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As the second most-abundant chemical element in the universe,
helium makes up a large fraction of giant gaseous planets, includ-
ing Jupiter, Saturn, and most extrasolar planets discovered to date.
Using first-principles molecular dynamics simulations, we find that
fluid helium undergoes temperature-induced metallization at high
pressures. The electronic energy gap (band gap) closes at 20,000 K
at a density half that of zero-temperature metallization, resulting
in electrical conductivities greater than the minimum metallic
value. Gap closure is achieved by a broadening of the valence band
via increased s–p hydridization with increasing temperature, and
this influences the equation of state: The Grüneisen parameter,
which determines the adiabatic temperature–depth gradient in-
side a planet, changes only modestly, decreasing with compression
up to the high-temperature metallization and then increasing upon
further compression. The change in electronic structure of He at
elevated pressures and temperatures has important implications
for the miscibility of helium in hydrogen and for understanding the
thermal histories of giant planets.
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Helium is known to be an electrical insulator at low pressure,
with a wide energy gap (19.8 eV) between occupied and

unoccupied electron orbitals; it exhibits almost no chemical
bonding (1). Under compression, however, helium is predicted
to metallize via closure of the energy gap at �100 Mbar (10 TPa)
(2), a pressure greater than that at Jupiter’s center (3). Thus, one
might expect helium to be insulating at giant-planetary condi-
tions, for its solubility in metallic hydrogen to be limited and for
addition of helium to limit the electrical conductivity of the
gaseous envelope (4).

However, recent high-pressure results have revealed the role
of temperature in metallization, particularly in the fluid state.
Fluid hydrogen becomes metallic at 1.4 Mbar at high tempera-
ture (�103 K) along the shock-wave Hugoniot (5), whereas at
low temperature (�300 K) crystalline hydrogen is expected to
metallize only �4 Mbar (6). In a sense, hydrogen at elevated
pressures resembles other materials that undergo insulator-to-
metal transitions upon melting, such as silicon and carbon, in
which the liquid has a more densely-packed structure than the
solid phase. Yet the metallization of fluid hydrogen may also be
related to changes in the fluid, from dominantly molecular (H2)
at lower pressures to dominantly atomic (H) at higher pressures
(7). That ionization and dissociation of the molecule take place
across overlapping regimes of density and pressure is a compli-
cation that has confounded a full understanding of the metal-
lization of hydrogen. The case of helium is thus revealing in that
it effectively isolates the influences of temperature and density
on the development of metallic bonding, because both liquid and
solid are monatomic and close packed at high pressure.

We performed first-principles molecular dynamics simula-
tions and found that the energy gap of fluid helium depends
strongly on temperature (Fig. 1). The electronic energy gap can
be thought of as the difference in the energies of the highest
occupied electronic bonding levels and the lowest unoccupied
(nonbonding) electronic levels (valence and conduction bands,
respectively, for crystals). Whereas the gap closes at a density of
13 g cm�3 at zero temperature, gap closure occurs at 6.6 g cm�3

at 20,000 K, where the pressure is 30 Mbar (3 TPa): conditions
achieved well within the fluid envelope of Jupiter (3). Our results
differ from those of another recent study that found that
temperature has a much weaker influence on the energy gap and
that the gap closes at the same density virtually independent of
temperature (8). We attribute this difference to the more
complete sampling of the Brillouin zone used in our computa-
tions of the energy gap (see Theoretical Methods).

We find that gap closure originates primarily from a broad-
ening of the valence band, by a factor of nearly two from 0 to
50,000 K and from increased admixture of s-like and p-like states
with increasing temperature (Fig. 2). Comparison with the next
divalent element, Be, is instructive. Like He, both solid and
liquid states are closely packed, yet the liquid has a density of
states at the Fermi level more than twice that of the solid (9). As
in He, participation of p-like states in the valence band increases
with temperature, and metallicity increases with disorder: The
reciprocal lattice vectors responsible for the scattering-induced
pseudogap in the solid are smeared out in the liquid structure
factor.

The relationship between the liquid structure factor and the
electronic structure can be understood on the basis of a nearly
free-electron picture (10). The first sharp peak in the structure
factor at V � 1 Å3 per atom (Fig. 3), located at qP � 7.4 Å�1,
produces a pseudogap at an energy (given by the de Broglie
relation) W � �2/(2me) (qP/2)2 � 52 eV above the bottom of the
valence band (note that Fig. 3 is for a volume intermediate
between those shown in Figs. 2 and 4). The magnitude of the first
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Fig. 1. Calculated electronic energy gap at 0 K (static conditions) (black),
10,000 K (blue), 20,000 K (green), and 50,000 K (red) and along a precom-
pressed Hugoniot with �1/�0 � 4, where �1 is the precompressed density and
�0 � 0.1233 g cm�3 (gray).
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sharp peak S(qP), decreases markedly with increasing tempera-
ture, accounting for the closure of the pseudogap � with
increasing temperature, as � � 2(S(qp) � 1) w(qp) , where w is
the effective electron–ion interaction (9).

Valence-band broadening in He can be understood on the
basis of modifications to the closely packed arrangement of
atoms in the liquid state. Inspection of the radial distribution
function shows that at V � 1 Å3 per atom (6.6 g cm�3) the
position of the maximum and half-width at half-maximum of the

first peak are 0.98 Å and 0.3 Å, respectively, in the fluid at 50,000
K as compared with the nearest-neighbor distance of 1.12 Å in
the perfect, hexagonal closely packed (hcp) crystal at the same
density (Fig. 3, arrow). In this sense, local structure in the liquid
resembles that of the crystal at 1.5–4 times higher densities. The
coordination number in the liquid is �14 over the entire
temperature range considered.

One can derive additional insight into the liquid structure by
comparison with a simple model, the one-component plasma
(OCP) (11). The properties of the OCP depend on a single
variable, the unscreened Coulomb coupling parameter,

� �
Z2e2

akT
[1]

where Z is the nuclear charge, e is the electron charge, k is
Boltzmann’s constant, T is temperature, and a � (3V/4�)1/3 is the
ion-sphere radius. The structure of our simulated liquid differs,
however, in that the heights of the peaks in g(r) and S(q), as well
as the distance to the first peak in g(r), are smaller than for the
OCP over most of the volume–temperature range of our study.
Because local structure is largely determined by repulsive forces
(12), this difference indicates a weakened effective ion–ion
interaction in our simulated fluid as compared with the OCP.
Such weakening, caused by electron screening, is in fact
expected.

We have found (Fig. 3) that the structure of our simulated
fluid at V � 1 Å3 per atom, T � 20,000 K (� � 54) is remarkably
similar to that found in Monte Carlo simulations of the screened
OCP in which screening was approximated by the Lindhard
dielectric function (13). For � � 50, the structure of our
simulated fluid begins to depart substantially from that of the
screened OCP (Fig. 3). These departures emphasize the impor-
tance of first-principles molecular dynamics simulations that
include the physics of the electron–ion interaction completely
[within the generalized gradient approximation (GGA)]. In our
simulated fluid, the height of the first peak in g(r) is greater than

Fig. 2. Calculated electronic energy gap at V � 2 Å3 per atom (� � 3.3 g cm�3,
red), valence band width W (black), and p projected-occupied density of states
expressed as p electrons per atom (Inset). Plots below are the electronic density
of states at static conditions (Left) and at 50,000 K (Right): Additional lines in
the Right figure show the Fermi energy (gray, vertical line) and the temper-
ature-dependent electron occupation as a function of energy (black). The
electronic density of states shown is from one representative snapshot of
the molecular dynamics simulations on a dense k-point mesh, as described in
the Theoretical Methods, and broadened by 1% of the valence-band width.

Fig. 3. Radial distribution function g(r) and (Upper Inset) structure factor
S(q) at V � 1 Å3 per atom (density 6.6 g/cm3) at 10,000 K (blue), 20,000 K
(green), and 50,000 K (red). Indicated for comparison are the nearest-
neighbor distance in an hcp crystal of the same volume (arrow labeled
‘‘crystal’’), the radial distribution function of the screened one-component
plasma at � � 50, and Wigner–Seitz radius, rs � 1.0 (13) (crosses). The Lower
Inset shows the maximum value of g(r) from our simulations (open symbols),
and the screened (bold dashed lines interpolated from results of ref. 13) and
unscreened (thin solid lines) one-component plasma.

Fig. 4. Density of states at the energy of the electron chemical potential
(corresponding to the Fermi energy) at 50,000 K (Upper, red curve) compared
with the same quantity in the free-electron gas (black dotted curve) and the
density of static metallization (arrow) (2). (Lower) Plots are the electronic
density of states at V � 0.5 Å3 per atom (� � 13.3 g cm�3) at static conditions
in the crystal (Left) and for the fluid at 50,000 K (Right), with the chemical
potential and electron occupation shown as in Fig. 2.
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that of the screened OCP for � � 50 and greater even than that
of the unscreened OCP at the highest densities of our study,
revealing the importance of non-point-charge repulsion due to
overlap of charge accumulations about the nuclei.

The fluid becomes increasingly metallic with increasing den-
sity and is nearly free-electron-like at 50,000 K and the density
of zero-temperature gap closure (Fig. 4). At these conditions, the
fluid has a small pseudogap and a density of states at the
chemical potential, � (determined by the number condition),
70% that of the free-electron value. Thus, the liquid appears to
retain features of the crystal’s electronic structure, in particular
a local minimum in the density of states at � that persists to the
highest densities of our study. The density of states at � in the
fluid at 50,000 K reaches a maximum value at 11 g cm�3, where
it is 30% that of the free-electron gas.

Metallization may occur at densities and temperatures slightly
higher than those we find for gap closure, because of localization
of the electrons at the band edges (mobility edges) (14). More-
over, because of systematic limitations of the GGA, we anticipate
that our results may underestimate the energy gap. Using GW
calculations, one study estimates that GGA may underestimate
the band gap by a few eV (8). However, the correction was
computed at zero temperature. Recent results show that at finite
temperature, density functional theory underestimates the gap
by considerably less than previously thought (15) so that our
computed band gaps may be accurate to better than a few eV.
Reasonable agreement (to within 1 eV) with the excited-state
energy of the He atom (16) further indicates that our results
should reveal the correct trends.

We find that the electrical conductivity of fluid helium is well
described by the Ziman formula (17) modified to account for
band-structure effects (18) (Fig. 5)

� � g2�z, [2]

where the Ziman resisitivity

1/�Z �
a0�

e2

kTF
2

64ZEF
2 �

0

2kF

q3S�q�v2�q�dq [3]

and a0�/e2 � 0.217 �	 m, EF and kF are the (free-electron) Fermi
energy and wave vector, respectively, and the effective ion–
electron interaction v(q) is that of the screened Coulomb po-
tential with inverse screening length equal to the Thomas–Fermi
wave vector kTF (19)

v�q� �
� 4�Ze2

q2 � kTF
2 . [4]

The influence of the pseudogap (Fig. 2) appears in the factor

g �
N� ���

N0�EF�
, [5]

the ratio of the temperature-smoothed density of states at the
chemical potential �

N� ��� � � N�	�

f

	

d	�� 
f

	

d	,

where 
f/
	 is the derivative of the Fermi–Dirac distribution, to
the free-electron value of the density of states at the Fermi level.
The value of g in fluid helium is everywhere less than unity, so
that the conductivity is reduced as compared with the Ziman
result. This analysis shows that the electronic structure of fluid
helium lies in a regime in which the Edward’s cancellation
theorem (20) no longer applies, and the electron mean-free path
is not much larger than the interatomic spacing. The electrical
conductivity of fluid helium at the density of high-temperature
gap closure is similar to that of the minimum metallic conduc-
tivity of Mott (21): 0.026 � 0.333e2/�2a (Fig. 5).

The influence of energy-gap closure on the equation of state
is seen in the behavior of the Grüneisen parameter �, which
controls the adiabatic temperature gradient: � � (
lnT/
ln�)S
(Fig. 6A). The value of � decreases upon compression up to the
density of 13 g cm�3 and then begins to increase at higher
densities. In comparison, a plasma model (22) and the He
equation of state from the SESAME tables (23) predict large
oscillations in the value of � associated with pressure-induced
ionization transitions; these oscillations are not found in our
study. In the plasma or ‘‘chemical’’ picture (22) the fluid is
viewed as a collection of electrons, atoms, and singly and doubly
charged ions with internal energy levels that are assumed to be
unperturbed by interactions with surrounding particles. This
picture predicts a rapid increase in the ionization with pressure,
which produces a large increase in the density and anomalies in
the Grüneisen parameter and other derivatives of the equation
of state. We find no evidence of rapid pressure ionization, and
the difference in density between our results and the plasma
model reaches 50% at conditions of the Jovian gaseous envelope
(Fig. 6B).

First-principles molecular dynamics simulations illustrate the
limitations of the plasma model at conditions where orbital
overlap is large, and electronic states are best described as
spatially extended. In particular, the approximation of unper-
turbed internal energy-levels for the electron orbitals of the atom
is unlikely to be valid at conditions where the valence bandwidth
greatly exceeds the gap, as is the case over most of the pressure
range of our study. In the case of hydrogen, the most recent
quantum Monte Carlo and density-functional molecular dynam-
ics studies also disagree with the plasma model in finding no
evidence of a plasma phase transition (24, 25).

Our predictions of the equation of state and electronic
properties can be tested with emerging experimental technology
(26, 27) (Fig. 7). Shock waves, including multiple shocks and
‘‘ramp’’ waves, generated by powerful lasers in samples precom-
pressed in a diamond-anvil cell provide a means of experimen-

Ω

Fig. 5. Electrical conductivity (solid lines with filled symbols) at 10,000 K
(blue), 20,000 K (green), and 50,000 K (red), compared with Kubo–Greenwood
results of ref. 8 at 6,000 K (purple open circles), 17,000 K (green open circles),
and 30,000 K (orange open circles) and of ref. 40 at 10,000–30,000 K (blue–
orange open squares). Experimental values (41), with estimated temperatures
increasing with increasing density from 10,000 K to 30,000 K (black diamonds)
are also shown, as is the minimum metallic conductivity of Mott (21) (gray
band).
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tally accessing the entire range of pressure–temperature condi-
tions of giant planets. For example, we predict that the energy
gap closes at a density of 2.3 g cm�3 along the Hugoniot for 4-fold
precompression: one-fifth the density required for gap closure
under static conditions. The influence of temperature on the
electronic structure is also illustrated by the carrier concentra-
tion, which increases with increasing pressure and increasing
temperature, primarily due to closing of the energy gap. We
predict that experimental measurements along the 15-fold pre-
compressed Hugoniot will be particularly revealing: requiring an
initial (precompressed) pressure of 1 Mbar at ambient temper-
ature, this Hugoniot includes pressure–temperature conditions
at which our results differ significantly from those of the plasma
model (22), and the nonmetal-to-metal transition should be
experimentally detectable via optical absorption and reflectance
measurements.

The large influence of temperature on the electronic structure
of helium implies that helium rain is unlikely in present-day

Jupiter or Saturn. It has been suggested that exsolution and
gravitational segregation of helium from hydrogen, upon cooling
of the planet, may be responsible for the excess luminosity of
Saturn. This argument comes from estimates of the hydrogen–
helium miscibility gap that, so far, have been based on calcula-
tions performed at low temperature. The results of ref. 28 are
based on static calculations with no relaxation about defects.
Whereas the miscibility gap computed in ref. 29 is based on static
calculations including relaxation and tested against molecular
dynamics simulations, the influence of temperature on the
electronic structure is slight up to the maximum temperatures of
only 3,000 K that were considered. For models of Saturnian
evolution, He rainout, if it occurs, would take place at pressures
and temperatures in the range of 1–10 Mbar and 5,000–10,000
K, which encompasses the regime (V �2 Å3) in which we find
that temperature increases the valence bandwidth and decreases
the pseudogap by a factor of two as compared with 0 K (Fig. 2).
For Jupiter, and for extrasolar planets larger and older than
Jupiter, still higher pressures and temperatures become relevant,
and the He energy gap may be completely closed, according to
our calculations.

Miscibility of He in hydrogen is thus likely to be enhanced in
comparison with the predictions of previous low-temperature
calculations, because temperature transforms dense fluid helium
from an insulator to a semiconductor and, ultimately, a metal.
Enhanced solubility would reduce the critical temperature for
miscibility, below which hydrogen and helium are immiscible, to
values below those indicated by thermal-evolution models for
Saturn. Other mechanisms must therefore be found to explain
the excess luminosity of Saturn and the helium deficiency of the
Jovian and Saturnian atmospheres (30).

The electronic structure of helium may also have an important
influence on magnetic-field generation. The magnetic diffusivity
� � 1/��0, where � is the electrical conductivity and �0 the
magnetic permeability, controls the free-decay time of the
magnetic field; it also controls the power of the field and its form,
whether it be dipolar or multipolar, via the dimensionless
magnetic Ekman number E� � �/	D2 and magnetic Reynolds
number Rm � u/�D, where 	 is the rotation rate, D is depth of

∆ρ

A

B

Fig. 6. Thermal equation-of-state properties of He. (A) The Grüneisen
parameter � from our simulations (circles), the plasma model (22) (gold line),
and SESAME EOS 5761 (23), identical in this density range to the SESAMEp
Helium EOS of Saumon and Guillot (42) (purple) at 15,000 K. Our values are
from the finite difference in pressure P and internal energy E between 10,000
K and 20,000 K [� � V(�P/�E)V] (filled circles) and from fluctuations (43) at
10,000 K (blue open circles) and 20,000 K (green open circles). (B) Equation of
state of fluid helium at static conditions (black, from LAPW calculations),
10,000 K (blue), 20,000 K (green), and 50,000 K (red) from our simulations
(circles, solid lines) compared with the plasma model (22) interpolated to
20,000 K (green dashed line) and to experimental shock-compression data for
which the estimated temperatures are �20,000 K [diamond (44), squares (41)].
Dotted line shows the difference in density at 20,000 K between our calcula-
tions and the plasma model (22). Comparison with LAPW calculations show
that PAW is accurate to at least 300 Mbar, whereas at 1 Gbar, PAW overesti-
mates the pressure by 10%. Our calculated equation of state of fluid helium
is in good agreement with a path-integral Monte Carlo study at lower den-
sities and higher temperatures (45) and a density-functional molecular-
dynamics study at lower temperature and pressure (40).

Fig. 7. Summary of electronic properties of fluid helium at high pressures
and temperatures. The logarithm of the carrier concentration n is represented
by thin black solid contours, and the background color is chosen such that the
plasma frequency p � 
(4�e2n/m), where e is the electron charge, and m is
the electron mass, takes on values equal to that of visible light in the white
band, which represents the absorption edge in the Drude model (46). Red lines
are predicted Hugoniots for precompressions �1/�0 indicated by the numerical
values shown at the top. The blue solid line represents the closure of the
electronic energy gap, and purple dotted lines are the conditions at which the
He�� concentration reaches 10% (labeled ‘‘onset’’) and 50% (labeled ‘‘PI’’) of
pressure ionization in the plasma model (22). For comparison, model temper-
ature distributions (47) for the interiors of Jupiter, extrasolar planet
HD209458b and brown dwarf Gl229b are indicated by dashed black curves.
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the fluid, and u is the flow speed (31). Temperature-induced
band-gap closure in helium tends to enhance the electrical
conductivity, hence decrease the magnetic diffusivity and in-
crease the magnetic Reynolds number, over the values typically
assumed.

Theoretical Methods
Ourmoleculardynamics simulationsarebasedondensity functional theory in the
GGA (32), using the projector augmented plane wave (PAW) method (33) as
implemented in the VASP code (34). Born–Oppenheimer simulations were per-
formed in the canonical ensemble with a Nosé (35) thermostat with 64 atoms and
run for at least 1,000 steps at a 0.1-fs time step. We assume thermal equilibrium
between ions and electrons via the Mermin functional (36, 37). Tests using larger
systems, up to 144 atoms, and greater run durations, up to 3,000 time steps,
showed no significant change in equilibrium thermodynamic properties. The
Brillouin zone is sampled at zero wave vector (k � 0, � point); a basis-set size set
by the value of the energy cutoff of 600 eV was found sufficient at all but the
highest density, where we used an energy cutoff of 1,200 eV. The PAW potentials

have an outermost cutoff radius of 1.1 Bohr with no electronic states treated as
core states. We have also performed a limited number of static full-potential
linearized augmented plane wave (LAPW) computations (38) to test the limita-
tions of the PAW method at extremely high number densities (�10 Å�3).

The electronic energy gap is, in principle, ill-defined at temperatures �0 K.
To determine the gap, we locate the range of energies about the chemical
potential for which the density of states is �1% of the maximum valence
density of states. Properties of the electronic structure, including the elec-
tronic density of states, are computed for a series of uncorrelated snapshots by
using an enhanced k-point mesh (39) of 4  4  4 for lower densities and up
to 12  12  12 for the highest density explored. We found such enhanced
k-point meshes essential for obtaining converged values of the electronic
energy gap and concluded that computing the gap using a single k-point
(�-point) results in systematically larger values of the gap, accounting for the
differences between our results and those of ref. 8.
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35. Nosé S (1984) A molecular-dynamics method for simulations in the canonical ensemble.
Mol Phys 52:255–268.

36. Mermin ND (1965) Thermal properties of inhomogeneous electron gas. Phys Rev
137:A1441–A1443.

37. Wentzcovitch RM, Martins JL, Allen PB (1992) Energy versus free-energy conservation
in 1st-principles molecular-dynamics. Phys Rev B 45:11372–11374.

38. Wei SH, Krakauer H (1985) Local-density-functional calculations of the pressure-
induced metallization of BaSe and BaTe. Phys Rev Lett 55:1200–1203.

39. Prendergast D, Grossman JC, Galli G (2005) The electronic structure of liquid water
within density-functional theory, J Chem Phys 123:014501.

40. Kietzmann A, Holst B, Redmer R, Desjarlais MP, Mattsson TR (2007) Quantum molecular
dynamics simulations for the nonmetal-to-metal transition in fluid helium. Phys Rev
Lett 98:190602.

41. Ternovoi VY, Filimonov AS, Pyalling AA, Mintsev VB, Fortov VE (2002) Thermo-
physical properties of helium under multiple shock compression in Shock Compres-
sion of Condensed Matter—2001 (American Institute of Physics, New York), pp
107–110.

42. Saumon D, Guillot T (2004) Shock compression of deuterium and the interiors of Jupiter
and Saturn. Astrophys J 609:1170–1180.

43. McQuarrie DA (1976) Statistical Mechanics (Harper and Row, New York).
44. Nellis WJ, et al. (1984) Shock compression of liquid-helium to 56-GPa (560-kbar). Phys

Rev Lett 53:1248–1251.
45. Militzer B (2006) First principles calculations of shock compressed fluid helium. Phys Rev

Lett 97:175501.
46. Ashcroft NW, Mermin ND (1976) Solid State Physics (Holt Rinehart and Winston, New

York).
47. Hubbard WB, Burrows A, Lunine JI (2002) Theory of giant planets. Annu Rev Astron

Astrophys 40:103–136.

Stixrude and Jeanloz PNAS � August 12, 2008 � vol. 105 � no. 32 � 11075

G
EO

PH
YS

IC
S

SE
E

CO
M

M
EN

TA
RY


