ~bohr3/atom! T56000 K T59000 K T56000 K T59000 K

40 1.273 1.988 1.240 1.956
50 1.755 2.623 1.728 2.614
60 2.264 3.223 2.229 3.217
70 2.759 3.758 2.721 3.757
80 3.217 4.224 3.185 4.228
90 3.631 4.621 3.612 4.630

TABLE III. Convergence of the total pressure with respect to
k-point sampling for fcc iron atT54000 K (N5108 atoms in the
cubic supercell!. The vibrational contribution to pressure only was
determined using the specified mesh size and the supercell. The
thermal pressure forG-point ~ k 5 0! calculation was determined
from the virial, while for the 23232 k-point mesh the virial was
not calculated. The total pressure was therefore determined by fit-
ting the finite strain polynomial to the calculated Helmholtz free
energies as a function of volume along the isotherm and differenti-
ating this polynomial with respect to volume. The error in pressure
associated with this procedure is approximately 2 GPa.

V Static P ~GPa! P ~GPa!
~bohr3/atom! pressure~GPa! (G-point! (23232 mesh!

48 240 290 289
55 112 159 162
60 58 105 109
65 22 75 79
70 -2 62 65

TABLE I. Convergence of the vibrational contribution to the Helmholtz free energy (Fvib) with respect to
computational parameters.

fcc phase,Fvib ~mRy/atom!

Number of special V560 bohr3/atom V570 bohr3/atom
directions T52000 K,P580 GPa T53000 K,P545 GPa

1 -70.7
2 -70.8 -152.8
4 -70.8 -152.8
Number of V560 bohr3/atom V570 bohr3/atom
radial nodes T52000 K,P580 GPa T53000 K,P545 GPa

5 -71.7
10 -70.8 -152.8
20 -70.8 -152.8

hcp phase,Fvib ~mRy/atom!

Number of special V560 bohr3/atom V570 bohr3/atom
directions T52000 K,P576 GPa T53000 K,P548 GPa

2 -182.1
4 -182.1 -143.9
6 -182.0 -143.8
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We can therefore define the virial operatorv̂ acting on
g(R) as

v̂g5 lim
a→1

S a ]g~aR!

]a D ~14!

and the virial

J5 v̂U5 lim
a→1

S a ]U~aRi !

]a D , ~15!

whereU is the potential energy of the system. It is well
known30 that for a system with periodic boundary conditions
the virial cannotbe calculated asJ52( i51

N FiRi , Fi being
the force on the atom labeledi at the radius vectorRi . For
the case of a system interacting via pair potentialsVi j (r i j )
~15! yields the correct result:

J5
1

2(i , j r i j
]Vi j

]r i j
.

For our TBTE method, the potential energy is given by
Eband ~4!, and the virial is

J5(
i
v̂~ f ie i !5(

i
f i v̂e i1e i

] f

]e i
~ v̂e i2 v̂m!. ~16!

The result of the virial operator acting on the eigenvalues is
evaluated by using the Hellmann-Feynman theorem

]e i
]a

5
^c i u]H/]a2e i]S/]auc i&

^c i uSuc i&
.

Here H and S are the Hamiltonian and overlap matrices,
respectively, anduc i& is the eigenvector corresponding to the
eigenvaluee i . The derivatives of the matrix elements with
respect toa are easily calculated because these are param-
etrized as analytical functions of the atomic coordinates
Ri , i51, . . . ,N, so that

v̂A5(
i
Ri

]A

]Ri

whereA is an element of the Hamiltonian or overlap matrix.
Using the perturbation matricesḢ5 v̂H and Ṡ5 v̂S we ob-
tain

v̂e i5^c i uḢ2e i Ṡuc i&, ~17!

where we have used the fact that the eigenvectors are nor-
malized such that̂c i uSuc i&51. For the case of a metal the
Fermi levelm has a nonzero derivative with respect to the
parametera. It is determined by differentiating the conser-
vation equation~6! with respect to this parameter:

]m

]a
5

(
i

~] f /]e i !~]e i /]a!

(
i

~] f /]e i !

. ~18!

The virial is then calculated by substituting Eq.~17! and Eq.
~18! in Eq. ~16!, which yields

J5(
i F f i^c i uḢ2e i Ṡuc i&1e i

] f

]e i S ^c i uḢ2e i Ṡuc i&

2

(
j

~] f /]e j !^c j uḢ2e j Ṡuc j&

(
j

~] f /]e j !
D G ~19!

The vibrational contribution toaKT5(]P/]T)V was ob-
tained by differentiating~12! analytically with respect to
temperature. The electronic contribution was evaluated by
differentiating the appropriate terms of~1! analytically with
respect to temperature and numerically with respect to vol-
ume.

IV. THERMAL PROPERTIES

Two close-packed phases of iron were considered,
namely, fcc and hcp. For the hcp structure the equilibrium
value c/a was determined from the condition that it yields
the minimum ofF(c/a,V5const,T5const). Plotted in Fig.
4 is the calculated temperature dependence of thec/a ratio
for hcp iron at a set of volumes. The experimental result at a
pressure of;21 GPa corresponds approximately toV565
bohr3/atom. As one can see from Fig. 4, the calculations are
consistent with the experimental result that thec/a ratio in-
creases with temperature.

The volume-conserving strain associated with the change
of c/a is described by the strain matrix eJ
5diag$e1 ,e1 ,(11e1)

2221%.31 The initial state is the hcp
lattice with the equilibriumc/a ratio. The initial state is char-
acterized by hydrostatic stresst i52P for i51,2,3 and
t i50 for i54,5,6. The isothermal elastic constantsCi j are
defined as expansion coefficients of the quadratic terms of a
series expansion ofF about the initial state:32

DF/V5t iei1
1
2 Ci j eiej . ~20!

Expandinge3 in powers ofe1 ,

e35~11e1!
2221522e113e1

224e1
31•••, ~21!

FIG. 4. Calculated and experimental~Ref. 45! temperature de-
pendence of thec/a ratio for hcp iron.
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we obtain

DF/V5e1
2~C111C1212C3324C13!1O~e1

3!. ~22!

Defining

CS5C111C1212C3324C13, ~23!

one obtainsDF/V5CSe1
21O(e1

3). The temperature depen-
dence of the calculated isothermal shear elastic constantCS
is given in Fig. 5. As one can see from Fig. 4 and Fig. 5, the
substantial increase of thec/a ratio with temperature is as-
sociated with a softening of the corresponding elastic con-
stantCS , and may be related to a high temperature mechani-
cal instability.

The only source of information on the equation of state of
iron at high compression and high temperatures is shock-
wave data. The pressuresPH and temperaturesTH on the
Hugoniot were calculated for a set of volumes ranging from
48 bohr3/atom to 65 bohr3/atom by solving the Rankin-
Hugoniot equation:33

1
2 PH~V02V!5EH2E0 . ~24!

For the zero-pressure energyE0 and volumeV0 the LAPW
results for the bcc phase were used.11 The LAPW method
correctly predicts the bcc-hcp phase transition atP511 GPa
for T50 K. We considered the hcp phase for the Hugoniot
calculation. For a given volumeV, the temperature on the
Hugoniot was varied until Eq.~24! is satisfied. The third-
order Birch-Murnaghan equation27 was then fitted to the cal-
culated set ofPH(V). Our approach does not invoke any
empirical parameters and differs in this sense from that of
Sherman and Jansen,34 who used the Gru¨neisen parameter
g as an adjustable parameter to fit the experimental Hugo-
niot. We calculate the Hugoniot only for pressures greater
than 13 GPa, the bcc-hcp transition pressure on the Hugo-
niot.

The agreement of the calculated Hugoniot with experi-
mental data4 is good ~Fig. 6!. The discrepancy at pressures
above 200 GPa can be attributed to phase transitions ob-
served experimentally:4 a solid-solid phase transition to an
unknown structure atP5200 GPa and melting atP5243
GPa. Figure 7 compares our calculated temperatures on the
Hugoniot with previous model calculations4 and experimen-
tal measurements.8,9 Our result is approximately 1000 K
lower than that of Yooet al.8 but agrees well with the esti-

mates of Brown and McQueen.4 As mentioned above, ex-
perimental measurements of the Hugoniot temperatures dis-
agree with each other. Excellent agreement between our
calculations and the latest results of Gallagher and Ahrens9

suggests that Yooet al.8 overestimate the Hugoniot tempera-
ture by approximately 1000 K.

The pressure at high temperatures can be written as

P~V,T!5P0~V!1Pth~V,T!, ~25!

whereP0(V) is the static pressure andPth(V,T) is the ther-
mal pressure. According to the Mie-Gru¨neisen equation, the
thermal pressure is given as

Pth~V,T!5
gEth~V,T!

V
, ~26!

whereEth is the thermal contribution to the internal energy,
and thethermodynamicGrüneisen parameter is defined by

g[V~]P/]Eth!V[
aKTV

CV
. ~27!

FIG. 5. Temperature dependence of the isothermal shear elastic
constantCS defined by Eq.~23! for volumes 48, 55, and 65
bohr3/atom.

FIG. 6. Hugoniot for iron in theP-V plane. Solid line is the
calculated Hugoniot for pressures above the bcc-hcp transition pres-
sure. Circles are experimental measurements by Brown and Mc-
Queen~Ref. 4!.

FIG. 7. Calculated temperature on the Hugoniot~solid line!;
squares are measurements by Yooet al. ~Ref. 8! and circles repre-
sent the thermodynamic calculations of Brown and McQueen~Ref.
4!.
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As one can see from the definition of the thermal expansivity
a5(1/V)(]V/]T)P and the bulk modulusKT52V(]P/
]V)T , the productaKT is the temperature derivative of the
thermal pressure. ThereforePth(V,T)5*0

TaKTdT. The pa-
rameters defined above are widely used in high pressure re-
search. The Gru¨neisen parameterg5V(]P/]E)V along with
total CV ~vibrational1electronic! is traditionally used to re-
duce shock compression data, for instance to transform be-
tween isotherms and Hugoniots.4,34 The temperature on the
Hugoniot can be evaluated in the absence of phase transi-
tions by integrating the thermodynamic equation

dT52TS g

VDdV1
1

2CV
@~V02V!dP1~P2P0!dV#

~28!

along the Hugoniot.4

It is of interest to evaluate the validity and limitations of
several assumptions often made in highP,T thermodynamic
calculations: ~1! independence of the parameter
aKT5(]P/]T)V on temperature and compression, and~2!
power law dependence of the Gru¨neisen parameter on com-
pression,g5g0(V/V0)

q. The parameteraKT , the product
of two experimentally measurable quantities, is often used in
high pressure calculations to transform from (P,T) to
(V,T) space.3 Considering the lack of experimental data, it is
desirable to find a parameter that remains approximately
constant over a wide range of pressure and/or temperature.
The aKT parameter was argued3 to be such a universal
temperature- and pressure-independent parameter for com-
pressionsV/V0,0.7 and temperatures above the Debye tem-
perature of the solid. We expect the cell model to provide an
excellent test of these assumptions for iron—from the meth-
odological point of view, the errors introduced by the cell
model approximation ina and KT are correlated18 in the
sense that if one quantity is underestimated, the other one is
overestimated. Therefore the product is expected to be esti-
mated quite accurately. For the case of a metal, there are
vibrational and electronic contributions. In order to highlight
the contribution from the electrons in the conduction band,
we compare the results for iron to those for a simple oxide,
MgO, which contains no electronic contribution.

Plotted in Fig. 8 is theaKT parameter for iron calculated
in this study along with that for MgO taken from Ref. 1. The
calculatedaKT @Figs. 8~a! and 8~b!# can be considered ap-
proximately independent of compression at high compres-
sions but depends on temperature. For instance, atV560
bohr3/atom, aKT increases by approximately 40% from
T51000 K to T56000 K. The temperature dependence
aKT is much stronger than and of the opposite sense to that
found for MgO. As one can see from Fig. 8, the calculated
vibrational contribution toaKT decreases with temperature
for both Fe and MgO due to anharmonic contributions~Ref.
32, p. 232!. However, for iron this decrease is more than
compensated by the electronic contribution. As one can see
from Fig. 8~c!, the electronic contribution toaKT increases
nearly linearly with temperature. This behavior at low tem-
peratures has been observed in other metals at low tempera-
ture ~Ref. 32, p. 288!. For the free electron gas,aKT also
depends linearly on temperature.35 Therefore the electronic

contribution is primarily responsible for the temperature de-
pendence ofaKT for iron @Fig. 8~b!#.

In our cell model calculations above the Debye tempera-
ture we foundCV

lat to increase with temperature. Neverthe-
less, we found that the Dulong-Petit value,CV

lat53R, is a
reasonable approximation especially at high pressure, and
may be suitable for the analysis of Hugoniot data. For in-
stance, atT54000 KCV

lat53.12R and 3.18R atV548 and 55
bohr3/atom, respectively.

The calculated electronic heat capacity~Fig. 9! for fcc
iron has a linear temperature dependence at low tempera-
tures. This result is expected from the Sommerfeld expan-
sion, which yields:35

FIG. 8. Calculated temperature derivative of the pressure,
aKT , as a function of reduced volume~a! and as a function of
temperature~b! of iron and MgO. The electronic contribution to
aKT in iron is plotted separately in~c!. Note that the totalaKT is
approximately independent of compression betweenV548 and
V560 bohr3/atom, but its temperature dependence cannot be ig-
nored even above the Debye temperature.

53 8303THERMAL PROPERTIES OF IRON AT HIGH PRESSURES AND . . .



CV
el5GT, ~29!

G5
p2

3
kB
2Vg~eF! ~30!

whereg(eF) is the density of states on the Fermi level at
T50 K. CV

el at low temperatures can be written in a form
similar to that for the free electron gas:

CV
el5S p

3 D 2/3m*Vn1/3T, ~31!

wherem* is the effective electron mass for thermal proper-
ties, which accounts for the high density of states at the
Fermi level in transition metals compared with the free elec-
tron gas, andn is the charge density.35 The effective mass is
proportional to the density of states at the Fermi level:

g~eF!531/3p24/3m* \22n1/3. ~32!

The calculated slopeG of the linear portion ofCV
el5GT at

different volumes for the fcc phase is given in Table IV. It is
compared to the free electron gas value, the ratio of these
being the effective mass. The effective mass increases with
volume, and at the zero-pressure density it approaches the
experimentally observed value ofm*;8.

The Sommerfeld expansion with two terms~30! ceases to
be valid for iron at temperatures greater than around 4000 K.
This is due to the existence of peaks in the density of states
g(e) near the Fermi level; therefore the higher order deriva-
tives of eg(e) are substantial. The temperature dependence

of the electronic heat capacity deviates from linearity, and
tends to level off at highT. At high temperatures it is com-
parable to the lattice value;3R. It has to be considered,
therefore, when reducing shock-wave results. Our calcula-
tions ofCV

el agree with those of Bonnes and Brown,36 who
used the linear muffin tin orbital~LMTO! method in the
atomic sphere approximation.

The Grüneisen parameter was calculated from its thermo-
dynamic definitiong5(aKT)V/CV . In the case of the cell
model, it is easy to separate the vibrational or lattice contri-
bution, g lat , and the electronic contribution,g el . The total
Grüneisen parameter is then given by

g5
gelCV

el1g latCV
lat

CV
el1CV

lat .

The lattice contribution is given separately in Fig. 10~a!, and
the total Gru¨neisen parameter in 10~b!. Both calculatedg lat
and g for iron increase significantly with volume. This in-
crease is much more pronounced for iron than for MgO.1 The
temperature dependence ofg lat is relatively weak. The lattice
contribution dominates the total Gru¨neisen parameter at high
compressions. The volume dependence ofg can be described
approximately by a power law for compressions of interest
for the shock-wave experiments. Plotted in Fig. 10~c! is the
parameterq[(] lng/] lnV)T . As one can see from Fig.
10~c!, it is not constant and a fit with constantq can be valid
only over a limited region of volumes. Assuming a constant
q gives only a moderate degree of accuracy; we found
q51.1. A qualitatively similar volume dependence ofq to
that shown in Fig. 10~c! was found for model monatomic
cubic lattices interacting via a variety of central-force
potentials,37 and inab initio calculations of MgO.2

The calculated Gru¨neisen parameter was compared with
experimental estimates by Jeanloz38 and Brown and
McQueen4 @Fig. 10~b!#. The results of Ref. 38 are based on
the analysis of Hugoniot data for initially porous and nonpo-
rous samples and were fitted to the power law
g5g0(V/V0)

q. The agreement between our calculated
Grüneisen parameter and the results of shock compression
experiments is good.

There are three well-known approximate ways to calcu-
late the Gru¨eneisen parameter for a monoatomic solid, and
we compare our cell model calculations to these approximate
formulas. It is worth emphasizing, however, that the deriva-
tion of these expressions relies on assumptions that are not
exactly satisfied in the case of our calculations. One can
therefore expect only qualitative agreement with more accu-
rate calculations. Even for a model fcc crystal interacting
with pair potentials, no quantitative agreement was found
between these approximate expressions and the results of a
computer simulation.10 The three expressions can be com-
bined in one using an integer parameterl to label the differ-
ent expressions:33

g52
V

2

]2~PV2l /3!/]V2

]~PV2l /3!/]V
1

~ l22!

3
. ~33!

The Slater approximation (l50) considers the material as
an elastic medium~Debye model! and ignores the volume
dependence of Poisson’s ratio. It yieldsg5K8/221/6,

FIG. 9. Calculated electronic heat capacity of fcc iron. The
curves correspond~from bottom to top! to increasing volumes
V548, 55, 60, 65, and 70 bohr3/atom.

TABLE IV. Slope of the temperature dependence of the constant
volume heat capacity for the fcc iron and the effective mass.

V From TB For free electron m* /me

~bohr3/atom! ~mJ mol21 K22) gas~mJ mol21 K22)

48 2.44 0.452 5.4
55 2.97 0.495 6.0
60 3.35 0.524 6.4
65 3.71 0.553 6.7
70 4.08 0.581 7.0
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whereK85(]KT /]P)T calculated at pressureP. The ex-
pression due to Dugdale and MacDonald (l51) follows
from the assumption that in a cubic crystal all the force con-
stants have the same volume dependence. The expression for
the free volume theory (l52), in which the vibrations of
atoms are considered in the spherically symmetric field of
the neighbors, is exact for pairwise interactions between
nearest neighbors only.37 We evaluatedg for all the expres-
sions using fourth-order Birch-Murnaghan fits to the static
isotherms~Fig. 11!. The expression by Slater (l50) agrees
best with our calculations. Still the discrepancy is substan-
tial, especially at low compressions. Brown and McQueen4

assumedgV5const. They estimatedg0 to range from 1.7 to

2.5 atV0579.73 bohr3/atom. However, the value ofg at low
compressions is not well constrained from shock compres-
sion measurements. This is because at low compressions the
thermal pressure on the Hugoniot is small, and a substantial
change ing is not noticeable.

The thermal expansivitya51/V(]V/]T)P at extreme
pressures and temperatures is of interest since it is necessary
to transform from static isotherms to high temperature iso-
therms. Experimental measurements ofa at these conditions
are difficult and have significant uncertainties.39,40 The ex-
perimental technique is based on x-ray diffraction measure-
ments of the temperature dependence of volume for a given
pressure. We calculate the thermal expansivity from two iso-
therms atT1DT, T2DT. A separate third order Birch-
Murnaghan equation was fitted to each isotherm, from which
V(T1DT) andV(T2DT) at a given pressure were deter-
mined. The thermal expansivity is then given by
a5(1/2DT)ln@V(T1DT)/V(T2DT)# at constant pressure.
This expression is exact if the temperature dependence of
a can be described bya(T)5a01a1T1a2T

2 for the inter-
val @T2DT,T1DT#. Numerical tests withDT525, 50, and
100 K demonstrated convergence of the calculateda with
respect toDT. The values ofa calculated this way are con-
sistent with those from the thermodynamic identity
a5(]P/]T)V /KT . Being a high order derivative of the
Helmholtz free energy,a(T) for the hcp phase was found to
be sensitive to the temperature variation of thec/a ratio. We
therefore used the equilibrium values of thec/a ratio for
each temperature of interest.

The calculated thermal expansivity~Fig. 12! reproduces
all known features: it decreases sharply with pressure and
increases with temperature. Some care must be taken in com-
paring with experimental results. The results of Boehler
and co-workers39,40 are reported not as thermal expansivi-
ties, but as values ofa averaged over the experimental
temperature range~300 K to 2000 K!: ā(T)5@V(T
52000 K)/V(300 K)21#/(T2300 K!. Becausea de-
pends strongly on temperature,ā(T) is expected to differ
significantly froma(T). In order to compare the experimen-
tal results to our computations directly, we estimate experi-
mental values ofa(T) using finite differences over approxi-
mately 200 K temperature intervals from the data of Refs. 39
and 40. Though scattered due to the uncertainty in the mea-
sured volumes, these results give a better idea of the actual
thermal expansivities than do the averaged expansivities. For

FIG. 10. Calculated lattice Gru¨neisen parameterg lat ~a! and total
Grüneisen parameter~b! compared to experimental measurements
from Ref. 38 ~thin solid line and a shaded confidence band! and
Ref. 4 ~circles!. ~c! Parameterq as a function of volume compared
to Ref. 38~solid line and shaded confidence band!. Note that since
g increases with volume, the thermal pressure also increases with
volume.

FIG. 11. Grüneisen parameter for fcc iron calculated from ap-
proximate expressions and the cell model.
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the hcp phase, we find good agreement of the calculateda
with the measurements atT5715 K.41 However, the calcu-
lated thermal expansivity of the fcc phase atT52000 K
decreases less sharply with pressure than do the experimental
estimates.39

In order to describe the volume dependence of the thermal
expansivity, we used the Anderson-Gru¨neisen parameter
dT5(] lna/] lnV)T . The pressure dependence of this param-
eter is given in Fig. 12~b!. The figure shows that fcc and hcp
phases have similar values ofdT , although the decrease of
this parameter with pressure is less pronounced in hcp than
in fcc. For both phases of iron the decrease ofdT with pres-

sure is much slower than that found for MgO from molecular
dynamics simulations1 and lattice dynamics results.2 We find
that the pressure dependence of our calculateda can be rea-
sonably approximated~to within 5%! by constant values of
dT55.2 and 5.0 for fcc and hcp phases, respectively. An
experimental estimate,dT 5 6.56 0.5 for the fcc phase was
obtained from the pressure dependence ofā(T) for tempera-
tures ranging from 1000 K to 2000 K.39 For the fcc phase
and the same range of pressure~up to 16.8 GPa!, we find
smaller values:dT55.7 at T51000 K and dT55.8 at
T52000 K @Fig. 12~b!#. Some of the discrepancy between
calculated and experimental values ofdT can be attributed to
the fact that the experimental estimate is based onā, rather
thana. Over the experimental pressure range, experimental
and computed values ofa(T) agree to within 20% for fcc
and within 10% for hcp.

Jeanloz38 estimated the thermal expansivity on the Hugo-
niot from analysis of shock compression data for initially
porous and nonporous samples. The comparison to his re-
sults is given in Fig. 12~a!. Another experimental estimate
for the averaged thermal expansivityā5 ln(VT /V300)/
(T2300) from shock compression measurements42 exists for
P5202 GPa,T55200 K, andā5(9.162.0)31026 K21.
The calculateda at these (P,T) is 1.3131025 K21, and the
averagedā51.0031025 K21. The latter calculation was
done using exactly the same procedure as in the experimental
work,42 and agrees within experimental error bars.

V. SUMMARY AND DISCUSSION

We used a combination of the cell model17,18 and a tight-
binding total-energy method14 to calculate the thermody-
namic properties of iron at high pressures and temperatures.
The electronic thermodynamic properties of the TBTE
model, such as electronic entropy, are in excellent agreement
with those calculated self-consistently. The cell model be-
comes sufficiently accurate at high pressures and tempera-
tures. Therefore it is a useful tool to evaluate the thermody-
namic properties at high temperatures and pressures. The cell
model calculations are extremely computationally affordable
as opposed to molecular dynamics or Monte Carlo calcula-
tions. We presented a procedure to carry out the three-
dimensional integrations that makes use of the point group
symmetry of the lattice and reduces the required number of
computations by an order of magnitude relative to dense
sampling of three-dimensional grids. An expression for the
virial in the TBTE method was derived that is appropriate for
cell model or molecular dynamics calculations.

This approximate procedure has proved to be successful
in reproducing the most reliable experimental data—the
Hugoniot. Our calculations suggest that the measurements by
Yoo et al.8 probably overestimate the temperature on the
Hugoniot by;1000 K. TheaKT parameter was found to be
approximately independent of compression for molar vol-
umes ranging from 48 to 60 bohr3/atom. Its temperature de-
pendence is, however, significant and cannot be ignored. The
main reason for this temperature dependence is the electronic
contribution to thermal pressure. The vibrational contribution
to aKT decreases slightly with temperature. The electronic
contribution toaKT increases linearly with temperature, as
expected for crystalline metals.32

FIG. 12. ~a! Calculated thermal expansivity for fcc and hcp
phases of iron~lines! compared to experimental measurements.
Thermal expansiona of hcp atT5715 K from Ref. 41~pluses!.
Shock compression estimate ofā of hcp iron atT552006500 K
from Ref. 42~open circle!. Closed symbols denote the experimental
thermal expansivity we estimated using finite differences from the
data in Ref. 39~closed squares!, and from Ref. 40~closed circles!.
Thermal expansivity on the Hugoniot deduced in Ref. 38 is given as
a thin line and shaded confidence band.~b! Calculated pressure
dependence of the Anderson-Gru¨neisen parameterdT atT52000 K.
~c! calculated thermal expansivity of fcc iron as a function of tem-
perature at pressures 50, 100, and 200 GPa.
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The Grüneisen parameter for compressions of interest to
shock-wave measurements was found to have relatively
weak temperature dependence. It increases significantly with
volume, and therefore the thermal pressure also increases
with volume. The second Gru¨neisen parameterq increases
with volume, and therefore the power lawg5g0(V/V0)

q can
be used only as an empirical fit for a small range of com-
pressions. The thermal expansivity was found to decrease
rapidly with pressure. We found that the Anderson-Gru¨neisen
parameter dT decreases significantly with compression.
However, the volume dependence is much smaller that that
of MgO; for iron, the assumption thatdT is independent of
compression is sufficient to describe the volume dependence
of a to within a few percent.

The combination of an accurate TBTE model14 with the
cell model approximation has proved successful in describ-
ing the thermodynamic properties of iron at high pressure
and temperature conditions. We verified the results of our
calculations by comparison to the available experimental
data and also made some predictions. For instance, we pre-
dict a significant decrease of the shear elastic constant of the
hcp iron with temperature. Good agreement of the calculated
properties with the experimental results suggests that the cell
model approximation and the usage of the TBTE model for
thermodynamic calculations are justified to a large extent for
the (P,T) region of interest in this study. Therefore the
TBTE model can be used with a slight modification for mo-
lecular dynamics simulations of liquid phases of iron at high
temperature.
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APPENDIX: QUADRATURE FORMULA FOR THE SOLID
ANGLE INTEGRATION FOR THE HCP LATTICE

The quadrature formula for integration over the solid
angleV of the integrands with the symmetry of the hcp
lattice is given below. The integrands can be expanded in
lattice harmonicsHl ,H051,

f ~u,f,r !5(
l50

`

Al~r !Hl~u,f!. ~A1!

Due to orthogonality of the lattice harmonics
(Hl ,Hm)[*VHlHmdV54pd lm ,

E
V
f ~V!dV5E

0

2p

dfE
21

1

f ~u,f!d~cosu!54pA0 . ~A2!

Let V i5(f i ,u i) be the directions andwi be the weights of
then-directional quadrature formula. The quadrature formula
for the solid angle integration is given by

E
V
f ~V!dV'4p(

i51

n

wi f ~V i !. ~A3!

The quadrature formula is constructed by requiring that it
integrates exactly as many lattice harmonics as possible for
the given order~number of directions! n. The number of
lattice harmonics integrated exactly is called the power of the
quadrature formula,Q. This requirement yields the system
of Q11 equations

(
i51

n

wi51, ~A4!

(
i51

n

wiHl~V i !50 ~0, l<Q!, ~A5!

which has to be solved. Equation~A4! follows from the defi-
nition ~A3! and the requirement that the first lattice harmonic
H051 has to be integrated exactly. The other equation~A5!
follows from the fact that the lattice harmonics up toHQ are
to be integrated exactly, and*VHldV54pd l0 .

The lattice harmonicsCl
m for the hcp lattice are given as

follows. Starting fromC0
0 andC3

3 , any multiple of 2 can be
added to the value ofl and any multiple of 6 can be added to
the value ofm, so thatm< l ,43

Cl
m5

1

A2
~Yl

m1Yl
2m!, ~A6!

Yl
m being normalized spherical harmonics. The first few lat-

tice harmonics for hcp areC0
051,C2

0 ,C3
3 , C4

0 , C5
3 , C6

0 ,
C6
6 , C7

3 , C8
0 , C8

6 , C9
3 , C9

9 , C10
0 , C10

6 , C11
3 , C11

9 .
Since the lattice harmonics for the hcp lattice are propor-

tional to Pl
m(cosu)cos(mf), Pl

m being the associated Leg-
endre polynomial, we construct the product-type quadrature
formula44 using Gauss-Legendre quadrature for integration
over cosu and the formula for trigonometric polynomials to
integrate overf. A product-type quadrature formula44 has
the form

E
a

bE
c

d

f ~x,y!dxdy'(
i51

nx

(
j51

ny

wixwjy f ~xi ,yj !, ~A7!

wherenx andny are the number of nodes of one-dimenional
quadrature formulas inx andy, respectively,wix andwjy are
the weights, andxi andyj are the nodes.

It is important to note that a lattice harmonic for the hcp
lattice is a product of an even function in cosu and an even
trigonometric polynomial in x53f. Therefore the
n-directional formula withn5nunf is constructed from two
one-dimensional formulas according to Eq.~A7!, one in
cosu with nu nodes and the other one inx53f with nf
nodes. Since the integral of a lattice harmonic over the solid
angle is zero unless the harmonic isC0

0 , the quadrature for-
mula eliminates the harmonic if it integrates the harmonic
exactly. The one-dimensional quadrature in cosu eliminates
the lattice harmonicsC2

0 , C4
0 , C6

0 , . . . ,C2k
0 , . . . . Other lat-

tice harmonics contain cos(mf) and are eliminated by the
one-dimensional quadrature for trigonometric polynomials.
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1. One-dimensional quadrature formula in cosu

The lattice harmonicsC2
0 , C4

0 , C6
0 , . . . , C2k

0 , . . . are
proportional to an even Legendre polynomialP2k(cosu).
Therefore the appropriate quadrature formula for integrating
in cosu from 21 to 1 is obviously the Gauss-Legendre
quadrature. It is well known that it has nodes located sym-
metrically around zero with equal weights for a pair of nodes
located att and 2t. Since an even function needs to be
integrated, we tooknu positive nodes with the corresponding
weights from the Gauss-Legendre quadrature of order 2nu .
Therefore with a one-dimensional quadrature withnu nodes
one can eliminate lattice harmonicsC2k

0 up to 2k<4nu21.

2. One-dimensional quadrature formula in x53f

The quadrature for trigonometric polynomials inx,
g(x)51,cosx,sinx,cos2x,sin2x, . . . with m nodes is44

E
0

2p

g~x!dx'Tm5
1

m (
l50

m21

gS 2~ l2m!11

m
p D . ~A8!

The power of this formula ism21, i.e., it is exact up to
cos(m21)x and sin(m21)x. Since we do not have sines in
our polynomial, the quadrature formula transforms into

Tn5
1

n (
l50

n21

gS 2~ l2n!11

2n
p D . ~A9!

The latter formula withn nodes inx is exact foreventry-
gonometric polynomials up to degree 2n21 and has equal
weights 1/n. Therefore the one-dimensional quadrature in
3f eliminates lattice harmonicsCl

m up tom<3(2nf21).

3. Example of the construction of the quadrature formula

As an example, the construction of the four-directional
formula for hcp is explained in detail below. It is constructed

using two nodes in cosu and two nodes inf. Let
cosu15R4

1 and cosu25R4
2, whereR4

1 andR4
2 are the roots of

the Legendre polynomialP4 . In the standard 1D Gauss-
Legendre four-node formula, these nodes have weightsw1

andw2 . For each cosu we find two values off as the solu-
tion of the system of two equations

cos3f11cos3f250, ~A10!

cos6f11cos6f250. ~A11!

This solution is obviously 3f15p/4, 3f253p/4. Then we
construct the quadrature formula as follows:

Direction u f Weight

1 arccos(R4
1) p/12 w1/2

2 arccos(R4
1) p/4 w1 /2

3 arccos(R4
2) p/12 w2/2

4 arccos(R4
2) p/4 w2/2

The lattice harmonicsC2
0 , C4

0 , andC6
0 do not depend onf

and are just Legendre polynomials in cosu; therefore Eq.
~A5! is satisfied for them. As for the rest of the harmonics,
they all contain cos(3f) or cos(6f) as a multiplier. Therefore
the four-directional quadrature formula is exact for seven
nonconstant lattice harmonics up toC7

3 . The six-directional
formula is constructed using three positive roots ofP6 for
cosu and the same two nodes off and is exact for 15 har-
monics up toC11

9 .
The described procedure is general and can be carried on

to construct the quadrature formulas of the desired precision.
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