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Thermal properties of iron at high pressures and temperatures
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We investigate the thermoelastic properties of close-packed phases of iron at pressures up to 400 GPa and
temperature to 6000 K using a tight-binding total-energy method and the cell model of the vibrational partition
function. The calculated properties are in good agreement with available static and shock-wave experimental
measurements. The compressional behavior of a number of thermoelastic parameters is found to resemble that
of a prototypical oxidéMgO) supporting some aspects of universal behavior at high compression: the product
of thermal expansivityr and bulk modulus is found to be nearly independent of compression at high pressure
and the logarithmic volume derivative afis found to decrease with compression. In contrast to the behavior
of MgO, aK; and &t of iron are found to depend strongly on temperature due to contributions from the
thermal excitation of electrons. Significant decrease of the elastic constants of hcp iron with temperature was
found.

[. INTRODUCTION tion (GGA) yields a good description of the static equation
of state and the low temperature phase diagram of'itdine
Understanding the properties of transition metals at higtstudy of high temperature properties, however, is not feasible
pressures and temperatures is a central problem of high presith the linearized augmented plane wa¥&\PW) method
sure physics. Our relatively poor understanding of transitiorused in this study. Simplified models of the electronic struc-
metals in these conditions contrasts with that of the simplaure, in the form of low order moment approximations to the
oxides, where substantial progress has been made in recadgnsity of states, or effective potentials, are unlikely to be
years'—3 Experimental and theoretical investigation of successful for predicting the high temperature properties of
simple oxides and silicates has revealed nearly universal béransition metals due to the complicated many-body nature
havior of a number of thermoelastic parameters at high temef the interactions. For this reason, only a few molecular
peratures and pressures. The produét; appears to be dynamics studies have addressed the thermodynamics of
nearly independent of pressure and temperature for largieon.%1213
compressions, and temperatures above the Debye tempera-Here, we use a different approach to the study of transi-
ture. Here we investigate whether similar universal behaviotion metals at high pressures and temperatures. We combine
exists in transition metals. We apply an accurate tight-an accurate tight-binding total-enerdyBTE) method with
binding model to the investigation of the high pressure andhe cell model of the vibrational partition function. The
temperature thermoelastic properties of iron and compare itSBTE method is grounded in accurate first-principles
properties with those of a simple oxidlgO). We examine calculations—the parameters of the model are fitted to
electronic and vibrational contributions to the thermal equaLAPW band structures and equations of state of nonmagnetic
tion of state, and compare the thermoelastic behavior of Fbcc, fcc, and hcp phases of iron over a wide range of vol-
and MgO under high pressure and temperature conditionstmes(40—90 bohr/atom It has been previously shown that
The most important sources of experimental information orthe TBTE model precisely reproduces LAPW results for Fe
the thermal properties and subsolidus phase diagram of iroand accurately predicts equations of state, phase stabilities,
at high pressures and temperatures are shock-wawastic constants, and phonon dispersion curves of a number
experiment$, and static compression in the diamond anvil of transition metalé*!°The TBTE model is nonorthogonal,
cell>~" The highest pressure and temperature data are fromnd does not include pair potential or other structurally de-
dynamic shock experiments. However, the measurements gendent non-band-structure terms. The parametrization is not
temperature in shock experiments are extremely difficult foperformed in terms of coordination shells, since coordination
nontransparent materials like iron. The results of differentshells are poorly defined in liquids and high temperature sol-
groups(Refs. 4, 8, and Pon the Hugoniot temperature at a ids, rather the interactions decay smoothly with distance and
given pressure differ by more than a thousand degrees. Thewanish at 16.5 bohr. The tight-binding model is thousands of
retical calculations of thermal properties can help to resolveimes more efficient computationally than LAPW calcula-
this issue but have so far been limited to simplifiedy., pair  tions.
potentia) models of interatomic interactions, which contain  The cell modei®~8 (also known as the particle in a cell
substantial uncertaintié§. method is a mean field approximation to the thermal contri-
First-principles band structure calculations show that denbution to the Helmholtz free energy of crystalline phases.
sity functional theory in the generalized gradient approxima-Each atom is confined to the Weigner-Seitz cell formed by its
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nearest neighborg. Interatomic correlations and diffusion data consisting of the total energy and band structures of
are ignored, so that the translational degrees of freedom afonmagnetic bcc, fcc, and hep iron over a more than twofold
the atoms are separable. The partition function is then writtemange of volumes as well as a set of tetragonal strained struc-
in terms of a three-dimensional integral over the position oftures between fcc and bec at two voluntés.

a single atom. Although interatomic correlations are ne- The TBTE model used here is nonmagnetic. The reason
glected, the cell model includes anharmonic terms which aréor this is that the LAPW calculations demonstrate that local
ignored in quasiharmonic lattice dynamics and which aremagnetic moments for fcc and hcp phases vanish for all non-
likely important for temperatures which are a substantiainegative pressuré$?! and the magnetic effects are known
fraction of the melting temperature. The cell model as apto become unimportant at high pressure.

plied here is a classical method for the vibrational degrees of Since occupied and unoccupied stafigs to 1 Ry above
freedom, and is applicable at temperatures above the Debyke static Fermi energywere included in the fit, the method
temperature where vibrational states are essentially fullys appropriate to high temperature calculations where thermal
populated, and below the melting temperature where collecexcitations of electrons are importdfitThe total energy at
tive motions and diffusion become important. The cell modelffinite temperaturd for the case of the TBTE model is given
has been demonstrated to match successfully the thermodgs the sum over the eigenvalues of the ideal lattice

namic properties of the fcc Lennard-Jones cryétahd so-

dium chloridé® calculated from Monte Carlo simulations.

Moreover, the cell model permits very efficient computation Eiota V. T) =Epand V. T)=Eo(V) +Ee(V, T)=22, fiei,

of thermal properties as compared, for instance, with mo- !

lecular dynamics simulations. This allows us to investigate a )

wide range of thermoelastic parameters, including high orde\;vhere

derivatives of the free energy, over the entire range of pres-

sures and temperatures relevant to the earth and to high pres- f.= fex (& — w)/(kgT)]+ 1) 2 ®)
1 |

sure experiments.

is the Fermi-Dirac occupation numbed, is the chemical
II. TIGHT-BINDING TOTAL-ENERGY MODEL potential,kg is the Boltzmann constant, and the eigenvalues

The TBTE model uséd is based on a two-center, nonor- € are assumed to be independent of temperature at constant
thogonal Slater-Koster formulation. This TBTE model is dif- lattice and nuclear positions. The sum is over all energy lev-
ferent from previous models in that the total energy is givergls. The factor 2 is due to the spin degeneracy. The chemical
by the eigenvalue sum and there are no pair potentials dyotenf[ial m is determined from the particle conservation
other structure-dependent terms. This avoids the ambiguit§duation
by choice of energy zeros for different band structures, as

discussed by Coheat al* The hopping Hamiltonian and

overlap tight-binding interaction parameters betweerp, 22 fi=Ner, (6)

andd orbitals (like sso, spo, etc) are assumed to have the

form whereN,=8N is the total number of electrons in the system
P,=(a;+b)exd — c2r ] (r), 1) andN is the number of atoms.

where r is the interatomic distance, and(r)={1 Il. CALCULATION OF THERMAL PROPERTIES

+exfd(r—ro// 1}t is a cutoff function with parameters

ro=16.5 bohr and”’=0.5 bohr. TheP; represent 20 param- The Helmholtz free energy of the system can be written as

eters, ten each for the Hamiltonian and overlap matrices. The
interactions are relatively long range, extending to more than  F(v T)=Eq(V)+Ey(V,T) = TS(V,T)+Fyin(V,T),
three times the nearest-neighbor distance. This feature con- (7
trasts significantly with many conventional TB models which
include only the nearest-neighbor interactidn@he onsite  whereEy(V) is the zero-temperature enerdg(V,T) is the
termsD,, of the Hamiltonian matrixthe indexl=s,p, and  contribution due to thermal electronic excitatiogg(V,T)
d labels orbitals, anét labels atompare assumed to vary as is the electronic entropy, ané,,(V,T) is the phonon con-
a function of local “density” around each atorpy, defined tribution to the free energy. To evaluate the first three terms
as on the right-hand side we assume that the existence of the
lattice vibrations does not affed, and S, and calculate
_ 42 . these terms for the ideal lattice. The corresponding thermal
Px 2 exp— AT f(rj) @ properties of interest are then found from the appropriate
thermodynamic expressions involving volume and tempera-
ture derivatives ofF(V,T). Whenever practical, these de-
&) rivatives are evaluated analytically. The computational de-
tails of the electronic contribution 6 are given in the next
Altogether, there are 73 fit parametas, b;, ¢;, d, ¢, section. The phonon contribution to the free energy and other
g, hy, andi, for a monoatomic substance. The parametershermodynamic properties are treated with the cell model
are determined by fitting to more than 4000 weighted inpuiand are discussed in the succeeding section.

according to a finite strain polynomial
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proximation is justified not only for iodin& but also for a
transition metal. Therefore the TBTE model fitted to static
band structures can be used to describe the electronic ther-
modynamics of the system with the required accuracy.

The electronic heat capaci(ys):(aEband/aT)v is found
by differentiating(4) with respect to temperature:

1 du (&—p)
el__ e N A
cV=23 fitfi-Ve| ~ 55777 ] ©
s - The temperature derivative @f is determined by differenti-
40 50 60 70 80 20 ating the conservation equati@6):
V ( bohr® / atom)
FIG. 1. Electronic entropy of hcp irofin units of R) from 2 SH(fi—1)(—p)
self-consistent high temperature LAPW calculatiésgmbols and 1 op 1 7
from the TBTE method assuming temperature-independent eigen- - kB_T 9T kg T2 (10
values(lines). 2 fi(fi—1)
I
A. Electronic th d i . . .
_ ectronic .erm.o ynam2|cs This is then substituted in E¢9).
The electronic entropg, is given by The volume derivatives of the first three, nonvibrational,
terms of the Helmholtz free energyf) (denoted here as
Sy= _ZKBZ filnf,+ (1—f,)In(1—f,). ) Fny) were calculated using symmetric finite differences for
I

—dF/dV or alternatively by fitting the Birch-Murnaghan
equatior’ to the Fy (V) isotherms and then differentiating
This expression is valid for the entropy of a Fermi gas ofthe fit. Both methods agree within 0.3 GPa.
(not necessarily fréeparticles?® EpandV,T) and Se(V,T)

were calculated using primitive unit cells and the
Monkhorst-Pack 18 16X 16 mesh of specid points for the
Brillouin zone integratiorf? yielding 408 and 24®& points in Despite recent progress in the development of ohder-
the irreducible wedge of the Brillouin zone for fcc and hcp methods for electronic structure calculatidfid;B molecular
lattices, respectively. Tests showed that this mesh size is suflynamics(TBMD) calculations of transition metals remain
ficient to reach convergence of the energy to within 0.1 mRycomputationally very intensive. This stems from the fact that
and of electronic entropy to within 0.0kgatom. nine orbitals per atom have to be considered rather than four
The method for calculating the electronic entropy and enfor s-p materials, and due to the long-range nature of the
ergy is based on the assumption that the eigenvalues aieteractions in metals. In contrast, the computational burden
temperature independent—only the occupation numbers def the cell model calculations is significantly less. At high
pend on temperature, through the Fermi-Dirac distributiontemperatures the cell model becomes highly accurate. It in-
We verify the validity of this approximation by comparing to cludes on-site anharmonicity and neglects only defects, dif-
self-consistent high temperature LAPW calculations. Thefusion processes, and interatomic correlations. The cell
Mermin theorer® generalizes the Hohenberg-Kohn densitymodel approximation yields a fairly accurate description of
functional theory(DFT) to finite temperatures: the expres- the equation of state of solid argdrepresented with the
sion for the charge density is modified to include occupatior_ennard-Jones model’ It was also reasonably successful in
numbers according to the Fermi-Dirac distribution. Possibledescribing the thermal expansivity and bulk modulus of an
explicit temperature dependence of the exchange-correlaticaikali halide crystat® Considering the computational limita-
energy is ignored. Following McMahan and Réésye esti-  tions of TBMD for transition metals, we also believe that the
mated the difference in the electronic contribution to thermo-<cell model calculations may yield better estimates of the
dynamic properties calculated self-consistently from LAPWthermoelastic properties than averaging over necessarily
calculations at high temperature and those based on statihort phase trajectories. Moreover, thepoint approxima-
eigenvalues. The self-consistent LAPW calculations withtion to the Brillouin zone integrations, commonly used in
the GGA approximation for the exchange-correlationTBMD, is questionable in a transition metal. Cell model cal-
functionaf® were performed on hcp iron for volumes ranging culations are a convenient tool to check the influence of this
from 40 to 90 boht/atom at temperatureE=6000 K and  approximation and the effect of system size on the calculated
9000 K. The Brillouin zone integration was carried out usingthermal equation of state.
the same 18 16X 16 mesh of speciat points as for the TB The cell modei®!’is an approximate way to evaluate the
calculation. The electronic entropy was then calculated fronvibrational contributionF,;, to the Helmholz free energy.
the eigenvalues and chemical potential according to(8q. The idea of the cell model is that the vibrational contribution
The comparison of calculate®l, is given in Fig. 1. As one to the partition function Z.=exp(—pBF,,) where
can see from Fig. 1, the agreement between self-consistegt=(kgT) "1, is calculated by having one “wanderer” par-
LAPW calculations and TBTE calculations based on statidicle move in the potential field of an otherwise ideal, static
eigenvalues is within 1%. We therefore confirm that this apdattice’

B. Vibrational contributions
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FIG. 2. Dependence of the perturbation energy for the fcc lattice  FIG. 3. Integrand in Eq.11) along the first special directidisee
when one atom is displaced towards its nearest neighbor. Note th&xt and Appendix for the fcc phase (=60 bohf/atom) at tem-
the calculation witiN= 128 atoms and thE point (four supercells  peraturesT=2000 K andT=4000 K. Note the rapid decay of the
of 32 atoms stacked togetheas adequate, while smaller supercells integrand so that integration over the inscribed sphere is a good
are not. The calculation witk-point sampling was done using a approximation to integration over the Wigner-Seitz cell.

4x4Xx 4 mesh of specidk points.
We therefore used-100 atom supercells for our cell model

N calculations. Our results also imply that molecular dynamics
f exd —B(U(r)—Ug)]dr| , (12) calculations of transition metals which use only fhgoint
A require at least-100 atoms in the unit cell.
The cell model calculations were performed on supercells
wherex=h/(27mkgT)¥? is the de Broglie wavelength of of N=108 atoms for the fcc lattice adi= 128 atoms for the
the atomsU, is the potential energy of the system with all hcp lattice with periodic boundary conditions. The distance
atoms on ideal lattice site§](r) is the potential energy of between the “wanderer” atom and its nearest image was
the system with the wanderer atom displaced by the radiugreater than the cutoff radius of the TB model. Integration
vector r from its equilibrium position, andN is the total over the Wigner-Seitz cell was replaced by integration over
number of atoms in the system. The integration is over théhe inscribed sphere of radius equal to half the nearest-
Wigner-Seitz cellA, centered on the equilibrium position of neighbor separation. We evaluate the effect of this spherical
the wanderer atom. Since the cell model treats vibrationgpproximation by plotting the radial part of the integrand in
classically, it is expected to be a good approximation forEq. (11), namely,r?exd —B(U—Ug)], in Fig. 3 for two rep-
temperatures greater than the Debye temperature of the solidsentative temperatures. As one can see from Fig. 3, the
but lower than the melting temperature. integrands decay rapidly and are essentially zero at the radius
We performed careful convergence tests of the perturbaef the inscribed sphere. Similar decay of the integrands was
tion energy with respect to the size of the supercell and théound for the case of NaCf The integration over the cell
number ofk points used in the Brillouin zone integrations. In was therefore performed in spherical coordinates. The radial
a cubic 32-atom fcc supercell with periodic boundary condi-integration was performed using standard Gauss-Legendre
tions, we displaced one atom towards its nearest-neighbguadrature. For the radial integration a 20-node quadrature
and calculated the energy as a function of the nearest neighvas found to be sufficient for all properties, including the
bor distancgFig. 2). The perturbation energy is the energy vibrational heat capacityc'\‘}“, which we found to be most
difference between the distorted and the ideal lattice. Th&ensitive to the precision of integration.
electronic temperature for this calculation was 4000 K, To perform the integrations over the solid angle, we took
and the volumeV=48 bohf/atom. We found that a advantage of the symmetry of the integrands. The integrands,
4x 4% 4 k-point mesh(32 k pointg was sufficient to accu- being scalar functions, possess the point group symmetry of
rately determine the energy of displacement in this supercethe lattice and the method of special directiris appropri-
— denser meshes did not significantly alter the results. Wate. The numerical quadrature formulas are available for cu-
investigate the effect of the size of the supercell by performbic lattices?® and we generalized this method for the hcp
ing calculations in 32-, 64- and 128-atom supercells, usindattice (see the Appendix The idea of this method is analo-
the I' point only. The 64- and 128-atom supercells weregous to the Gauss-Legendre method in one dimendibn
formed by stacking two and four 32-atom cubic supercellsThe integrand with the appropriate lattice symmetry is ex-
together, respectively. In the 64- and 128-atom supercellpanded in orthogonal lattice harmonigibic harmonics for
two and four atoms were displaced, so that the geometricdhe case of a cubic lattiteA quadrature formulda set of
configuration was the same in all cases. As one can see frodirections and weighjsfor the solid angle integration
Fig. 2, for small supercellsN< 100) the energy of displace- [37d¢ [ Tsindf(¢,6)de is constructed in such a way that it
ment depends strongly on the size of the system when thexactly integrates as many lattice harmonics as possible for
Brilluoin zone is sampled at a single point. Agreement bethe given number of directions.
tween the 128-atoni’ point-only calculation and the 32- The convergence of the integration with respect to the
atom supercell withk points (4x4X 4 mesh calculation is  number of special directions for the solid angle integration
excellent. Tests with even larger superce(®6 atomg  and the number of nodes for the radial integration is demon-
showed no significant change in the energy of displacemenstrated in Tables I-Ill. Most of the calculations were per-

Zegi=N" 3N
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TABLE I. Convergence of the vibrational contribution to the Helmholtz free enefgy)(with respect to
computational parameters.

fcc phaseF,;, (mRy/atom)

Number of special V=60 bohPf/atom V=70 bohPf/atom

directions T=2000 K,P=80 GPa T=3000 K, P=45 GPa
1 -70.7

2 -70.8 -152.8

4 -70.8 -152.8
Number of V=60 bohF/atom V=70 bohf/atom
radial nodes T=2000 K,P=80 GPa T=3000 K,P=45 GPa
5 -71.7

10 -70.8 -152.8

20 -70.8 -152.8

hcp phaseF,;, (mRy/atom)

Number of special V=60 bohPf/atom V=70 bohf/atom

directions T=2000 K,P=76 GPa T=3000 K, P=48 GPa
2 -182.1

4 -182.1 -143.9

6 -182.0 -143.8

formed with a two-directional quadrature formula for the fcc whereE is the virial of the system with the wanderer atom
lattice’® (exact up to the cubic harmonic with,,,=10) and displaced by the radius vectorfrom its equilibrium posi-
a four-directional quadrature formula for the hcp lattie&-  tion, and= is the virial of the system with all atoms at their
act up to the lattice harmoni@?). The computational effi- equilibrium positions. The virial is defined as the trace of the
ciency of the special directions method is over an order ostress tensdt, This expression is obtained by differentiating
magnitude better than that of straightforward 3D integrationfi,= — kg TInZ with Z given by Eq.(11). The calculation of
e.g., that of Cowleyet al,'® who used triple nine-point the virial is discussed in detail below. Consider a periodic
Gauss-Hermite quadrature witf:9729 nodes. system with unit-cell volumé&/, and atoms at positiong; ,
The thermodynamic quantities of interest for the case ofind also the scaled system with atomsag and volume
the cell model are calculated as derivative$¢¥,T). Ana- V=a3V,. Then the derivative of an arbitrary function of the
lytical derivatives were used in most cases. For the propertieatomic positionsg(R), with respect to volume can be re-
defined as temperature derivativesFofe.g., latticeCy) the  placed by the derivative with respect to this scaling param-
expressions for the vibrational contribution have been givereter :
previously and are identical to those for systems interacting

with pair potentials.” The vibrational contribution to pres- d9(R) ~ [d9(R) sa) 1 J9(R)
L =i —|===lim|a . (13
sureP,;, is given by oV .\ da V] 3V, , Ja
IFip N .
Puip=— = TABLE lll. Convergence of the total pressure with respect to
v | BV k-point sampling for fcc iron aT =4000 K (N= 108 atoms in the

N Ja(E—Eo)exd —B(U—Ug)]dr
3V Jaexd — B(U—Ug)]dr

TABLE Il. Electronic entropy(in units of R) for the hcp phase
calculated from self-consistent LAPW calculations at given tem-
perature and from the TB fit to eigenvaluesTat 0 K considering
energy levels as independent of temperature.

12

Self-consistent B
V (bohP/atom) T=6000 K T=9000 K T=6000 K T=9000 K
40 1.273 1.988 1.240 1.956
50 1.755 2.623 1.728 2.614
60 2.264 3.223 2.229 3.217
70 2.759 3.758 2.721 3.757
80 3.217 4.224 3.185 4,228
90 3.631 4.621 3.612 4.630

cubic supercell The vibrational contribution to pressure only was
determined using the specified mesh size and the supercell. The
thermal pressure foF-point ( k = 0) calculation was determined
from the virial, while for the 2<2X 2 k-point mesh the virial was

not calculated. The total pressure was therefore determined by fit-
ting the finite strain polynomial to the calculated Helmholtz free
energies as a function of volume along the isotherm and differenti-
ating this polynomial with respect to volume. The error in pressure
associated with this procedure is approximately 2 GPa.

\% Static P (GPa P (GPa
(bohr/atom pressurdGPg (I'-poin) (2X2X2 mesh
48 240 290 289

55 112 159 162

60 58 105 109

65 22 75 79

70 -2 62 65
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We can therefore define the virial operator acting on 1.9 . . . .
o(R) as
185 65 au ]
N dg(aR)
vg=Ilim| a 9 (14) 18 7
Ja
a—1 175 |
© ' 60 au
and the virial S 17 i
Experiment
R dU(aR)) 1.65 _ = 55au-
E=pU=Ilim aa— , (15 16 N
a1 a . 48 au
1.55 ' . ' :

where U is the potential energy of the system. It is well
knowr? that for a system with periodic boundary conditions
the virial cannotbe calculated a& = —Ei’\'leiRi , F; being
the force on the atom labelédat the radius vectoR;. For FIG. 4. Calculated and experiment®ef. 45 temperature de-
the case of a system interacting via pair potentiglgr;;) ~ Ppendence of the/a ratio for hcp iron.

(15) yields the correct result:

0 500 1000 1500 2000 2500
T(K)

s Y o of S
277 Moy E:Z fi<'//i|H_6iS|¢i>+€i£ (¢iH—&Sly)
|
For our TBTE method, the potential energy is given by
Epand (4), and the virial is

it}

. . of . > (at1€) | H— €S| yy)
E:Z U(fifi)zz fiv€i+ei&—6i(vei—v,u). (16) _ (19
> (9fl9¢))
J

The result of the virial operator acting on the eigenvalues is

evaluated by using the Hellmann-Feynman theorem The vibrational contribution toaK+=(dP/dT), was ob-

de (| aHIda— eaSldal ) tained by differentiating(12) analytically with respect to
— = 5 : i, temperature. The electronic contribution was evaluated by
9a (il Sl differentiating the appropriate terms ) analytically with

Here H and S are the Hamiltonian and overlap matrices, respect to temperature and numerically with respect to vol-
respectively, andly; ) is the eigenvector corresponding to the UmMe.

eigenvaluee; . The derivatives of the matrix elements with

respect toa are easily calculated because these are param- IV. THERMAL PROPERTIES

etrized as analytical functions of the atomic coordinates . .
R i=1 N. so that Two close-packed phases of iron were considered,
1 LI | 1

namely, fcc and hcp. For the hcp structure the equilibrium
IA value c/a was determined from the condition that it yields
the minimum ofF(c/a,V=const;T=const). Plotted in Fig.
4 is the calculated temperature dependence ofctheratio
whereA is an element of the Ham”tonian or Over|ap matrix. for th iron at a set of volumes. The experimental result at a

Using the perturbation matricé$=oH andS=0S we ob-  Pressure of~21 GPa corresponds approximately\e- 65
tain bohr’/atom. As one can see from Fig. 4, the calculations are

' ' consistent with the experimental result that tia ratio in-
vei={(i|H— €S ), (17)  creases with temperature.
] The volume-conserving strain associated with the change
Where we haVe Used the faCt that the elgenVGCtOI’S are nO(B‘f C/a is described by the Strain matrix g

malized such thagy;|S|y)=1. For the case of a metal the —djage,,e,,(1+e;) 2—1}.3! The initial state is the hcp

Fermi level . has a nonzero derivative with respect to the|attice with the equilibriunt/a ratio. The initial state is char-
parametera. It is determined by differentiating the conser- cterized by hydrostatic stress=—P for i=1,2,3 and

A= R

- R,

vation equatior(6) with respect to this parameter: 7,=0 for i=4,5,6. The isothermal elastic constadig are
defined as expansion coefficients of the quadratic terms of a
S (dfl9€) (€ 1) series expansion df about the initial staté?
J
E_ ! (18) AF/V:’Tiei‘F%Cijeiej. (20)
> (oflde)
I

Expandinge; in powers ofeq,

The virial is then calculated by substituting E47) and Eq. B
(18) in Eq. (16), which yields es=(1+e) *~1=-2e;+3ej-4el+---, (2D
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400 [ .
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350 |- 1
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- Te-ll —~ 250 _ §
O e . -
1000 L IR o Brown & McQueen
e G 200 - (JGR, 1986)
L e *‘__~~ ~—
. 6|5 boh /aul)m I _': o 150 -
0 500 1000 1500 2000 2500 10
T () 0r
. . 50
FIG. 5. Temperature dependence of the isothermal shear elastic
constantCg defined by Eq.(23) for volumes 48, 55, and 65 0 : ‘ : ‘
bohd/atom. 45 50 55 60 65

we obtain FIG. 6. Hugoniot for iron in theP-V plane. Solid line is the

calculated Hugoniot for pressures above the bcc-hcp transition pres-
sure. Circles are experimental measurements by Brown and Mc-
Queen(Ref. 4.

AF/V=e2(Cy;+Cqp+2C33—4C15)+0(€)). (22
Defining

mates of Brown and McQueénAs mentioned above, ex-
perimental measurements of the Hugoniot temperatures dis-
one obtainsAF/V=Cge?+0(ed). The temperature depen- agree with each other. Excellent agreement between our
dence of the calculated isothermal shear elastic congignt c@lculations and the Latest results of Gallagher and Afirens
is given in Fig. 5. As one can see from Fig. 4 and Fig. 5, theSuggests that Yoet al® overestimate the Hugoniot tempera-
substantial increase of thda ratio with temperature is as- tUr¢ by approximately 1000 K. ,

sociated with a softening of the corresponding elastic con- 1he pressure at high temperatures can be written as
i:r:;itsabms may be related to a high temperature mechani POV.T)=Py(V) + Py(V.T), (25

The only source of information on the equation of state of\yyere Po(V) is the static pressure am}(V,T) is the ther-

iron at high compression and high temperatures is shocky,q) pressure. According to the Mie-Greisen equation, the
wave data. The pressuréy; and temperature$y, on the  hermal pressure is given as

Hugoniot were calculated for a set of volumes ranging from

Cs=C11+Cyp1+2C53—4Cy3, (23

48 bohf/atom to 65 boh¥atom by solving the Rankin- YE(V,T)
Hugoniot equatiort Pu(V,T)="—3— (26)
2 Pu(Vo—V)=En—E. (249 whereE,, is the thermal contribution to the internal energy,

For the zero-pressure energy and volumeV, the LAPW and thethermodynamidcGrineisen parameter is defined by

results for the bcc phase were usédhe LAPW method KoV
correctly predicts the bcc-hep phase transitioP atll GPa y=V(3PIE )= anT )
for T=0 K. We considered the hcp phase for the Hugoniot Cv
calculation. For a given volum¥, the temperature on the

Hugoniot was varied until Eq(24) is satisfied. The third- 10000 . . . . .
order Birch-Murnaghan equatithwas then fitted to the cal- o Brown & McQueen (JGR, 1986) .
culated set ofP,(V). Our approach does not invoke any a000 | o TRe gk (PRL 1999) o
empirical parameters and differs in this sense from that of
Sherman and Janséhwho used the Gmeisen parameter

y as an adjustable parameter to fit the experimental Hugo-
niot. We calculate the Hugoniot only for pressures greater
than 13 GPa, the bcc-hep transition pressure on the Hugo-
niot.

The agreement of the calculated Hugoniot with experi-
mental datdis good(Fig. 6). The discrepancy at pressures
above 200 GPa can be attributed to phase transitions ob- 0
served experimentall§:a solid-solid phase transition to an
unknown structure aP=200 GPa and melting & =243
GPa. Figure 7 compares our calculated temperatures on the FiG. 7. Calculated temperature on the Hugonisolid line);
Hugoniot with previous model calculatichand experimen-  squares are measurements by Yaal. (Ref. 8§ and circles repre-
tal measurements’ Our result is approximately 1000 K sent the thermodynamic calculations of Brown and McQué&sf.
lower than that of Yocet al® but agrees well with the esti- 4).

(27)

6000

T(K)

4000

2000

0 100 200 300 400
P (GPa)
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As one can see from the definition of the thermal expansivity
a=(1/V)(dVIdT)p and the bulk moduluK;=—V(JP/

dV)+, the productaK is the temperature derivative of the 16

Fe, T=3000 K

@ Fe, T=2000 K \\

thermal pressure. Therefol%th(V,T)=f$aKTdT. The pa- Z
rameters defined above are widely used in high pressure re- 5 45
search. The Gmeisen parametey=V(JP/JE),, along with S
total Cy, (vibrationak-electronig is traditionally used to re- e
duce shock compression data, for instance to transform be- § 8

tween isotherms and Hugonidtd? The temperature on the
Hugoniot can be evaluated in the absence of phase transi- 4
tions by integrating the thermodynamic equation

LN L L L ML AL NN B N B B |

20 |

0% 1
dT= —T(v dVv+ Z_CV[(VO_V)d P+(P—Pg)dV]

(289 [
16 V=70 av/atom V=60 au/atom
along the Hugoniot.

It is of interest to evaluate the validity and limitations of _
several assumptions often made in hgA' thermodynamic 12 e
calculations: (1) independence of the parameter pomr
aKy=(dP/dT)y on temperature and compression, a@d ~ Wpeeeeeo
power law dependence of the Grisen parameter on com- g [ V=48 quatom, vibrational only . )
pression,y= yo(V/Vy)9. The parametexK, the product 1000 2000 3000 4000 5000 6000
of two experimentally measurable quantities, is often used in T(K)
high pressure calculations to transform fron®,T) to
(V,T) space’ Considering the lack of experimental data, it is S ' ' - L I M
desirable to find a parameter that remains approximately () .
constant over a wide range of pressure and/or temperature. 4+ el .
The aK; parameter was arguédo be such a universal ]
temperature- and pressure-independent parameter for com-
pressiond//Vy<<0.7 and temperatures above the Debye tem-
perature of the solid. We expect the cell model to provide an
excellent test of these assumptions for iron—from the meth-
odological point of view, the errors introduced by the cell 1
model approximation inx and K; are correlatetf in the . .
sense that if one quantity is underestimated, the other one is V=48 bohr/atom

. . . 0¥ ! ! . ! !
overestimated. Therefore the product is expected to be esti- 0 2000 4000 6000
mated quite accurately. For the case of a metal, there are T(K)
vibrational and electronic contributions. In order to highlight
the contribution from the electrons in the conduction band, FIG. 8. Calculated temperature derivative of the pressure,
we compare the results for iron to those for a simple oxideaK;, as a function of reduced volum@) and as a function of
MgO, which contains no electronic contribution. temperaturgb) of iron and MgO. The electronic contribution to

Plotted in Fig. 8 is thexK parameter for iron calculated aKy in iron is plotted separately ifc). Note that the totalkK+ is
in this study along with that for MgO taken from Ref. 1. The approximately independent of compression betw&en48 and
calculatedaK; [Figs. §a) and §b)] can be considered ap- V=60 bohP/atom, but its temperature dependence cannot be ig-
proximately independent of compression at high comprespored even above the Debye temperature.
sions but depends on temperature. For instancé/=a60 o .
boh@/atom, aK; increases by approximately 40% from contribution is prlma_rlly res_ponS|bIe for the temperature de-
T=1000 K to T=6000 K. The temperature dependencePendence ofxKy for iron [Fig. 8(b)].
aK+ is much stronger than and of the opposite sense to that N our cell m?de| calculations above the Debye tempera-
found for MgO. As one can see from Fig. 8, the calculatedure we foundCy' to increase with temperature. Neverthe-
vibrational contribution toaK; decreases with temperature less, we found that the Dulong-Petit val@§'=3R, is a
for both Fe and MgO due to anharmonic contributi¢Ref. ~ reasonable approximation especially at high pressure, and
32, p. 232. However, for iron this decrease is more thanmay be suitable for the analysis of Hugoniot data. For in-
compensated by the electronic contribution. As one can segfance, al =4000 KC'{?‘=3.12R and 3.1 atV=48 and 55
from Fig. 8c), the electronic contribution taK increases bohr/atom, respectively.
nearly linearly with temperature. This behavior at low tem- The calculated electronic heat capacifig. 9) for fcc
peratures has been observed in other metals at low temperiaen has a linear temperature dependence at low tempera-
ture (Ref. 32, p. 288 For the free electron gagK, also  tures. This result is expected from the Sommerfeld expan-
depends linearly on temperatufeTherefore the electronic sion, which yields®

T
-
-

(MPaK")

14 §

.-
el
.-

aK
‘.‘.
\
\

w
T
N/
N
I

aK ?(MPa/K)

z V=60 bohr*/atom
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25 : of the electronic heat capacity deviates from linearity, and
tends to level off at higi. At high temperatures it is com-
parable to the lattice value-3R. It has to be considered,
therefore, when reducing shock-wave results. Our calcula-
| V=65 au (9.63 glom?) tions of CZ agree with those of Bonnes and Bro#hwho

V=70 au (8.94 g/cm?)
20 P

-~ used the linear muffin tin orbitalLMTO) method in the
} ol 1 atomic sphere approximation.
' V=60 au (10.43 glem’) The Grineisen parameter was calculated from its thermo-
os | V=55 au (11,38 glem®) 1 dynami<_: (_jefinitiony:(aKT)V/CV. _In the case of Fhe cell _
model, it is easy to separate the vibrational or lattice contri-
V=48 au (13.04 glom) bution, 5., and the electronic contributiory .. The total
00 Frmm ‘ ‘ ‘ ' Grineisen parameter is then given by
0 1000 2000 3000 4000 5000 6000
THo _ 'yeIC$/I+ ')’IatCl\?t
FIG. 9. Calculated electronic heat capacity of fcc iron. The Y= c$/+ C\E/1t )
curves correspondfrom bottom to top to increasing volumes
V=48, 55, 60, 65, and 70 botatom. The lattice contribution is given separately in Fig(dQand
the total Gruneisen parameter in 1if). Both calculatedy,y
Ce=TT, (299  andy for iron increase significantly with volume. This in-
crease is much more pronounced for iron than for Mge
2 temperature dependenceyf; is relatively weak. The lattice
r= ?k§Vg( €r) (30 contribution dominates the total Greisen parameter at high

compressions. The volume dependence ofin be described
whereg(eg) is the density of states on the Fermi level at@pproximately by a power law for compressions of interest
T=0 K. C¢ at low temperatures can be written in a form for the shock-wave experiments. Plotted in Fig(d0s the

similar to that for the free electron gas: parameterq=(d Iny/dInV)r. As one can see from Fig.
10(c), it is not constant and a fit with constasican be valid

|23 only over a limited region of volumes. Assuming a constant

§) m*Vn'T, (3D g gives only a moderate degree of accuracy; we found
g=1.1. A qualitatively similar volume dependence @fto

wherem* is the effective electron mass for thermal proper-that shown in Fig. 1&) was found for model monatomic

ties, which accounts for the high density of states at theubic lattices interacting via a variety of central-force

Fermi level in transition metals compared with the free elecpotentials’’” and inab initio calculations of MgC:

tron gas, ana is the charge densifyy. The effective mass is The calculated Gmeisen parameter was compared with

co=

proportional to the density of states at the Fermi level: experimental estimates by Jearffbzand Brown and
McQueet [Fig. 10b)]. The results of Ref. 38 are based on
g(ep) =337 3m*#,2n3, (32 the analysis of Hugoniot data for initially porous and nonpo-

_ _ o rous samples and were fitted to the power law
The calculated slopé& of the linear portion ofCy=I'T at y=7o(VIVp)?. The agreement between our calculated

different volumes for the fcc phase is given in Tabl'e V. Itis Grineisen parameter and the results of shock compression
compared to the free electron gas value, the ratio of thes@xperiments is good.

being the effective mass. The effective mass increases with There are three well-known approximate ways to calcu-

volume, and at the zero-pressure density it approaches thgw the Greneisen parameter for a monoatomic solid, and
experimentally observed va_lue m‘* ~8. we compare our cell model calculations to these approximate
The Sommerfeld expansion with two terif80) ceases t0  ¢ormylas. It is worth emphasizing, however, that the deriva-
be valid for iron at temperatures greater than around 4000 Ko of these expressions relies on assumptions that are not
This is due to the existence of peaks in the density of stategyactly satisfied in the case of our calculations. One can
g(e) near the Fermi level; therefore the higher order derivayherefore expect only qualitative agreement with more accu-
tives of eg(¢) are substantial. The temperature dependencgyte calculations. Even for a model fcc crystal interacting
with pair potentials, no quantitative agreement was found
TABLE IV. Slope of the temperature dependence of the constanfanveen these approximate expressions and the results of a
volume heat capacity for the fcc iron and the effective mass. computer simulatiof® The three expressions can be com-
bined in one using an integer paramdtéo label the differ-

\Y, From TB For free electron m*/m, ent expression®

(bohP/atom (mJ mol* K™2) gas(mJ mol'! K™?) '

48 2.44 0.452 5.4 _ VAPVIBR)VE (1-2)

55 2.97 0.495 6.0 V=T PRy T3 (33
60 3.35 0.524 6.4

65 3.71 0.553 6.7 The Slater approximatiorl €0) considers the material as
70 4.08 0.581 7.0 an elastic medium{Debye model and ignores the volume

dependence of Poisson’s ratio. It yieldg=K'/2—1/6,
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8 Lot I R o5 | Free volume
C|--o--T=1000 K @ 1 — - -Slater
26 [ |—=-T=2000 K 7 | | — — -Dugdale & MacDonald
[ |——T=3000 K —o— Cell model, T=3000 K
B J 2L
- 22[ ] -
i ] 15| T T
18| 1 Taeemm T T
14l ' Pra 50 55 80 65
45 50 55 60 65 V ( bohr® / atom )
V ( bohr® / atom)
3 FIG. 11. Grineisen parameter for fcc iron calculated from ap-
TeroT=1000 K (b) proximate expressions and the cell model.
—n==T=2000 K
o5 | |—o—T=3000K
5 Brown & McQueen - 2.5 atV,=79.73 boht/atom. However, the value of at low
7 compressions is not well constrained from shock compres-
=2t sion measurements. This is because at low compressions the
thermal pressure on the Hugoniot is small, and a substantial
151 change iny is not noticeable.
The thermal expansivityw=1N(dV/JT)p at extreme
pressures and temperatures is of interest since it is necessary
1 45" to transform from static isotherms to high temperature iso-
V (bohr® / atom) therms. Experimental measurementswét these conditions
are difficult and have significant uncertaintfd4® The ex-
q=d(In y) / d(In V) perimental technique is based on x-ray diffraction measure-
25 ¢ ments of the temperature dependence of volume for a given
L [——7=3000K () 1 pressure. We calculate the thermal expansivity from two iso-
2[ |---T=1000K d therms atT+AT, T—AT. A separate third order Birch-
[ Murnaghan equation was fitted to each isotherm, from which
V(T+AT) andV(T—AT) at a given pressure were deter-
o 15+ mined. The thermal expansivity is then given by
a=(1/2AT)In[V(T+AT)/V(T—AT)] at constant pressure.
1[ This expression is exact if the temperature dependence of
« can be described by(T) = ag+ a; T+ a,T? for the inter-
0.5 . . . . val [T—AT,T+AT]. Numerical tests witdA T= 25, 50, and
45 50 55 60 65 100 K demonstrated convergence of the calculatedith

V ( bohr®/atom) respect taAT. The values ofx calculated this way are con-
sistent with those from the thermodynamic identity
FIG. 10. Calculated lattice Gneisen parametey,, (a) and total a=(JP/JdT)y/K;. Being a high order derivative of the
Gruneisen parametgib) compared to experimental measurementsHelmholtz free energyy(T) for the hcp phase was found to
from Ref. 38(thin solid line and a shaded confidence bandd  be sensitive to the temperature variation of ttha ratio. We
Ref. 4(circles. (c) Parameteq as a function of volume compared therefore used the equilibrium values of théa ratio for
to Ref. 38(solid line and shaded confidence baridote that since  each temperature of interest.
v increases with volume, the thermal pressure also increases with The calculated thermal expansivitfig. 12 reproduces
volume. all known features: it decreases sharply with pressure and
increases with temperature. Some care must be taken in com-
where K’ =(9dK;/dP)+ calculated at pressurB. The ex- paring with experimental results. The results of Boehler
pression due to Dugdale and MacDonald=@) follows and co-workerS“® are reported not as thermal expansivi-
from the assumption that in a cubic crystal all the force con4ties, but as values o&x averaged over the experimental
stants have the same volume dependence. The expression femperature range(300 K to 2000 K: «(T)=[V(T
the free volume theoryl&2), in which the vibrations of =2000 K)NM(300 K)—1]/(T—300 K). Because «a de-
atoms are considered in the spherically symmetric field opends strongly on temperature(T) is expected to differ
the neighbors, is exact for pairwise interactions betweerignificantly froma(T). In order to compare the experimen-
nearest neighbors onfy.We evaluatedy for all the expres- tal results to our computations directly, we estimate experi-
sions using fourth-order Birch-Murnaghan fits to the staticmental values of(T) using finite differences over approxi-
isotherms(Fig. 11). The expression by Slatet£0) agrees mately 200 K temperature intervals from the data of Refs. 39
best with our calculations. Still the discrepancy is substanand 40. Though scattered due to the uncertainty in the mea-
tial, especially at low compressions. Brown and McQudeensured volumes, these results give a better idea of the actual
assumedyV =const. They estimateg, to range from 1.7 to thermal expansivities than do the averaged expansivities. For
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10 sure is much slower than that found for MgO from molecular
foe, T=2000 K dynamics simulatiorfsand lattice dynamics resuftdive find

@ that the pressure dependence of our calculatedn be rea-
foc, T=1000 K sonably approximate¢to within 5% by constant values of
hop, T=1000 K 6r=>5.2 and 5.0 for fcc and hcp phases, respectively. An
experimental estimaté; = 6.5 + 0.5 for the fcc phase was
hep, T=2000 K Duffy & Afrens obtained from the pressure dependence@F) for tempera-
tures ranging from 1000 K to 2000 ¥.For the fcc phase
and the same range of pressump to 16.8 GPg we find
TR e e e e 500 smaller values:§;=5.7 at T=1000 K and §r=5.8 at

P (GPa) T=2000 K [Fig. 12b)]. Some of the discrepancy between
calculated and experimental valuesffcan be attributed to

................ N the fact that the experimental estimate is based pnather
- than «. Over the experimental pressure range, experimental
and computed values af(T) agree to within 20% for fcc
hep and within 10% for hcp.

Jeanlo?® estimated the thermal expansivity on the Hugo-
niot from analysis of shock compression data for initially
porous and nonporous samples. The comparison to his re-
sults is given in Fig. 1@&). Another experimental estimate
for the averaged thermal expansivity=In(V;/Vo0/

a (105 K")

MgO

% 50100 150 200 250 800 (T—300) from shock compression measureni&rdsists for
P (GPa) P=202 GPa,T=5200 K, anda=(9.1+2.0)x10 % K.
The calculatedr at these P,T) is 1.31x10 ° K™ 1, and the
6 averageda=1.00<10 > K~ 1. The latter calculation was
s done using exactly the same procedure as in the experimental
work,*2 and agrees within experimental error bars.
o 4f
"z 3t V. SUMMARY AND DISCUSSION
5 2 We used a combination of the cell motel® and a tight-
1 E binding total-energy methd® to calculate the thermody-
o : namic properties of iron at high pressures and temperatures.

The electronic thermodynamic properties of the TBTE
model, such as electronic entropy, are in excellent agreement
with those calculated self-consistently. The cell model be-

FIG. 12. (a) Calculated thermal expansivity for fcc and hcp comes sufficiently accurate at high pressures and tempera-
phases of iron(lines compared to experimental measurements.tures. Therefore it is a useful tool to evaluate the thermody-
Thermal expansiorr of hcp atT=715 K from Ref. 41(pluses. namic properties at high temperatures and pressures. The cell
Shock compression estimate @fof hcp iron atT=5200-500 K model calculations are extremely computationally affordable
from Ref. 42(open circlg. Closed symbols denote the experimental as opposed to molecular dynamics or Monte Carlo calcula-
thermal expansivity we estimated using finite differences from thetions. We presented a procedure to carry out the three-
data in Ref. 39closed squargsand from Ref. 4Qclosed circles  dimensional integrations that makes use of the point group
Thermal expansivity on the Hugoniot deduced in Ref. 38 is given agymmetry of the lattice and reduces the required number of
a thin line and shaded confidence bai. Calculated pressure computations by an order of magnitude relative to dense
dependence of the Anderson-@aisen paramete¥; at T=2000K.  sampling of three-dimensional grids. An expression for the
() calculated thermal expansivity of fcc iron as a function of tem-yjirial in the TBTE method was derived that is appropriate for
perature at pressures 50, 100, and 200 GPa. cell model or molecular dynamics calculations.

This approximate procedure has proved to be successful
the hcp phase, we find good agreement of the calculated in reproducing the most reliable experimental data—the
with the measurements @t=715 K*! However, the calcu- Hugoniot. Our calculations suggest that the measurements by
lated thermal expansivity of the fcc phase &2000 K Yoo et al® probably overestimate the temperature on the
decreases less sharply with pressure than do the experimentdligoniot by~ 1000 K. TheaK parameter was found to be
estimates? approximately independent of compression for molar vol-

In order to describe the volume dependence of the thermalmes ranging from 48 to 60 bottatom. Its temperature de-
expansivity, we used the Anderson-@eisen parameter pendence is, however, significant and cannot be ignored. The
61=(d InaldInV);. The pressure dependence of this param-main reason for this temperature dependence is the electronic
eter is given in Fig. 1@). The figure shows that fcc and hcp contribution to thermal pressure. The vibrational contribution
phases have similar values 6f, although the decrease of to aK; decreases slightly with temperature. The electronic
this parameter with pressure is less pronounced in hcp thacontribution toaK+ increases linearly with temperature, as
in fcc. For both phases of iron the decreaseSpfwith pres-  expected for crystalline metafs.

0 1000 2000 3000 4000 5000
T(K)
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The Grineisen parameter for compressions of interest to n
shock-wave measurements was found to have relatively f f(Q)dQ%47rz w; (). (A3)
weak temperature dependence. It increases significantly with Q =1

volume, and therefore the thermal pressure also increasqge guadrature formula is constructed by requiring that it
with volume. The second Gneisen parameter mcrqeases integrates exactly as many lattice harmonics as possible for
with volume, and therefore the power layw=yo(V/Vo)? can  the given orderinumber of directionsn. The number of

be used only as an empirical fit for a small range of com+,ytice harmonics integrated exactly is called the power of the

pressions. The thermal expansivity was found to decreasg,aqrature formulaQ. This requirement yields the system
rapidly with pressure. We found that the Anderson+@isen ¢ Q+1 equations

parameter 5; decreases significantly with compression.
However, the volume dependence is much smaller that that n
of MgO; for iron, the assumption that; is independent of > wi=1, (A4)
compression is sufficient to describe the volume dependence =1
of « to within a few percent.

The combination of an accurate TBTE maodabith the
cell model approximation has proved successful in describ- 21 wiH(Q))=0 (0<I=<Q), (A5)
ing the thermodynamic properties of iron at high pressure
and temperature conditions. We verified the results of ouwhich has to be solved. Equati¢A4) follows from the defi-
calculations by comparison to the available experimentahition (A3) and the requirement that the first lattice harmonic
data and also made some predictions. For instance, we prek,=1 has to be integrated exactly. The other equatie)
dict a significant decrease of the shear elastic constant of thfellows from the fact that the lattice harmonics upHeg, are
hcp iron with temperature. Good agreement of the calculateeh be integrated exactly, anthH,dQ=474,,.
properties with the experimental results suggests that the cell The |attice harmonic€[" for the hcp lattice are given as
model approximation and the usage of the TBTE model fokgjlows. Starting fromC andC3, any multiple of 2 can be

thermodynamic calculations are justified to a large extent fopqded to the value dfand any multiple of 6 can be added to
the (P,T) region of interest in this study. Therefore the {he value ofm, so thatm=|,*

TBTE model can be used with a slight modification for mo-
lecular dynamics simulations of liquid phases of iron at high

n

1
temperature. Cl'=—=(Y"+Y,' ™, (AB)
Rt
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APPENDIX: QUADRATURE FORMULA FOR THE SOLID
ANGLE INTEGRATION FOR THE HCP LATTICE

ny ny

> wiwi f(xiy)), (A7)
=1j=1

b (d
f f(x,y)dxdy~
C |

The quadrature formula for integration over the solid é

angle () of the integrands with the symmetry of the hcp wheren, andn, are the number of nodes of one-dimenional
Iatt!ce is giver? below. The integrands can be expanded "quadrature formulas ir andy, respectivelyw;, andw;, are
lattice harmonicdd; ,Ho=1, the weights, anc; andy; are the nodes.
. It is important to note that a lattice harmonic for the hcp
lattice is a product of an even function in &and an even
f(0,¢,r)=|§o Al(NH(6,¢). (A1) trigonometric  polynomial in x=3¢. Therefore the
n-directional formula withn=nn,, is constructed from two
Due to orthogonality of the lattice harmonics one-dimensional formulas according to E@\7), one in
(H Hp=[oHHdQ=475,, cosf with n, nodes and the other one =3¢ with n,
nodes. Since the integral of a lattice harmonic over the solid
2m 1 angle is zero unless the harmonicd§, the quadrature for-
fﬂf(ﬂ)dﬂz fo d‘ﬁf_lf(e’ $)d(cosd)=4mA,. (A2) " mula eliminates the harmonic if it integrates the harmonic
exactly. The one-dimensional quadrature in &£efiminates
Let Q,=(¢;,6;) be the directions and; be the weights of the lattice harmonic€), C3, C2, ...,CY, .. .. Other lat-
then-directional quadrature formula. The quadrature formulatiice harmonics contain casg) and are eliminated by the
for the solid angle integration is given by one-dimensional quadrature for trigonometric polynomials.
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1. One-dimensional quadrature formula in co® using two nodes in cags and two nodes in¢. Let
The lattice harmonic€?, €2, C2, ..., C%, ... are COh=R;and cos,=R;, whereR; andR; are the roots of

proportional to an even Legendre polynomiﬁ&k(cosﬁ). the Legendre polynomiaP,. In the standard 1D Gauss-
Therefore the appropriate quadrature formula for integrating-egendre four-node formula, these nodes have weights
in cos from —1 to 1 is obviously the Gauss-Legendre andw,. For each cogwe find two values o# as the solu-
quadrature. It is well known that it has nodes located symtion of the system of two equations

metrically around zero with equal weights for a pair of nodes

located att and —t. Since an even function needs to be

integrated, we took, positive nodes with the corresponding €0S3p;+ Ccos3p,=0, (A10)
weights from the Gauss-Legendre quadrature of ordey. 2

Therefore with a one-dimensional quadrature withnodes

one can eliminate lattice harmoni(‘.ﬁk up to k<4n,—1. c0s6¢p; + cos6p,=0. (A11)

2. One-dimensional quadrature formula inx=3¢
This solution is obviously &,= w/4, 3¢,=3m/4. Then we

The quadrature for trigonometric polynomials ix, construct the quadrature formula as follows:

g(x) = 1,cox,sinx,cosX,sinZ, ... with m nodes i§*

- 1M o —my+1 Direction 6 ¢ Weight
g(x)dx~Tp, m Z ( m m|. (AB) 1 arccosRj) /12 wy/2
1
The power of this formula isn—1, i.e., it is exact up to 2 arccong) mia W /2
cosm—1)x and sin(n—21)x. Since we do not have sines in 3 arccong) /12 Wa/2
our polynomial, the quadrature formula transforms into 4 arccosRy) /4 Wo/2

- The lattice harmonic€), C§, andC2 do not depend orp
Z (A9)  and are just Legendre polynomials in épsherefore Eq.
(A5) is satisfied for them. As for the rest of the harmonics,
The latter formula withn nodes inx is exact foreventry-  they all contain cos(@) or cos(6p) as a multiplier. Therefore
gonometric polynomials up to degre@21 and has equal the four-directional quadrature formula is exact for seven
weights 1h. Therefore the one-dimensional quadrature inpgnconstant lattice harmonics up®. The six-directional

2(l-n)+1
2n &

n

1"
n

3¢ eliminates lattice harmonicS" up tom=3(2n,—1). formula is constructed using three positive rootsRgf for
cosd and the same two nodes @f and is exact for 15 har-
3. Example of the construction of the quadrature formula monics up toC?l

As an example, the construction of the four-directional The described procedure is general and can be carried on
formula for hcp is explained in detail below. It is constructedto construct the quadrature formulas of the desired precision.
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