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1.22.1 Introduction

Earth is unique among the planets as the only body

for which we have a detailed picture of its internal

structure. We may compare that part of seismology

concerned with Earth structure to an experimental
science concerned with a single, very large sample.

The source of illumination is generated naturally, in

the form of earthquakes, many each year large

enough to generate measurable ground accelerations

at the antipodes. (There are typically more than 10

major (magnitude 7–8), 100 large (magnitude 6–7),

and 1000 damaging (magnitude 5–6) earthquakes

each year. Prior to the current international morator-

ium, nuclear explosions have also provided seismic

illumination of the Earth’s deep interior: magnitudes

of 5, 6, and 7 correspond roughly to yields of 32

kiloton, 1 megaton, and 32 megaton.) The detectors

are seismic recording stations, which now number in

the hundreds of the highest quality. The basic mea-
surement is of the traveltime from source to receiver,

from which can be deduced the elastic-wave velocity

along the path of propagation; the displacement

versus time (waveform) shown by the seismic record

also provides information about the spatial gradients

of wave velocity at depth. Millions of crossing rays

have illuminated every corner of the interior, leading

to models of Earth structure in which the velocity is

considered known to within 1%. In addition, the

frequencies of Earth’s resonances (free oscillations

or normal modes) excited by large earthquakes, typi-

cally determined to a part in 103 for hundreds of

overtones, provide important information on the dis-

tribution of density at depth.
Such extraordinary precision rivals or exceeds our

ability to measure elastic-wave velocities in the

laboratory at conditions representative of most of

the Earth’s interior. In reality, the seismological

determination of velocity is somewhat more limited

than this comparison would suggest, primarily by

spatial resolution: the smaller the region of interest,

the larger the uncertainties.
Earth is unusual as an experimental sample in

ways other than its large size. Pressure, temperature,

and composition are all inhomogeneous, and the

spatial variations of these quantities are due to
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processes internal to the planet, rather than being
externally imposed. Temperature and compositional
fields both show large radial and lateral variations
that are the product of Earth’s origin, evolution,
and dynamics. But how to determine these quanti-
ties? We have no in situ measurements of either
temperature or composition below the crust, and
seismology alone does not suffice: only the elastic-
wave velocities and density are measured, not
temperature or composition.

A central concern of mineral physics has been to
uncover the nature of Earth’s internal temperature
and composition, with a view toward placing critical
observational constraints on the planet’s history and
geological processes. For example, by recognizing
the connection between the bulk sound velocity
determined seismologically and the compressibility
(1/KS), Adams and Williamson showed that much of
Earth’s structure can be explained by an adiabatic
variation of temperature with depth. (Two kinds of
sound waves propagate through solids, compressional
and shear (also referred to as longitudinal and trans-
verse) that have velocities VP¼

p
[(KS þ �)/�] and

VS¼
p

(�/�), respectively, with K being the adiabatic
bulk modulus (or incompressibility), � the shear
modulus (or rigidity), and � the density. The bulk
sound velocity, VB¼

p
( VP

2 – 4/3VS
2)¼p(KS/�),

ignores the effects of rigidity and treats the material
as a fluid.) By comparing seismological models
and experimental – mostly shock-wave – data, Birch
identified iron as the primary constituent of Earth’s
core, and the mean atomic mass of the mantle as
being similar to that of certain xenoliths (rock frag-
ments of the Earth’s interior brought to the surface by
volcanic processes). Ringwood, Akimoto, and others
showed that seismologically observed mantle discon-
tinuities can be explained by phase transformations
observed in experiments on samples of mantle-like
composition. In each case, a key to our current view
of the Earth’s origins and current vigorously convect-
ing state were established.

It may seem at first surprising that materials of
such different sizes, from thousand-kilometer struc-
tures in Earth to laboratory samples as small as a few
microns – a range of 12 orders of magnitude – may
be compared at all. (Though they are usually
ignored for bulk samples, if one takes surface effects
into account, the comparison can be extended down
to the nanometer scale.) Actually, the basic
approach is not unique to geophysics and forms
the basis for understanding the structure and evolu-
tion of giant planets or stars. The theoretical basis

for spanning the range of length scales from atoms to
planets lies at the heart of thermodynamics and
statistical mechanics: the prediction that the equili-
brium properties of materials should not depend on
the size of the sample. There are deep connections
to seismology as well: the analysis of the normal
modes of vibration of an atomic lattice leads to
concepts of dispersion and elastic-wave velocity
that can be linked directly to analogous seismologi-
cal problems. Relating the large to the small
is essential for uncovering the temperature and
composition throughout the Earth’s interior. High-
pressure devices and theoretical simulations figura-
tively transport us to the inaccessible interior,
giving us a unique window into its nature.

From the point of view of materials theory, Earth
is a particularly challenging object because it consists
of solids and fluids (condensed matter) at moderate to
high pressures. Unlike the gases that make up plane-
tary atmospheres, the temperature-dependent
constitutive relations between stress, strain, and
strain rate (pressure, density, and deformation rate
for a fluid) cannot be written down analytically.
Much of the effort in mineral physics is devoted to
discovering these constitutive relations, either by
experimental measurement or by quantum mechan-
ical theory.

The solid state is also complex in that elements
organize themselves into multiple phases of different
composition and crystal structure (i.e., geometric
arrangement by which the atoms are packed together
to form the crystal). Each phase has distinctive phy-
sical and chemical properties, and its behavior must
be understood separately and in combination with
other phases. The exploration of high pressure con-
tinues to be one of the frontiers of mineral physics,
including the challenge of measuring physical prop-
erties in the laboratory at conditions of Earth’s
interior, and the ongoing discovery of new solid
phases.

Perhaps the most challenging aspect of the solidity
of materials making up the mantle is that it imposes
limitations on our ability to scale from laboratory to
Earth. These limitations arise from the heterogeneity
inherent even in the purest sample in the form of
grain boundaries and the differences in size, shape,
and orientation of the constituent grains. So, for
example, it is not possible to uniquely compute the
seismic velocity of a rock from the properties of its
constituent single crystals, although rigorous bounds
can be formulated if the grains are randomly
oriented. An exact computation would require
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complete specification of the grain geometry.
Although usually not the case for Earth materials,
the bounds can be far apart in the presence of sig-
nificant mechanical heterogeneities such as partial
melts or cracks. More generally, some physical prop-
erties such as attenuation and scattering depend
essentially on length scale, and often in ways that
are difficult to predict.

The significance of the length scale of heteroge-
neity is intimately linked to the timescale of
deformation. All materials contain defects, such as
dislocations, interstitial atoms, and vacancies. When
deformed at very high (‘infinite’) frequency, the types
and concentrations of defects are of little conse-
quence and the material deforms elastically because
the defects are frozen in place. Seismic waves have
much longer periods of deformation however –
roughly 14 orders of magnitude greater than those
of atomic vibrations. At these timescales, defects can
move in response to deformation, leading to anelastic
behavior with absorption of mechanical energy and
lowering of the elastic wave relative to the elastic
limit. In the limit of much longer periods of deforma-
tion, such as those that characterize mantle
convection, the deformation is entirely viscous and
dominated by the motion of defects.

The nature and degree of anelasticity depends in
detail on defect types (point defects, dislocation,
grain boundary), concentrations, and mobilities.
Anelasticity is thus not a state function, in the usual
thermodynamic sense, and can depend on the past
history of the sample. This presents severe challenges
to experimental control and characterization, and to
our ability to relate the results to the Earth where the
deformation history that the materials have under-
gone may be very different from those prepared in
the laboratory. On the other hand, the fact that ane-
lasticity depends on so many more variables than the
elastic-wave velocity presents the opportunity for
further characterizing the nature of Earth’s interior
in ways that are not possible through analysis of the
elastic limit alone.

We will explore the relationship between miner-
als properties and Earth structure in more depth. Our
approach will be that of the forward problem. We
begin with the fundamentals of mineral elasticity,
including the basic theory of lattice vibrations, dis-
persion and normal modes, and its relationship to the
various experimental probes of elasticity, to the ther-
modynamic properties of minerals, and to the
underlying quantum mechanics of bonding.
Discussion of the elasticity of rocks includes an

outline of the theory of composites as applied to the

elastic constants, and the essentials of anelasticity.

Finally, we consider the issue of scaling in length

and timescale from the laboratory to the Earth. We

end with thoughts on the prospects for the inverse

problem; that is, formally inverting seismological

observations for quantities such as the temperature

and compositional fields at depth via knowledge of

materials properties.

1.22.2 Mineral Elasticity

1.22.2.1 Overview

In the limit of ideal crystals and small deformations,

the elasticity of solids is most usefully viewed in the

context of the vibrational modes of crystalline struc-

tures. The theory of the dynamics of perfect crystals

is our most powerful way of envisioning length scal-

ing. It gives us a formally exact means of relating the

elastic-wave velocity of samples ranging in size from

submicron to in principle infinite size, limited only

by considerations of surface effects at small scales and

of self-gravitation as we approach planetary size. The

material can be treated as a continuum at large scales,

and its properties derived from consideration of the

forces acting between atoms, that is, from a descrip-

tion at the smallest of scales. In particular, the

seismic-wave velocities of a perfect crystal are deter-

mined by its crystal structure and the interatomic

forces.
This approach of lattice dynamics is also impor-

tant in geophysics because it underlies our

understanding of the influence of temperature on

physical properties, including thermal expansion

that drives convection of the mantle and core, and

seismic-wave velocities that provide images of our

planet’s interior. The theory of thermal conductiv-

ity also derives from concepts of phonons, which are

the modes of oscillation of atoms in a crystal (ana-

logous to the normal modes of the Earth). The

theory of lattice dynamics is well developed, and

there are many excellent texts covering the subject

more deeply than we can here (Ashcroft and

Mermin, 1976; Born and Huang, 1954; Dove,

1993). In addition to illustrating the connection

between microscopic and macroscopic properties,

our goals are to illustrate the relationship between

experimental and geophysical measurements of

elastic-wave velocities.
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1.22.2.2 One-Dimensional Lattice
Dynamics and the Continuum Limit

A good illustration of these concepts is provided by

the normal modes of vibration of a linear chain of

identical atoms of mass m separated by a distance a

and connected with Hookean springs, for which the

relationship between force F and displacement u is

F¼ Ku, where K is the force constant (Figure 1). The

potential energy is a quadratic function of the dis-

placement of the atoms, and the equations of motion

(force equals mass times acceleration, expressing

conservation of linear momentum) are

m
qu2

n

qt 2
¼ K ðunþ1 – unÞ2 þ ðun – 1 – unÞ2

� �
½1�

Here, un is the displacement of the nth atom from its
ideal lattice site, located at the position na.
Substituting a traveling-wave solution for un as a
function of position and time u¼ A exp[i(!t – kx)],
we find the dispersion relation (Figure 1):

! ¼ 2

ffiffiffiffi
K

m

r

sin
ka

2

� �����

���� ½2�

where ! is the frequency (in rad s�1), k¼ 2�/� is the
wave number (in rad m�1) (in two and three dimen-
sions (2-D and 3-D), the wave vector specifies the

propagation direction and its magnitude gives the
wave number), and � is the wavelength (in meter/
cycle) of the normal mode of vibration. The phase
velocity describing the propagation speed of a given
wavelength is given by V�¼!/k, whereas the group
velocity that describes the propagation speed of a
wave packet (i.e., many different wavelengths, and
hence the wave energy) is VG¼ q!/qk. In general,
the linear monatomic chain is thus dispersive, with
wavelength-dependent velocities and specifically
VG < V� (i.e., a low-pass filter: longer waves travel
faster than shorter waves).

At long wavelength, as k! 0, the group and phase
velocities are the same (which means there is no

dispersion, i.e., spreading out of a wave packet):

V ¼ a

ffiffiffiffi
K

m

r

¼
ffiffiffiffiffi
M

�

s

½3�

where the last equality emphasizes the relationship
with the seismic-wave velocity expressed in terms of
an elastic modulus, M¼ K/a, and a density, �¼m/a3.
Here, M is the longitudinal modulus, since
propagation and polarization are parallel for the pre-
sent 1-D example. The motion described by eqns [2]
and [3], with ! ! 0 as k ! 0, is referred to as an
acoustic mode.

2V/a

V = ω/k

Wave vector, k = 2π/λ
k 

k = π/a = 2π/λ; λ = 2a

 0; λ 0
0∞

Fr
eq

ue
nc

y,
 ω

π/a

Figure 1 Phonon dispersion relation for the one-dimensional lattice (red line) indicating the relationship to the acoustic

velocity as the slope at the origin (dashed black line). Schematically illustrated are vibrational modes, with arrows and blue
curves indicating the sense of displacement of the atoms (blue circles) in the limits of long wavelengths (lower left) and of the

shortest wavelengths (upper right). The group velocity (slope of the !–k curve) vanishes at the Brillouin-zone edge, k¼ �/a,

because shorter wavelengths cannot be propagated across the discrete row of atoms; consequently, there is a standing
wave with no wave-energy propagation for �¼2a.
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Equation [3] applies to the continuum limit, with
wavelengths being much larger than interatomic spa-
cings, as is the case for seismic waves. Indeed, it
agrees with our intuitive notions about seismic-
wave velocities. As we increase the strength of the
interatomic forces the velocity increases, as it would,
for example, in the case of increasing pressure. Also,
as we increase the mass of the atoms, the velocity
decreases, as it would, for example, in the case of iron
enrichment.

What do the normal modes look like in the limit of
the wavelength approaching twice the interatomic
spacing, k!�/a? This is of interest because
shorter wavelengths cannot be supported by the
chain of discrete atoms (this limitation is identical to
the Nyquist theorem encountered in Fourier and
signal theory, which specifies that at least two
samples per wavelength are needed to characterize a
wave); in fact, normal modes with wavelengths less
than twice the interatomic spacing are
indistinguishable from those within the wave number
range k¼ 0 to �/a. This range of wave numbers,
defining the first Brillouin zone in reciprocal (wave
number) space, contains complete information on all
the normal modes that the chain of atoms can
experience. At the Brillouin zone edge (k¼ �/a), the
motion of each atom opposes its neighbors (Figure 1).
Each bond is stretched or compressed by the same
amount, producing the maximum frequency
!¼ 2

p
(K/m)¼ 2V/a.

The particulate nature of matter thus produces
velocity dispersion as wavelengths approach atomic
(or unit-cell) dimensions, well below the continuum
range. This is reflected in the nonlinear form of eqn
[2] and, for example, the difference between the
Brillouin-zone edge frequency and the linear extra-
polation of eqn [2] to the Brillouin-zone edge
!¼ �V/a. This type of dispersion is negligible in
the usual geophysical context, and, for ideal crystals,
scaling from laboratory samples to geophysical
length scales is essentially exact. From eqn [2], we
find that even for length scales corresponding to very
small grains (1 mm), the dispersion is only about 1
part in 3000. This unity of length scales is modified
by heterogeneity (e.g., grain boundaries) and anelas-
ticity in real (nonideal) samples.

1.22.2.3 Experimental Methods

Experimental probes of the elastic-wave velocities
have characteristic wavelengths that, while orders of
magnitude smaller than those of seismic waves, lie

well within the continuum, infinite-size limit of ideal
crystals. Brillouin spectroscopy is most closely con-
nected to the phonon spectrum (Duffy et al.,
1995; Jackson et al., 2000; Sinogeikin and Bass, 2000;
Weidner et al., 1982). Here, one measures the normal-
mode frequency of the acoustic branch at a small but
finite value of the wave number related to the wave-
length of the (generally visible) light used to probe
the sample, with the ratio of frequency to wave
number yielding the elastic-wave velocity. (The
wave number is given by the magnitude of the scat-
tering vector (i.e., the projection of the light’s
wavelength onto the direction of acoustic-wave
propagation in the crystal) through a formula
analogous to Bragg’s law for X-ray diffraction.
The frequency is observed as a Doppler-like shift of
the scattered relative to the incoming light, and
Brillouin spectroscopy can be thought of as the
acoustic-mode analog of Raman spectroscopy, the
latter scattering off the optic modes to be described
below.) In impulsive stimulated scattering, a time-
domain version of Brillouin spectroscopy, a phonon
is excited by one laser and scatters light from a
second laser, yielding information on elasticity, as
well as thermal conductivity (Abramson et al., 1999;
Brown et al., 1989; Zaug et al., 1993).

Similarly, resonant ultrasound spectroscopy and
ultrasonic interferometry determine the normal-mode
frequencies of a macroscopic crystal (megahertz for
typical experimental sample sizes), and are thus analo-
gous to normal-mode studies of the Earth (Anderson
and Isaak, 1995; Goto et al., 1976; Jackson and Niesler,
1982). Other ultrasonic methods are analogous to
body-wave seismology: an acoustic pulse of frequency
in the range of mega- to gigahertz is generated via a
transducer and the traveltime across the sample mea-
sured; multiple reflections and interference are used to
maximize precision (Rigden et al., 1991; Spetzler, 1970;
Yoneda, 1990). High frequencies are essential so that
the acoustic wavelength (10mm�1 mm) is much smal-
ler than the size of the sample (�1 mm for in situ

high-pressure measurements).
All of these methods involve small (‘infinitesimal’)-

amplitude waves. In addition, two classes of finite-
compression methods are available: dynamic (shock
wave) and static. In the first, a large-amplitude defor-
mation wave is generated by impact of a projectile or
a laser pulse into the sample, which is then com-
pressed on a timescale of nanoseconds. The velocity
of the resulting shock wave is then approximately
equal to the longitudinal-wave velocity at low pres-
sures (below the dynamic yielding point) and to the

Constraints from Mineral Physics on Seismological Models 779
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bulk sound velocity at higher pressures (thermal and
other corrections can be made to obtain more exact

results). Above the dynamic yielding point, the shock

front moves at close to the high-pressure bulk-sound
velocity (i.e., fluid-like response), but rarefaction

waves – inevitably generated at all free surfaces of
the sample – propagate into the shock-loaded state at

the isentropic sound velocity: this is measurable, with

the initial decompression traveling at the
longitudinal- (compressional-) wave velocity. The

bulk sound velocity (VB) and longitudinal-wave
velocity (VP) can thus be probed dynamically, and

the shear-wave velocity (VS) is obtained from the

relation (Brown and McQueen, 1986; Duffy and
Ahrens, 1992),

4

3
V 2

S ¼ V 2
P –V 2

B ½4�

The bulk sound velocity can also be determined
in static experiments (Jeanloz and Thompson, 1983;

Stixrude et al., 1992). Using a diamond-anvil cell or

another high-pressure device, one measures the
volume (or density �) as a function of pressure via

very slow (minutes–days) stepwise compression:
X-ray diffraction is used to determine the compres-

sion, for example. The slope of the relationship yields

the isothermal bulk modulus KT, which is related to
VB through

VB ¼
ffiffiffiffiffi
KS

�

s

½5�

and the correction from isothermal to adiabatic (KS)
bulk moduli which is small at room temperature.

One of the most important conclusions to arise
from these various probes of material elasticity is that

frequency dependence is essentially undetectable
over 8 orders of magnitude: the shear- and longitu-

dinal-wave velocities are indistinguishable from
100 THz (Brillouin) to 1 MHz (ultrasonic), and the

bulk sound velocity is invariant from 100 THz to the

essentially zero-frequency (DC) measurements of
static compression. In contrast, the Earth shows

measurable frequency dependence of the velocity
over a much narrower range of lower frequencies

(few hertz to millihertz) (Dziewonski and Anderson,
1981). The comparison with laboratory studies con-

firms the expectation that the magnitude of

attenuation and the resulting dispersion increase
with decreasing frequency.

1.22.2.4 3-D Lattice Dynamics: Polarization
and Anisotropy

Only longitudinal elastic modes are possible in 1-D:
shear elastic modes are higher-dimensional pheno-
mena since the polarization (direction of atomic
displacement) differs from that of propagation
(wave vector). In 3-D, there are three acoustic
branches, one corresponding to the P wave and two
to the S waves (Figure 2: the optic modes are dis-
cussed below). All solids support both longitudinal
and shear waves. In the case of isotropic solids
(glasses) and liquids (just as at low enough deforma-
tion rates solids flow plastically, at high enough
frequencies fluids transmit shear waves over finite
distances), the two shear branches are degenerate.
For nonisotropic media (crystals and liquid crystals),
the two shear branches are in general distinct,
although they may be degenerate along certain
high-symmetry directions.

Anisotropy is the variation of the elastic-wave
velocity with propagation polarization direction,
and is governed by the fourth-rank elastic-constant
tensor, cijkl (Kosevich et al., 1986; Wallace, 1972). The
polarizations and original slopes of the three acoustic
branches for wave vector k are given by the
Christoffel equation,

�V 2 ¼ cijkl ŵi k̂j ŵkk̂l ½6�

where wi is the polarization vector, the carets indicate
unit vectors, and we have used the Einstein notation
(summation over repeated subscripts, and each sub-
script takes on each of its values, i¼ 1, 2, 3 (e.g., x, y, z

directions)). The symmetry of the elastic-constant
tensor reflects that of the point group of the crystal
(Nye, 1985). For an isotropic solid (glass), there are
only two independent elastic constants, which may
be taken as the bulk and shear modulus. For cubic
crystals, there are three, c11, c12, and c44, referred to as
longitudinal, off-diagonal, and shear, respectively;
and as many as 21 for the lowest-symmetry point
group (triclinic crystals). Evaluating eqn [6] for
pure P-wave propagation (k¼w) in cubic symmetry,

�V 2
P

c11
¼ 1þ 2Aðk 2

1 k 2
2 þ k 2

1 k 2
3 þ k 2

2 k 2
3 Þ ½7�

where the anisotropy factor,

A ¼ 2c44 – ðc11 – c12Þ
c11

½8�

completely determines the P-wave anisotropy (Karki
et al., 1997b). We have used the Voigt contraction for
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the indices of the elastic constants: 11 ! 1, 22 ! 2,
33! 3, 12! 6, 13! 5, 23! 4. One can show that A

also determines the azimuthal and polarization shear
anisotropy. The right-hand side of eqn [7] gives 1 þ
2/3A, 1 þ 1/2A, and 1 for propagation along [111],
[110], and [100], respectively.

We can evaluate the likely magnitude of single-
crystal anisotropy if we assume that the interatomic

forces are central and between nearest neighbors

only, and we neglect coupling between strain and

vibrational modes. The elastic-constant tensor is

then (Gieske and Barsch, 1968)

cijkl ¼ ðK – PÞ 9

z

Xz

�¼1

r̂ �i r̂ �j r̂ �k r̂ �l ½9�

where P is pressure, z the coordination number, and
r̂ � the unit vector between an atom and its nearest
neighbor �; the sum is over all nearest neighbors. For
body-centered cubic (b.c.c.) and face-centered cubic
(f.c.c.) crystal structures, eqn [9] yields positive

Figure 2 (Top) Phonon dispersion curves of periclase (MgO) according to density functional theory (lines) and experiment

(circles), showing the three acoustic modes with zero frequency at the Brillouin-zone center (D point) and the three optic
modes with finite frequency at D. On the right is the vibrational spectrum or density of states, g(!), computed from the

theoretical phonon dispersion curves: at each frequency, the total number of normal modes is indicated for all wave vectors

intersecting the dispersion curves (this means that a higher density of modes is obtained from those portions of the curves
having small group velocities, or vanishing @!/@k; also, due to the effects of 3-D, the number of modes contributing from each

branch increases as �k2, even without dispersion). (Bottom) Phonon dispersion curves of CaSiO3 perovskite according to

density functional theory, with unstable modes (shown as negative frequencies) at the M- and R-points and along the line from

M–R. These unstable modes formed the basis for predicting a phase transformation in CaSiO3 perovskite (Stixrude et al.,
1996) that has recently been confirmed experimentally. The meaning of the symbols identifying special points in reciprocal

space are defined in terms of the wave vector, and are the same in the upper and lower figures. (Top) From Oganov AR, Gillan

MJ, and Price GD (2003) Ab initio lattice dynamics and structural stability of MgO. Journal of Chemical Physics 118: 10174–

10182. (Bottom) From Stixrude L, Cohen RE, Yu R, and Krakauer H (1996) Prediction of phase transition in CaSiO3 perovskite
and implications for lower mantle structure. American Mineralogist 81: 1293–1296.
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values of A, and therefore greater velocities along
[111] and [110] than along [100]. The magnitude of
the anisotropy is large: for f.c.c., A¼ 1/2, yielding
peak-to-peak variations in the P-wave velocity of
30%. This simple model has been applied to oxides
based on the argument that the elasticity is primarily
governed by the oxygen sublattice and oxygen–
oxygen repulsion, with the cations playing a passive,
charge-balancing role.

The relative importance of central versus other
interatomic forces can be deduced by comparing the
elements of the elastic-constant tensor to the predic-
tions of the Cauchy relations, which apply for purely
central forces (Figure 3). (Angle-dependent and
three-body forces are examples of such noncentral
interactions between atoms. Weiner (1983) shows
more generally that for centrosymmetric crystals
the harmonic elastic moduli satisfy the Cauchy rela-
tions if the electron charge density follows the
(homogeneous) deformation of the underlying lattice
of nuclei.) For example, in a cubic material, the
Cauchy relations predict

c12 – c44 ¼ 2P ½10�

In the case of MgO, often considered to be a proto-
typical ionic solid for which one would expect
central forces to be dominant, eqn [10] is increasingly
violated with increasing pressure (Isaak et al., 1990;
Karki et al., 1997b). This shows that the interatomic
forces become increasingly noncentral with

increasing pressure, as expected on systematic
grounds. One consequence of this change in forces
is that the sign of the anisotropy changes with
increasing pressure (Figure 4). Whereas at low
pressure, A is large and positive, in accord with
expectations based on eqn [9] and the f.c.c. oxygen
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In: Gurnis M, Wysession M, Knittle E, and Buffet B (eds.) The

Core–Mantle Boundary Region, pp. 83–96. Washington,

DC: American Geophysical Union.
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sublattice of MgO, at high pressure A becomes nega-
tive, with a magnitude at the core–mantle boundary
greater than that at ambient pressure. The change in
sign of A corresponds to a change in the fastest and
slowest directions: [111] is fastest for P-wave propa-
gation at ambient pressure, whereas [100] is fastest at
the core–mantle boundary. Other minerals also show
strong pressure dependence of the magnitude and
sense of the anisotropy (Karki et al., 2001).

Considerations of mechanical stability place
constraints on the relative magnitude of the elastic

constants of any material, whether single crystals

or rocks. For isotropic symmetry, the stability

condition is simply that the bulk and shear moduli

be positive definite. For cubic symmetry, the

conditions are

c44 > 0; c11 > jc12j; c11 þ 2c12 > 0 ½11�

and for hexagonal symmetry,

c44 > 0; c11 > jc12j; ðc11 þ c12Þc33 > 2c2
13 ½12�

The more general statement from which stability
conditions for arbitrary symmetry are derived is
that the principal minors of the elastic-constant
matrix (Voigt notation) must be positive definite
(Nye, 1985). Elastic instabilities place fundamental
constraints on the phases that exist in the Earth. For
example, it has been argued that the predicted elastic
instability in the b.c.c. phase of iron means that this
phase cannot exist in the inner core, with important
implications for the origin of anisotropy in this region
(Stixrude et al., 1994).

One of the most fundamental conclusions from
experimental and theoretical studies of minerals is
that the elastic anisotropy is much larger than that
observed seismologically in most parts of the
Earth. Peak-to-peak azimuthal variation in velocities
of 10% or more are typical in mantle and core miner-
als, as compared with a few percent in the Earth. The
single-crystalline anisotropy of some minerals is suffi-
ciently large to produce cusps in the group velocity
envelope (Helbig, 1984) (Figure 5). Experimental
measurement and prediction of the single-crystal ani-
sotropy is essential because it forms the basis for
estimating the anisotropy of rocks, and places an
upper bound on the rock anisotropy that can be pro-
duced by lattice preferred orientation. Most of the
experimental methods discussed previously are cap-
able of measuring the full elastic-constant tensor, and
therefore the velocity in all directions. These mea-
surements must be made on single crystals. In the case
of Brillouin or ultrasonic interferometry, several mea-
surements are necessary, varying the direction of the
impulse with respect to the crystallographic axes in
order to sample different directions in reciprocal
space.

What is the origin of anisotropy in the mantle and
core? There are at least two possible explanations,
shape-preferred orientation and lattice-preferred
orientation. These two mechanisms for generating
anisotropy in a polycrystalline aggregate arise in
principle from very different sets of processes,
and so carry important implications for our
understanding of mantle dynamics and evolution. In
the case of lattice-preferred orientation, anisotropy
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originates in the elastic anisotropy of the constituent

crystals and is in general present for single- as well as

multiphase aggregates. Since the single-crystal

anisotropy can be large, it is natural to consider

lattice-preferred orientation as the primary

explanation in many cases (Figure 4). Knowledge

of the single-crystal elastic anisotropy is not

sufficient to determine that of a polycrystalline

aggregate, however. For this, one must also know

the texture, that is, the orientations of all the crystals

in the aggregate.
Shape-preferred orientation arises from an inho-

mogeneous distribution of phases with different

elastic properties. Anisotropy due to shape-preferred

orientation scales with the contrast in physical prop-

erties between the phases, and therefore applies only

to multiphase aggregates (composites). It can be

large, for example, in cracked or partially molten

rock. In the limit of large scales, variations of rock

types (lithological variations) can induce anisotropy

that affects seismic waves.
Presumably, both shape- and lattice-preferred

orientation cause seismic anisotropy within the

Earth. That the observed anisotropy is quantitatively

much smaller than could be expected based on

laboratory and theoretical studies of individual

minerals and mineral aggregates strongly suggests

that the seismological information is severely aliased.

That is, the seismic wavelengths (�103–106 m) are

typically so much longer than the dimensions of

crystals or even lithological variations, that they

reflect only a broad spatial average of the true het-

erogeneity and anisotropy at depth.

1.22.2.5 Nontrivial Crystal Structures,
Optic Modes, and Thermodynamics

Lattice vibrations are geophysically significant not

only for their connection to elasticity, but also

because they govern most thermodymamic

properties of Earth materials, including the

temperature dependence of the elastic constants.

Most of the temperature dependence of the energy

of a crystal comes from the increasing amplitude of

atomic vibrations with increasing temperature. The

derivation of the internal energy due to lattice

vibrations is outlined in the texts listed above. Here

we seek an intuitive understanding, simply quoting

the result for the internal energy associated with

atomic vibrations

Uvib ¼
1

2

X

i

h!i þ kBT
X

i

h!i=kBT

eh!i=kBT – 1
½13�

where h is Planck’s constant divided by 2�, kB is
Boltzmann’s constant, and the sums are over all 3N

vibrational modes with N being the number of atoms
in the crystal. The first term is due to zero-point
motion. The second term is the product of the energy
of a particular vibrational mode (h !) and the prob-
ability of excitation (‘occupation’) of that mode. The
probability of occupation may appear unfamiliar
because it is derived from the appropriate quantum
(Bose–Einstein) statistics, but it does reduce to the
Boltzmann factor exp(�h !/kT) in the limit of high
temperatures. The probability of occupation says that
while very-high-frequency modes (such as the
stretching of the O–H bond) will barely be excited
until one reaches mantle temperatures, the part of the
acoustic branch near the Brillouin-zone origin (i.e.,
wavelengths much larger than the interatomic spa-
cing) is already fully excited even at room
temperature.

Eventually, all vibrational modes are fully excited
and the second sum on the right-hand side approaches

a constant, equal to the number of modes (3N). In this

Dulong–Petit limit, the vibrational energy is linear in

temperature, and the heat capacity at constant density

approaches a constant value,

C� ¼
qUvib

qT

� �

�

! 3NkB ½14�

or 1.188 J K�1 g�1 for a mean atomic mass typical of
the mantle (21 g mol�1). Vibrational frequencies of
Earth materials are such that the Dulong–Petit limit
is obeyed to within a few percent at typical subcrustal
temperatures.

A practical difficulty in using eqn [13] is that all
the vibrational frequencies must be known, which is

rarely the case for mantle phases, particularly at high

pressure. By reformulating as a sum over energies

rather than states, we reestablish the connection

with the analysis of phonon dispersion outlined

above, and develop a useful starting point for approx-

imating the sums. The vibrational energy can then be

written as

Uvib ¼ kBT

Z 1

0

1

2
þ 1

eh!=kb T – 1

� �
h!

kBT
gð!Þd! ½15�

where the vibrational density of states g(!) (see
Figure 2) is normalized such that
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3N ¼
Z 1

0

gð!Þd! ½16�

The power of this reformulation is illustrated by
one of the simplest approximations for g(!), due to
Debye,

gð!Þ ¼ 9N! 2 �V

a

� � – 3

½17�

This is derived by treating the material as a homo-
geneous continuum: that is, ignoring optic modes
(described below) and approximating the acoustic
phonon branch as linear with slope equal to the
acoustic velocity (see eqn [3]: for this case without
dispersion ! _ k, and because g(!) _ k2 in 3-D, it is
proportional to !2 as in eqn [17]). The quantity in
parentheses, the Debye frequency, is just the result of
linearly extrapolating the acoustic branch to the
Brillouin-zone edge and is obtained by ensuring
that eqn [16] is satisfied. (Ensuring that only 3N

normal modes (i.e., 3N degrees of freedom) are pre-
sent for a crystal of N atoms in 3-D takes into account
the atomic constituents of the medium. It was
Debye’s genius to realize that a self-inconsistent
model of a homogeneous continuum with underlying
atomic structure would lead to a physically sound
result.) In 3-D, the velocity is replaced by an appro-
priate average over all directions and polarizations,
and the bond length by the mean atomic spacing. The
squared-frequency dependence arises from the
assumptions that the density of vibrational states is
uniform in reciprocal space and that the first
Brillouin zone is a sphere. The Debye approximation
captures much of the essential features of the heat
capacity, including the observation that it vanishes at
zero temperature as T 3 and approaches the Dulong–
Petit limit at high temperature.

Simple approximations to the vibrational density
of states, like the Debye approximation, do not expli-
citly account for the structural complexity
characteristic of most Earth materials: in particular,
that several different atoms are typically present in
each unit cell of the crystal structure (e.g., Mg and O
in MgO). What influence do these complexities have
on the normal modes of vibration? The essential
features are captured by a linear chain, but now
with two different spring constants (see also Kieffer,
1979) (Figure 6). The broken symmetry doubles the
unit cell (i.e., two atoms, one of each color in each
unit cell vs one atom per unit cell in the monatomic
linear chain), and halves the first Brillouin zone. The

relationship of the monatomic and diatomic unit cells

in reciprocal space is one of folding the phonon

branches so that the vibrational mode that appeared

on the Brillouin-zone edge in the monatomic case is

now folded back to the Brillouin-zone center. This is

significant because now we have a vibrational mode

of finite frequency at the Brillouin-zone center; as

this can be observed with long-wavelength probes

such as visible light, it is called an optic branch. In

general, there are 3n mode frequencies at each wave

number k in a 3-D crystal structure having n atoms

per unit cell. (To be precise, we refer to the ‘primi-

tive’ (smallest, irreducible) unit cell throughout this

text. Other definitions of the crystallographic unit

cell are often used for convenience.)
Now consider what happens when the difference

in the two spring constants begins to grow or the

masses of the two atoms in the unit cell are allowed

a
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Figure 6 Phonon dispersion curve in a 1-D lattice with two
types of atoms. The unit-cell dimension a is doubled

compared with the monoatomic case, which halves the size

of the Brillouin zone and folds the dispersion curve

producing an optic branch. The pattern of vibration of the
optic mode at zero wave vector is schematically illustrated;

note that each unit cell has the identical pattern of vibration.

The thin solid lines schematically illustrate the opening of an

acoustic–optical gap that would be produced if the lattice
contained two different force constants, or if the atoms had

different masses.
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to differ (Figure 6). The frequencies of the two
normal modes at the Brillouin-zone edge begin to
separate, as is seen by considering the patterns of
vibration. This zone-edge splitting appears whenever
the material has bonds of different strength. So, for
example, the contrast between the strong Si–O bond
and the weaker inter-tetrahedral forces in quartz
cause large zone-edge splittings, and a clear separa-
tion of acoustic and optic modes. Periclase, for which
the contrast in bond strengths is much less, shows
almost no acoustic–optic gap (in detail, non-nearest
neighbor and noncentral forces open a gap even in
periclase along certain high-symmetry directions;
electron-polarization effects can also play an impor-
tant role in shifting longitudinal-optic relative to
transverse-optic modes).

In any case, at a given wave vector, we always
have three acoustic modes and 3n – 3 optic modes (n
is the number of atoms in the unit cell). It is also
known that longer-range interactions add structure
to the !–k dispersion relation: each successive coor-
dination shell in a set of two-body interactions adds a
Fourier component to the mode branch.

In the limit of no optical gap, the vibrational
density of states may be reasonably approximated
by the Debye relation (eqn [17]), regardless of how
many atoms are in the unit cell, as the main modifi-
cation of phonon dispersion is Brillouin-zone folding.
This realization has led to the concept of Debye-like
solids, periclase and corundum being prototypical
examples (Anderson, 1995). Materials like quartz
and those containing hydrogen bonds are typical
counterexamples, for which more elaborate models
such as those due to Kiefer are more appropriate
(Kieffer, 1980). Even when deviations from a
Debye-like spectrum are large, the influence on ther-
mochemical properties is not necessarily significant,
because these depend at high temperature only on
low-order moments (weighted averages) of the vibra-
tional density of states (Barron et al., 1957) (Figure 7).
Deviations are likely to be largest for water-rich
hydrous phases, because the stretching frequency
for the OH bond is so much larger than for any
other bond thought to be important in the mantle
(Williams, 1995). The essential relationship between
acoustic and optic branches has also led to the idea of
determining an average elastic-wave velocity from a
measurement of the appropriate optic mode at the
Brillouin-zone center (Merkel et al., 2000).

Thermal expansion arises, in a first approxima-
tion, from the volume dependence of the vibrational
frequencies (quasi-harmonic model). This modification

of the theory retains the normal-mode description of
the frequencies, but allows the frequency spectrum
to shift with compression. Anharmonicity generally
refers to time dependence of the normal modes
(e.g., due to mode mixing), and accounts for physical
effects such as temperature dependence of the
vibrational frequencies at constant volume that are
not explained by quasi-harmonic theory (Gillet et al.,
1996)].

As the crystal compresses, bonds generally
become stronger, the vibrational frequencies
increase, and, from eqn [13], the vibrational energy
decreases. The volume dependence of the vibrational
energy produces a vibrational pressure that is posi-
tive and tends to expand the lattice. The vibrational
or thermal pressure is

Pvib ¼ ��Uvib ½18�

where the Grüneisen parameter is defined by

� X
1

�

qP

qU

� �

�

¼ �KT

�C�
¼ qlnT

qln�

� �

S

½19�

and the second and third relations are thermody-
namic identities. This makes explicit the
relationship between thermal pressure and thermal
expansivity �, and also shows that the Grüneisen
parameter controls the magnitude of the adiabatic
temperature gradient. For models of the vibrational
density of states with a single characteristic fre-
quency, such as the Debye or Einstein
approximations, the following relation also holds,

� ¼ qln!

qln�
½20�

establishing the link between quasi-harmonic ther-
mal properties and the normal modes of the lattice.
The Grüneisen parameter is dimensionless and
empirically found to be about 1–3, so is a convenient
way of capturing many related influences of tem-
perature on the physical properties of minerals
inside a planet (Mcqueen et al., 1970; Stixrude and
Lithgow-Bertelloni, 2005b; Wallace, 1972).

To introduce the influence of temperature on
the elastic constants, consider the vibrational
contribution to the bulk modulus. Taking the volume
derivative of eqn [18], we see that the temperature
dependence of the elastic constants will involve
not only the Grüneisen parameter, but also its
volume derivative

q ¼ –
qln�

qln�
½21�
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where the parameter q is dimensionless and is
thought to take on values in the range 1–3 for most
mantle phases. The thermal pressure at temperatures
above the Debye temperature can be approximated
by

PTH � 3nRT�� ½22�

and the thermal contribution to the adiabatic bulk
modulus along an isochore is then just the volume
derivative

KTH � 3nRT ð� þ 1 – qÞ ½23�

An important consequence of the fact that q > 1
for most mantle materials is that the thermal pressure

and other thermal effects tend to decrease with com-
pression. For example, the thermal expansivity and
the influence of temperature on the elastic-wave
velocities decrease with depth, with potentially
important implications for mantle dynamics and the

interpretation of seismic tomography (Chopelas and
Boehler, 1989; Isaak et al., 1992).

Because the Grüneisen parameter plays such a
central role in our understanding of the thermal

state of the Earth, there has been a great deal of
interest in determining its dependence on compres-
sion. Many experimental data are consistent with the
assumption that q is constant without necessarily
requiring it. More recent experimental analyses
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and theoretical studies suggest that q tends to
decrease with compression (Agnon and Bukowinski,
1990; Speziale et al., 2001), and analytical forms have
been proposed (Stixrude and Lithgow-Bertelloni,
2005b).

1.22.2.6 Influence of Pressure and
Temperature on the Elastic Constants

An important feature of the Earth is that compres-
sions are large – the characteristic pressure is a large
fraction of typical zero-pressure values of mineral
bulk moduli – and the characteristic temperature is
larger than typical vibrational energies of Earth
materials. This means that measurements of the pres-
sure and temperature derivatives of the elastic
constants near ambient conditions do not suffice to
give us a meaningful picture of the variation of these
quantities over the conditions of Earth’s interior.
Indeed, experimental measurements show that the
bulk modulus varies by more than a factor of 2 over
the mantle pressure range. Such large changes are
seen in the density and other properties too, and led
Birch to apply the theory of Eulerian finite strain to
understanding the Earth’s interior. The theory of
finite strain has been generalized to encompass the
elastic constants (Davies, 1974), and has recently
been reformulated in a thermodynamically self-con-
sistent manner (Stixrude and Lithgow-Bertelloni,
2005b). Only the final results are discussed here.

The variation of the bulk and shear moduli with
volume and temperature are, respectively,

K ¼ð1þ 2f Þ5=2

�
�

K0 þ ð3K0K 9
o – 5K0Þf þ

27

2
ðK0K 90 – 4K0Þf 2

	

þ ð� þ 1 – qÞ���Uvtb – �
2��ðCV TÞ ½24�

G ¼ð1þ 2f Þ5=2

�
G0 þ ð3K0G90 – 5G0Þf

þ
�

6K0G90 – 24K0 – 14G0 þ
9

2
K0K 90

�
f 2

	

– 	s��Uvib ½25�

where f is the Eulerian strain measure,

f ¼ 1

2

V

V0

� � – 2=3

– 1

$ %

½26�

and subscript ‘0’ indicates the value of a quantity at
the reference state (e.g., ambient conditions), primes

indicate pressure derivatives, and � indicates the
difference between the temperature of interest and
the temperature of the reference state. The quantity
	S takes on positive values near unity for mantle
phases, and derives from the shear part of the
fourth-rank tensor formed from the strain derivative
of the tensorial generalization of �, which we have
assumed to be isotropic. Taking typical values of �0

and q (1 and 2, respectively), the temperature-depen-
dent terms show that both moduli decrease with
increasing temperature at constant volume. The
decrease with increasing temperature at constant
pressure is greater than that at constant volume
according to

qM

qT

� �

P

¼ qM

qT

� �

V

– �CV �M90 ½27�

where M stands for either the bulk or shear modulus.
Finite-strain theory suggests systematic expres-

sions for the values of the pressure derivatives of

the elastic constants (Karki et al., 2001; Stixrude and

Lithgow-Bertelloni, 2005b). It has been known for

some time that the Eulerian finite strain theory

owes its success at least in part to that fact that it

rapidly converges to experimentally measured equa-

tions of state with increasingly higher orders of the

finite strain. In fact, for many materials, the lowest-

order terms suffice. The term linear in f in the equa-

tion of state vanishes when K09¼ 4, a value that is

typical of mantle phases and many other materials as

well. We may take the same approach in the case of

eqns [24] and [25], and ask what relationships

are implied by the vanishing of the term linear in

f within the square brackets. In the case of the shear

modulus, this yields a relationship between the pres-

sure derivative of G and the ratio of shear modulus to

bulk modulus, which is satisfied approximately for

mantle phases. The pressure derivative of the shear

modulus thus appears to scale with the value of the

shear modulus itself.
We may relate the elastic moduli of mantle phases

to those found seismologically via a compilation of

experimental and theoretical results for the para-

meters appearing in eqns [24] and [25] (Figure 8).

Comparison to seismological observations tends to

support the standard model of a homogeneous peri-

dotite composition that produces a series of phase

transformations with increasing depth. (Peridotite is a

rock primarily composed of the mineral olivine.

Model mantle compositions, based on comparison
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with seismology, the genesis of magmas, and analysis

of mantle xenoliths typically contain 50–60%

olivine, and lesser amounts of orthopyroxene, clino-

pyroxene, and garnet.) The velocity of the upper

mantle is spanned by that of olivine, orthopyroxene,

clinopyroxene, and garnet; in the shallow transition

zone (410–520 km), by clinopyroxene, majorite, and

wadsleyite; and in the deep transition zone (500–

660 km), by Ca-perovskite, ringwoodite, and major-

ite. Velocities in the lower mantle are spanned by

those of Mg-perovskite, magnesiowüstite, and Ca-

perovskite. In the upper mantle and transition zone,

we find that the change in shear-wave velocity due to

phase transformations exceeds the influence of pres-

sure on the velocity of any one phase. This suggests

the essential role that phase transformations play in

producing the anomalous velocity gradient of the

transition zone, and emphasizes the importance of

going beyond the elasticity of individual minerals in

understanding mantle structure, as discussed further

in the next section.
One of the most remarkable patterns in the tem-

perature and compositional derivatives of the elastic

moduli, aside from the large influence of compres-
sion discussed above, is the large difference between
garnet-majorite and other phases (Figure 9). The
compositional derivative for garnet and majorite
(and clinopyroxene) is only a third of those of olivine
and orthopyroxene, while the temperature deriva-
tives of garnet and majorite are approximately half
those of olivine and orthopyroxene. The contrast in
compositional derivatives can be traced directly to
the shear modulus of Mg- and Fe-end members of
the phases: while the shear modulus of fayalite is 40%
less than that of forsterite, that of almandine is actu-
ally slightly greater than that of pyrope, partially
offsetting the effect of the greater density of alman-
dine on VS. The contrast in temperature derivatives
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can be related to experimental measurements of
dG/dT of the dominant species: 8 and 9 MPa K�1

for pyrope and majorite, respectively, compared to
15 MPa K�1 for forsterite. One consequence of the
unusual properties of garnet is that the influence of
temperature and iron content is sensitive to bulk
composition. Specifically, more garnet-rich composi-
tions, such as basalt, are less sensitive to variations in
temperature or iron content than garnet-poor bulk
compositions such as harzburgite (basalt is a rock
primarily composed of pyroxene and plagioclase
feldspar that makes up most of the oceanic crust
and is produced by partial melting of the mantle,
whereas harzburgite is a rock that is richer in olivine
than the average mantle and is thought to be the
residuum of partial melting of the mantle) (Speziale
et al., 2005a).

1.22.3 Rock Elasticity

1.22.3.1 Overview

Knowledge of mineral elasticity is necessary for esti-
mating the elastic properties of a rock, but it is not
sufficient. There are two primary considerations.
The first is that rocks are heterogeneous. In the
mantle, this heterogeneity is most pronounced at
the grain scale (1–10 mm): every part of the mantle
is made of several different mineral phases, each with
different elastic properties. The difference in elastic
properties between coexisting minerals is generally
larger than that between different mantle rock types.
The second difficulty is that minerals tend to be
preferentially aligned by deformation. The align-
ment is neither perfect, in which case the elasticity
would reduce to that of a single crystal, nor negligi-
ble. Indeed, the detection of preferential alignment
via the resulting anisotropic propagation of seismic
waves is one of our most powerful potential probes of
mantle flow.

In principle, one needs to know – in addition to
the elastic-constant tensors of the constituent miner-
als – the location, size, shape, and orientation of each
mineral grain in the assemblage. However, such a
detailed description is neither practical nor useful: a
part of the Earth’s mantle, the size of a typical mantle
body wave (100 km), contains on the order of 1021

individual mineral grains, assuming 1 cm grains! This
is another statement of the spatial aliasing problem
described above. Model statistical distributions of
mineral geometry play an important role, in particu-
lar in the analysis of preferred orientation.

Idealizations, in which either the preferred orienta-
tion or the spatial inhomogeneity, or both, are
simplified, and permit exact solutions or rigorous
bounds, are also important.

Additional complications arise at finite frequency:
dissipative mechanisms exist in aggregates that are
not present in single crystals, and these are thought to
be important for producing attenuation and disper-
sion in the mantle, particularly at grain boundaries.

1.22.3.2 Composites Theory

Consider first a homogeneous isotropic medium, cor-
responding to a glass or a liquid. The elasticity is
completely characterized by two elastic constants,
which may be taken to be the bulk modulus, K, and
shear modulus, G. The longitudinal- and shear-wave
velocities for all propagation and polarization direc-
tions are

VP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4=3G

�

s

VS ¼
ffiffiffiffi
G

�

s

½28�

where � is the density and, in the case of a liquid
deformed on a timescale long compared with its
Maxwell relaxation time, G¼ 0.

Consider an inhomogeneous system consisting of
N isotropic phases with distinct elastic properties,
such that phase � has bulk and shear moduli K �

and G � and �¼ 1, � � �, N. Suppose that the only
properties of the grain geometry we know are the
volume fractions of the phases ��. The volume frac-
tion is the only feature that is uniquely determined
by the usual equilibrium thermodynamics, and is thus
independent of the history of the sample. The stress
and strain tensors are now functions of position


ij ðxÞ ¼ cijkl ðxÞ"kl ðxÞ ½29�

"ij ðxÞ ¼ Sijkl ðxÞ
kl ðxÞ ½30�

where the compliance tensor is the inverse of the
elastic-constant tensor,

Sijkl ¼ c – 1
ijkl ½31�

The volume average stress and strain of the rock is
assumed related to that in each of the phases by


ij ¼
X

�

���
�
ij

½32�

�"ij ¼
X

�

���"�
ij

½33�
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where the bars indicate volume averages. We define
the effective elastic moduli of the composite as

�
ij ¼ c�ijkl �"kl ½34�

If we assume that the average stress and strain in each
phase is a unique function of the average stress and
strain, respectively, of the aggregate, then it is possi-
ble to show that the values of c* are bounded such
that

M�R ¼
X

�

��

M�

 ! – 1

< M� <
X

�

��M� ¼ M�V ½35�

where M refers to either K or G, and the bounds MR*
and MV* correspond, respectively, to the assumption
that the stress (Reuss bound) or strain (Voigt bound)
are homogeneous throughout the composite (Hill,
1963; Watt et al., 1976). Except in special geometries,
neither of these approximations is correct: the assump-
tion of constant stress requires the opening of gaps
between grains, while the assumption of constant
strain violates mechanical equilibrium. Indeed, the
assumptions embedded in eqns [32] and [33] are in
general not justifiable, and one of the complications of
composites theory is that the stress tensor can no
longer be treated as symmetric (e.g., Juanzemis, 1967).

Ignoring these complications, the Voigt and Reuss
bounds limit the possible degree of anisotropy due to
inhomogeneous arrangement of phases. This type of
anisotropy is sometimes referred to as shape-
preferred orientation. Plane layering is the classic
example for which Voigt and Reuss bounds can be
realized (Backus, 1962). The P-wave velocity for
waves propagating normal to the layers is
�VP

2 ¼ KRþ 4/3GR, while that for propagation paral-
lel to the layers is �VP

2 ¼ KV þ 4/3GV. Thus,
heterogeneity produces anisotropy. This relationship
has been examined on the atomic level as well. There
are several crystal structures in which layers of more
compressible units, for example, Mg coordination
polyhedra, alternate with layers of stiffer units such
as Si polyhedra. Such alternation leads to the large
anisotropy of the olivine structure (Hazen et al., 1996;
Wentzcovitch and Stixrude, 1997).

For illustration, we compare the Voigt and Reuss
bounds of a typical mantle lithology (peridotite) in
Figure 10. The bounds are wide in the shallow
mantle due to the extremely low velocity of plagio-
clase, and in the vicinity of the 660 km discontinuity
due to the much higher velocity of perovskite than
garnet, whereas they are nearly coincident in the
shallow transition zone where wadsleyite and garnet

have similar velocities. In the lower mantle, the

bounds differ by less than 2% and by less than 1%

at the core–mantle boundary. These results suggest

that shape-preferred orientation in subsolidus peri-

dotites is unlikely to be the source of anisotropy in

the D0 layer at the base of the mantle, as has pre-

viously been proposed on the basis of the contrast in

elastic properties between perovskite and periclase

(Karato, 1998).
It is not possible to estimate more precisely the

value of the effective elastic moduli without further

information. It is common in the literature to quote the

so-called Voigt–Reuss–Hill (VRH) mean, which is

simply the arithmetic mean of the Voigt and Reuss

bounds (Hill, 1952). This value is not rigorously justi-

fied as a best estimate of the actual effective moduli.
With further assumptions about the distribution of

the phases, it is possible to derive narrower bounds.

The Hashin–Shtrikman analysis (Hashin and

Shtrikman, 1963) assumes that the distribution of

phases is statistically random and that the elastic

properties of the aggregate are given as a solution

to a variational problem. So, for example, regular

arrangements such as layering are excluded. The

Hashin–Shtrikman bounds, given in compact form

by Berryman (1995), are narrower than the Voigt–

Reuss bounds in most cases, including for the mantle

(Figure 10). Watt et al. (1976) recommend that the

Hashin–Shtrikman bounds should generally be used
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in reporting the elastic properties of multiphase
materials, rather than the Voigt–Reuss bounds, or
the VRH average. However, this may be misleading
since the Hashin–Shtrikman bounds are based on a
limiting assumption that excludes geometries that are
important in some parts of the Earth (e.g., layering).

In certain cases, the Voigt–Reuss and Hashin–
Shtrikman bounds are too wide to yield useful esti-
mates. This can occur when the moduli of the
constituent phases differ significantly, as in the case
of a porous solid or a partial melt. In such cases, the
analysis of specific geometries may be useful.
Typically, one assumes that one phase is the host
(i.e., the solid rock) and the other is treated as an
inclusion (air, water, or melt). Results for specific
inclusion shapes have been derived, including
spheres, needles, disks, and penny-shaped cracks
(Berryman, 1995). For a given volume fraction of
inclusions, the effective moduli are most similar to
those of the host for spherical inclusions, whereas
large aspect-ratio disks or cracks have the largest
influence on the shear modulus (Figure 11). It should
be noted that very little is known concerning the
actual form of melt inclusions in partial melts within
the mantle. The relevant controlling parameters are
many, including the pressure, temperature, bulk
composition and deformation history, and may be
influenced by nonequilibrium effects.

An additional ambiguity in the computation of the
effective elastic moduli of isotropic composites arises

from the intrinsic anisotropy of crystals. Even in the
case of a monophase aggregate, the effective elastic
moduli are inherently uncertain unless the texture
has been completely specified (Watt et al., 1976). Hill
(1952) showed that rigorous bounds correspond to
the assumption of homogeneous strain and homoge-
neous stress, respectively. The Voigt (homogeneous-
strain) bounds are

K �V ¼
1

3
ðAþ 2BÞ ½36�

G�V ¼
1

5
ðA – B þ 3CÞ ½37�

where A, B, and C, are, respectively, the mean diag-
onal, off-diagonal, and shear elastic constants:

A ¼ 1

3
ðc11 þ c22 þ c33Þ

B ¼ 1

3
ðc12 þ c13 þ c23Þ

C ¼ 1

3
ðc44 þ c55 þ c66Þ

½38�

The Reuss (homogeneous-stress) bounds are

K �R ¼
1

3ða þ 2bÞ ½39�

G�R ¼
5

4a – 4b þ 3c
½40�

where a, b, and c are similar to A, B, and C, but with
the components of the compliance tensor replacing
those of the elastic-constant tensor. The Hashin–
Shtrikman bounds for the monophase aggregate are
narrower (Hashin and Shtrikman, 1962). Expressions
have been derived for cubic, tetragonal, orthorhom-
bic, hexagonal, trigonal, and monoclinic Bravais
lattices (Watt, 1988, and references therein). The
difference between Voigt and Reuss bounds for the
shear-wave velocity of olivine at ambient conditions
is 2%. The difference tends to increase with increas-
ing single-crystal anisotropy. For materials with very
large anisotropy, such as periclase at the core–mantle
boundary (azimuthal shear anisotropy¼ 60%), Voigt
and Reuss bounds on the shear modulus differ by
30% and the Hashin–Shtrikman bounds differ by
5% (Karki et al., 2001). Spinel is an example of a
mineral that is extremely anisotropic at ambient con-
ditions, and for which bounds are wide (Yoneda,
1990).

Preferred orientation (preferential crystallo-
graphic alignment) of the constituent grains results
in macroscopic anisotropy detectable by seismic
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waves. The preferred orientation is characterized by
the orientation distribution function,

f ðgÞdg ¼ dVg

V
½41�

where g is the rotation matrix that relates the crystal-
lographic axes to the spatial or laboratory reference
frame and dVg/V is the volume fraction of crystals
with orientation lying within the range dg. The
effective elastic moduli of the aggregate may then
be estimated by (Bunge et al., 2000)

c�ijkl ¼
Z

g

g img jng k0g lpcmnopf ðgÞdg ½42�

where the effective elastic moduli are referred to the
laboratory frame, and the elastic-constant tensor in
the integrand is referred to the crystallographic
frame. This expression yields the Voigt bound on
the effective elastic moduli; the Reuss bound involves
the compliances. Two simple cases of orientation
distribution functions are of special interest
(Stixrude, 1998). If the texture is perfect, that is, all
crystals are identically aligned, then the effective
elastic-constant tensor is identical to that of the single
crystal rotated into the laboratory frame. Such a
texture might be considered the asymptotic limit of
lattice-preferred orientation produced by mantle
flow. A transversely anisotropic aggregate is pro-
duced if deformation is dominated by an easy-glide
plane. In this case, the effective elastic-constant ten-
sor has hexagonal symmetry with the symmetry-axis
normal to the glide plane.

1.22.3.3 Attenuation and Dispersion

When deformed by small stresses over short time-
scales, the mantle behaves nearly elastically,
propagating shear waves, whereas at long timescales
it behaves like a fluid, deforming viscously in mantle
convection. (Though not relevant to the immediate
discussion, rock also behaves as a fluid under the
short but high-amplitude stresses of impact-induced
shock.) The boundary between these two types of
behavior is characterized by the Maxwell relaxation
time,

�M ¼
	

G
½43�

where 	 is the viscosity. For the upper mantle,
�M � 1000 years is determined from glacial rebound.

At seismic periods, deformation is also not per-
fectly elastic. The relative amount of elastic energy

lost per cycle, dE/E, defines the quality factor Q, the
inverse of which is referred to as the internal friction
or attenuation

Q – 1 ¼ dE

E
½44�

Attenuation entails dispersion. (This results from
causality, the requirement that the mechanical
energy of the wave cannot propagate faster than the
signal velocity, as encapsulated by the fact that the
frequency-dependent elastic modulus and attenua-
tion are not independent: they are Hilbert
transform-related real and imaginary components of
the complex modulus, [47], and therefore satisfy
integral conditions (Kramers–Kronig relations), e.g.,
Bracewell (1999).) The acoustic-wave velocity
depends on the wavelength or frequency of the
probe (Figure 12). This kind of dispersion – which
involves nonequilibrium processes, with mechanical
energy converted to heat – is distinct from the dis-
persion we encountered in the context of lattice
dynamics of perfect crystals, which is an equilibrium
phenomenon arising from the particulate nature of
matter.

Simple models are useful for thinking about
attenuation and dispersion even when they do not
correspond to geophysically relevant materials. The
Maxwell model is the simplest, consisting of an elas-
tic spring and a dashpot in series. The Voigt model
has these two elements in parallel. At short periods,
both of these simple models produce elastic behavior
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governed by the spring. At long periods, the behavior

is very different. Whereas the Maxwell model pro-

duces a purely viscous, unrecoverable response,

governed by the dashpot, the Voigt model shows

anelastic behavior: time dependent, but fully reco-

verable. The so-called Kelvin or standard linear solid

consists of a Voigt model in series with a spring. The

simplest model that shows the full range of response –

elastic, anelastic, and viscous – is the Burgers model,

which can be thought of as a Maxwell and Voigt solid

in series. See, for example, Cooper (2002) for a recent

discussion of these models.
These simple models make an important point.

Viscous flow, which governs mantle convection, and

anelastic deformation, which causes attenuation and

dispersion in the seismic band, are considered as

separate dashpots. While the connection to real

materials is not obvious, it is likely that viscosity

and attenuation are governed by separate micro-

scopic deformation mechanisms if for no other

reason than that the strain rates and total strains are

so vastly different. Experimental measurements of

viscosity, which are more numerous than measure-

ments of seismic attenuation at relevant mantle

conditions, are not necessarily a reliable guide to

the dependence of attenuation on pressure, tempera-

ture, or composition.
Consider the response of these models to periodic

loading,


 ¼ 
0ei!t ½45�

which produces the strain response,

" ¼ "0ei!tþ� ½46�

In most experiments, the attenuation is actually mea-
sured by the phase lag �. The elastic modulus is
complex and frequency dependent,

Mð!Þ ¼ MR þ iMI ½47�

and the attenuation can also be written as the ratio of
imaginary to real parts Q�1¼MI/MR. The acoustic-
wave velocity is

V ¼
ffiffiffiffiffi
M

�

s

½48�

where � is the density.
The simple models described all predict attenua-

tion that depends strongly on frequency (Figure 13).

For the Maxwell solid, Q�1¼ 1/!� , and for the Voigt

solid, Q�1¼!� , where � is the characteristic

relaxation time. The standard linear solid shows

Maxwell-like and Voigt-like behavior in the limit of

zero and infinite frequency, respectively, with a peak

attenuation centered at !� ¼ 1:

Q – 1 ¼ !�

1þ ð!�Þ2
½49�

and the velocity dispersion is

V ð!Þ ¼ V ð0Þ 1þ Q – 1
max

ð!�Þ2

1þ ð!�Þ2

 !

½50�

For the Burgers model,

Q – 1 ¼ 1þ 2!2�2

2!� þ !3�3
½51�

there is a Maxwell-like decrease of attenuation with
increasing frequency, interrupted by a region near
!� ¼ 1, where the dependence on frequency is much
reduced. Depending on the details of how the
Burgers model is parametrized, this shoulder may
become a small peak.

Much of the literature on microscopic mechan-
isms of attenuation in solids has focused on the

materials that show clear peaks in the attenuation

spectrum. The dependence of the peak amplitude

and frequency on temperature and material charac-

teristics is essential for identifying the mechanism(s)

responsible. Among the mechanisms that have been

identified in this way are the migration of defects, the

exchange of substituents in solid solution, dislocation

motion, grain-boundary relaxation, and thermal cur-

rents (Jackson and Anderson, 1970; Nowick and

Berry, 1972). Because so many mechanisms can con-

tribute to the attenuation, it is often necessary to

specially prepare the sample to have, for example,
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high purity or uniform grain size, in order to produce
a spectrum with a single clear peak. Many silicate
liquids show attenuation that is well described by a
single characteristic relaxation time (Rivers and
Carmichael, 1987).

Perhaps the most important result from studies of
mantle-like materials is the absence of attenuation
peaks (Jackson et al., 2002). Attenuation is found to
vary slowly and monotonically with frequency over a
broad spectrum. The reason for this behavior is not
clear. It is possible that there exists a broad and nearly
continuous spectrum of relaxation times. The beha-
vior is similar to the so-called high-temperature
background found in many materials (Nowick and
Berry, 1972). Even those materials that show distinct
peaks at low temperature may exhibit featureless
attenuation spectra at high temperature.

In the case of attenuation dominated by elastically
accommodated grain-boundary sliding, the feature-
less, nearly flat attenuation spectrum may be
rationalized as follows (Jackson et al., 2002). The
characteristic relaxation time is

�gb ¼ g
	gbd

G�
½52�

where d is the grain size, � is the width of the grain-
boundary region, � is of order 1, and 	gb is the grain-
boundary viscosity (much less than the viscosity of
the bulk). A spectrum of relaxation times might be
produced by a distribution of grain sizes, grain-
boundary widths, and grain-boundary viscosities. In
particular, the effective grain-boundary viscosity
could exhibit a wide range because of the variable
presence of grain-boundary irregularities or impuri-
ties that would tend to inhibit sliding.

The following empirical expression represents the
data of Jackson et al. (2002) within the seismic fre-
quency band (�1–100 s periods) (Figure 14)

Q – 1ðP; T ; !Þ ¼ Ad –m! –�exp –�
E� þ PV �

RT

� �
½53�

V ðP; T ; !Þ ¼ V ðP; T ; 1Þ 1 –
1

2
cot

��

2


 �
Q – 1ðP; T ; !Þ

� 	

½54�

where ! is the frequency, d is the grain size, m¼ 0.28
is the grain size exponent, �¼ 0.26 is the frequency
exponent, E*¼ 430 kJ mol�1 is the activation energy,
V� is the activation volume, and R is the gas constant.
For the experimental value of �, the factor multi-
plying Q�1 in eqn [53] has the value 1.16. The

activation volume is currently unconstrained, which
means that the influence of pressure on attenuation is
highly uncertain. The relationship between attenua-
tion and dispersion is made explicit by eqn [54].

The experimental results can be compared with
attenuation spectra proposed for the Earth. The

absorption band model (Anderson and Given, 1982)
consists of a broad frequency range over which Q�1

depends weakly on frequency, bounded by narrower
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low- and high-frequency ranges where Q�1 decreases

to zero. The intermediate-frequency range of this

model, the absorption band, agrees well with experi-

mental results. The estimates of the value of � based

on seismological observations are consistent with

those found experimentally at similar frequencies.

But experimental support for the boundaries is lack-

ing. At long periods, experiments show that the

attenuation will continue to increase with increasing

period and at a higher rate, with �¼ 1 (Gribb and

Cooper, 1998; Jackson et al., 2002). At the high-fre-

quency end, there is no indication of a sharp

transition requiring a larger value of �. In fact,

there is an indication in the data that the attenuation

becomes less sensitive to frequency at high frequency

(Cooper, 2002).
The influence of partial melt is generally to

increase the attenuation (Faul et al., 2004; Jackson

et al., 2004). The frequency dependence is also

affected by partial melt. A broad absorption peak is

superimposed on a high-temperature background.

The origin of this peak appears not to be the melt

squirt mechanism that has been widely discussed, but

elastically accommodated grain-boundary sliding

enhanced by partial melt. For probable mantle-

grain sizes and attenuation in the seismic band, Q is

nearly independent of frequency for 1% partial melt.
The influence of crystallographically bound

hydrogen on the attenuation is currently not well

constrained, although it is known that viscosity

decreases with increasing hydrogen concentration

(Mei and Kohlstedt, 2000a, 2000b).
The bulk attenuation – that is, time dependence of

volume compression due to a change in hydrostatic

pressure – has not been measured for mantle materi-

als, and is generally assumed to be small. In the limit

that bulk attenuation vanishes, the attenuation of

longitudinal and shear waves is related by

Q – 1
P ¼

4

3

VS

VP

� �2

Q – 1
S ½55�

For composites, however, because volume compres-
sion generally leads to local shear deformations being
distributed throughout the medium, bulk attenuation
can arise on the multigrain length scales relevant to
seismology simply because of the presence of hetero-
geneous elastic properties and shear-dissipation
mechanisms throughout the medium. Mechanisms
that have been proposed for bulk attenuation thus
include coupling to first-order phase transitions
(Heinz et al., 1982).

1.22.4 Seismological Elasticity and
Anelasticity

1.22.4.1 Scaling

When the scale length of heterogeneity is compar-

able to the seismic wavelength, there are two

additional considerations. The first is dispersion due

to structure. This is seen in observations of surface

waves, the velocity of which depend on frequency.

This frequency dependence is mostly due to the fact

that larger wavelengths sample greater depths where

the intrinsic acoustic velocity is greater.
Random heterogeneity can produce scattering of

seismic waves (Frankel and Clayton, 1986). Consider

a random medium with average velocity v, charac-

terized by heterogeneity of length scale a and

velocity perturbation d, and probed by acoustic

waves with wavelength �. On average, the first-arriv-

ing waves tend to select paths that preferentially

sample the high-velocity heterogeneities; in this

sense, the medium appears to have a wave velocity

slightly greater than v. In addition, the velocity

depends on wavelength, that is, heterogeneity causes

dispersion. The direct wave is attenuated, as energy

is redirected due to scattering, but this is essentially

different from the intrinsic attenuation discussed

above for which mechanical energy is dissipated by

being converted to heat. The difficulty, however, is

that scattering due to heterogeneity has many of the

same characteristics as intrinsic attenuation and dis-

persion of seismic waves, so the two causes of

seismic-wave attenuation as a function of distance

along the wave path are difficult, if not impossible,

to disentangle. This means that any interpretation of

attenuation in terms of the strong temperature

dependence expected from intrinsic (dissipative)

mechanisms, for example, needs to be treated with

caution.
What is the scale of heterogeneity in the mantle?

The magnitude of the heterogeneity is largest at the

grain scale, with differences in shear-wave velocity

between coexisting minerals being 10–30% through-

out most of the mantle (except for the shallow

transition zone) as well as near the core–mantle

boundary (Figure 15). The ratio of the grain size

typically observed in mantle xenoliths (1–10 mm)

to teleseismic wavelengths is d/� � 10�7 << 1 char-

acteristic of Rayleigh scattering. In this long-

wavelength limit, the apparent attenuation falls with

increasing wavelength like (d/�)3 and is probably

negligible as long as the heterogeneity is weak (say,
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less than 1–10%). The grain-scale heterogeneity

indicated in Figure 15 can plausibly be accommo-
dated within the Rayleigh-scattering model, but it is

less likely that the stronger heterogeneity associated

with partial melt or major compositional variations

(e.g., mixtures of core metal and mantle silicates) can
also be considered in this weak-scattering limit.

Moreover, the grain size of the mantle is still highly

uncertain at great depth, particularly below the zone

of magma genesis.
Larger-scale heterogeneities, approaching or

comparable to seismic wavelengths, are also likely

in the mantle. At the mid-ocean ridge, basalt and a

depleted residuum, harzburgite, are generated, both
of which have significantly different physical proper-

ties from undifferentiated mantle. The initial scale

length of heterogeneity may be taken as the thickness

of the oceanic crust (�7 km), which is likely to scatter
seismic waves significantly. The magnitude of the

velocity difference depends on depth (Figure 16).

Basalt is slower than peridotite at shallow depths,

reflecting the well-known difference in velocity
between crust and mantle. Basalt then becomes

much faster near 100 km depth because of the transi-

tion to eclogite (plagioclase and pyroxenes forming
garnet under pressure) that increases velocities by

approximately 10%. Velocity contrasts in the lower

mantle are not as well constrained, but appear to be

less than 10%. For comparison, one seismological
study found that scattering of P waves could be

explained by heterogeneity with scale length 8 km
and magnitude 1% uniformly distributed throughout
the mantle, but this result is probably strongly biased
due to contamination from heterogeneity at the base
of the mantle (Hedlin et al., 1997).

1.22.4.2 Uncertainties

The largest source of uncertainty in constructing
isotropic models of radial upper-mantle and transi-
tion-zone structure is the elastic constants of minerals
at high pressure and temperature (Table 1). The
propagated uncertainty in the elastic shear-wave
velocity is approximately 1.3% or 0.06 km s�1

(Stixrude and Lithgow-Bertelloni, 2005a). This is
somewhat larger than the difference between Voigt
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and Reuss bounds throughout most of this region,

and considerably more than the difference between

the Hashin–Shtrikman bounds (Figure 10).

Uncertainties in computed elastic properties arise

mainly because of the need to extrapolate existing

measurements taken over limited ranges of pressure

and/or temperature to mantle conditions. For a few

phases, large discrepancies exist in measured proper-

ties that cannot be reconciled at present. An

important example is garnet-majorite, for which

Brillouin spectroscopy yields a value for G9¼ 1.3(2)

(Sinogeikin and Bass, 2002), while ultrasonic studies

yield a much higher value of 1.9 (Liu et al., 2000). We

have followed the discussion of Jiang et al. (2004) in

favoring the Brillouin value in this case, but must

emphasize that (as in other instances of apparent

discrepancy) there may be real differences between

samples (as yet not recognized, let alone controlled

for) and that it is not necessarily a question of poor

measurements.
In addition to these uncertainties, many important

properties remain to be measured at all. For example,

the shear modulus of clinopyroxene and akimotoite

at elevated pressure are currently estimated on the

basis of systematic relations, or density functional

theory calculations.
Another kind of uncertainty comes from the link-

age between velocity dispersion and attenuation,

because there is virtually no constraint on the latter

at mantle conditions based on laboratory experi-

ments. Simple models, based on the Weertman law

or a constant activation volume, apparently do not

reproduce the qualitative features of seismological

radial Q models (Faul and Jackson, 2005). While

attenuation has a small effect on the velocity, the

velocity variation of tomographic models is also

small, so that intrinsic dispersion is a large part of

the 3-D structure (Karato, 1993). Progress will come

from experimental measurements of Q�1 in the seis-

mic band at elevated pressure, an enormous

challenge.
In the lower mantle, the reliability with which

seismological observations can be interpreted is

probably limited by our understanding of the rele-

vant mineral-scale physics. For example, the recently

discovered high-spin–low-spin transition (Badro

et al., 2003, 2004; Pasternak et al., 1997) appears to

have a significant, but still uncertain influence on the

density and elasticity (Lin et al., 2005; Speziale et al.,

2005b). It also remains to be understood at what

pressure, or over what pressure range, this transition

occurs in the lower mantle, and how this range

depends on temperature, iron content, and other

compositional variables. Valence transitions induced

by pressure, for example, between ferric and ferrous

iron, also remain poorly understood (Frost et al.,

2004), as does the phase diagram of the third most

abundant lower-mantle constituent, calcium silicate

perovskite. A temperature-induced transition from a

low-temperature tetragonal phase to a high-tempera-

ture cubic phase has been predicted (Stixrude et al.,

1996), and low-temperature structural distortions

Table 1 Elastic properties of major mantle phases

Phase K0 dK0/dX K09 �dK/dT G0 dG/dX G09 �dG/dT

plg 84(5) - 4.0(10) 4(1) 40(3) - 1.1(5) 6(3)

sp 197(1) 12(2) 5.7(2) 29(3) 109(10) �24(16) 0.4(5) 13(2)

ol 128(2) 7(2) 4.2(2) 18(1) 82(2) �31(2) 1.4(1) 14(1)
wa 169(3) 0(13) 4.3(2) 22(6) 112(2) �40(12) 1.4(2) 18(1)

ri 183(2) 16(7) 4.1(2) 23(2) 120(2) �25(10) 1.3(1) 17(2)

opx 107(2) �7(4) 7.0(4) 19(5) 77(1) �25(5) 1.6(1) 13(2)

cpx 112(5) 7(6) 5.2(18) 18(9) 67(2) �6(2) 1.4(5) 11(4)
hcpcx 121(1) 0(10) 5.5(3) 20(3) 90(1) �19(10) 1.5(1) 17(2)

capv 236(4) - 3.9(2) 22(13) 165(12)� - 2.5(5)� 26(4)

ak 211(4) 0(10) 4.5(5) 20(6) 132(8) 25(12) 1.6(5)� 21(4)

gt 170(2)� 9Y 7(3) 4.1(3)þ 0.1Y 16(2) 94(2) 4(3) 1.3(2)þ0.1Y 10(1)� 2Y
st 314(8) - 4.4(2) 31(18) 220(12) - 1.6(5) 36(5)

pv 251(3) 30(40)� 4.1(1) 23(4) 175(2) �37(40)� 1.7(2)� 25(3)�

fp 161(3) 18(3) 3.9(2) 21(1) 130(3) �83(3) 2.2(1) 26(1)

Symbols and Units: K, adiabatic bulk modulus (GPa); G, shear modulus (GPa), X, Fe/(Mgþ Fe); Y,mj/(pyþmj ); subscript o indicates
values at zero pressure, primes indicate pressure derivatives; dK/dT and dG/dT in MPa K�1. Italicized entries are unconstrained by
experiment. Asterisk indicates values taken from density functional theory calculations.After Stixrude and Lithgow-Bertelloni (2005b)
and references therein.
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have been seen experimentally (Shim et al., 2002), but
the details remain uncertain. This transition should
be accompanied by a large elastic anomaly (15% in
shear-wave velocity).

Constructing mineralogical models of anisotropic
structure remains a considerable challenge. There
has been substantial progress from experiment and
theory in our knowledge of the full elastic-constant
tensors of major mantle minerals (Karki et al., 2001).
We still have a great deal to learn about deformation
mechanisms, and in particular dominant slip planes at
mantle conditions and at relevant strains and strain
rates. Experimental results now exist for many man-
tle minerals (Cordier, 2002). For lower-mantle
minerals, it is important to keep in mind that defor-
mation mechanisms may change profoundly with
increasing pressure, as suggested by the change in
anisotropy of ferropericlase and magnesium silicate
perovskite at high pressure (Karki et al., 1997a,
1997b). The largest uncertainty may be in under-
standing how polycrystals respond to mantle flow at
large finite strains (Blackman et al., 1996; Chastel et al.,
1993; Ribe, 1989). This is necessary for estimating the
strength of the texture, and the resulting magnitude
of anisotropy.

Uncertainties related to composite effects are lar-
gest in the context of partial melts. The geometry of
the melt phase, whether it exists as spheres, needles,
or disks, has an enormous effect on the rock shear
elasticity. What is required is an understanding of the
relevant mineral–melt interface energetics that con-
trol this geometry. Melt geometry may be scale
dependent, as demonstrated by experiments in
which the melt geometry changes fundamentally on
deformation (Bruhn et al., 2000).

1.22.4.3 Implications for Inversions

There are essentially two approaches used for linking
seismology and mineral physics, forward and inverse
modeling. For the first, a mineralogical model based
on an assumed bulk composition, and potential tem-
perature is compared with seismological observations
(Duffy and Anderson, 1989; Ita and Stixrude, 1992;
Stixrude and Lithgow-Bertelloni, 2005a; Vacher et al.,
1998). (For applications to adiabatic temperature
profiles in the Earth, the ‘potential temperature’
refers to the temperature on the adiabat at zero
pressure.) In practice, mineralogical models are typi-
cally compared with seismological models, an
approach that is fraught with difficulty because the

seismological models are derivative of the data and
nonunique. These difficulties are particularly preva-
lent in the upper mantle, where lateral variations,
attenuation, and anisotropy are all large, and radial
models are prone to mislead.

A promising alternative forward modeling
approach, little used as yet, would be to compute
the actual seismological observables (e.g., traveltimes,
mode frequencies, and the like) directly from the
mineralogical model. This would permit much
more direct and certain comparison to the structure
of Earth. The uncertainties inherent in the forward
model can in principle be assessed and propagated to
uncertainties in predicted seismological observables.

An additional benefit of forward mineralogical
models is that they might be used as a reference for
seismic tomographic inversions. Tomographic mod-
els are usually determined as deviations from an
assumed radial structure, and the radial model may
bias the inversion. For example, in oceanic regions of
the upper mantle, tomographic inversions based on
Preliminary Reference Earth Model (PREM)
(Dziewonski and Anderson, 1981) might be biased
by the large Lehmann discontinuity in this radial
model, which subsequent studies have found is pre-
ferentially located under continents. PREM and
other radial seismic models assume a parametrically
simple radial structure. For example, the transition-
zone gradient is assumed to be linear, which does not
agree with expectations based on the phase transfor-
mations that we know take place in typical mantle
lithologies. Advantages of using a mineralogical
model would be that all anticipated structure from
phase transitions would be included. Moreover, the
reference state would be one associated with a well-
defined, if imprecise physical meaning in terms of
bulk composition and geotherm. Recent attempts to
construct such so-called ‘physical reference models’
adjust the mineralogical model to conform with seis-
mological data (Cammarano et al., 2003). By
optimizing the fit of the forward model to seismic
data, one obtains a more stable starting point for
tomographic inversions, but the connection to a phy-
sically well-defined reference state is lost. With ever-
improving knowledge of mantle phase equlibria and
physical properties, one may envision substantial
improvements in the construction of mineralogical
models and our ability to interpret seismological
observations in terms of radial and lateral variations
in temperature, and bulk composition.

An inverse model would seek to invert seismic
observations directly for radial and lateral variations
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in bulk composition and temperature. In practice,
inverse models have been based on the intermediate
step of a velocity model. Several studies have
inverted radial or 3-D velocity and density models
for radial and lateral variations in temperature and
bulk composition (Deschamps and Trampert, 2003;
Goes et al., 2000; Mattern et al., 2005; Shapiro and
Ritzwoller, 2004; Stixrude et al., 1992; Trampert et al.,
2001). Some caution is in order because of the uncer-
tainty in the nonlinear and linked phenomena
involved, particularly in the estimate of attenuation.
Also important are systematic effects that have not
been included in these inversions. There are three
sources of lateral heterogeneity in the mantle, due to
lateral variations of temperature, bulk composition,
and phase. The last of these has not been included,
even though lateral variations in phase proportions
can contribute as much to – even more than – 3-D
structure as lateral variations in temperature alone.
The quantities necessary to estimate the influence of
phase on lateral structure are reasonably well known
in the upper mantle and transition zone: phase equi-
libria and physical properties of the minerals
involved are experimentally documented, and should
be included in future efforts.

1.22.5 Conclusions and Outlook

The contact between mineral physics and seismology
of Earth’s mantle has grown considerably richer and
more sophisticated in recent years. Birch’s vision of
constraining the chemical and thermal state of the
mantle on the basis of mineralogical properties and
seismic observations is becoming a reality. In addi-
tion, mineral physics is beginning to provide the
foundation required for inferring the dynamic state
of the mantle, and some aspects of its geological
evolution, from the seismological observations.

Progress will come from continued expansion of
our knowledge of the elastic properties of mantle
minerals at in situ conditions of high pressure and
high temperature. These data remain the basis for
any discussion of mantle structure in terms of radial
or lateral variations in temperature or bulk
composition. Among recent experimental advances
has been a dramatic increase in the pressure range
over which measurements of the shear modulus can
be made, to 1 Mb (2300 km depth) (Murakami et al.,
2006). Coupled with methodological developments
for measuring sound velocities at high temperature
(Li et al., 2004; Sinogeikin et al., 2004), one may

envision measurement of the elastic properties of

mantle minerals at pressure–temperature conditions
of the mantle for the first time in the near future. At

the same time, first-principles theory continues to

make important strides, including the computation
of the elastic constants of important phases over the

entire mantle pressure–temperature regime

(Wentzcovitch et al., 2004).
Equally important will be a better understanding of

recently discovered physics and chemistry, including

the postperovskite phase transition, the high-spin–low-

spin transition of iron in oxides and silicates, and the
possible role of valence state changes of iron at high

pressure. Among physical properties that are still

poorly understood is the attenuation (or its inverse,
the quality factor Q). While recent experiments have

laid an important foundation (Gribb and Cooper, 1998;

Jackson et al., 2002, 2004), we still have little experi-
mental data bearing on the influence of pressure or

water content on attenuation. Also uncertain are the

dominant deformation mechanisms in mantle minerals
at high pressure and temperature, and these provide an

additional link between experimental measurements of

the elastic-constant tensor and seismically observed
anisotropy. Recent experimental discoveries suggest

that more surprises await (Mainprice et al., 2005).
Along with improved knowledge of the physical

properties of individual phases will come increasing
understanding of aggregate properties and the con-

struction of mineralogical models of the mantle as a

whole. An important advance will be closer contact
between mineralogical models and seismological

observations.
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Mainprice D, Andréa T, Hélène C, Patrick C, and Daniel JF
(2005) Pressure sensitivity of olivine slip systems and
seismic anisotropy of Earth’s upper mantle. Nature
433: 731–733.

Mattern E, Matas J, Ricard Y, and Bass J (2005) Lower mantle
composition and temperature from mineral physics and
thermodynamic modelling. Geophysical Journal International
160: 973–990.

Mcqueen RG, Marsh SP, Taylor JW, Fritz JN, and Carter WJ
(1970) The equation of state of solids from shock wave
studies. In: Kinslow R (ed.) High-velocity Impact Phenomena,
pp. 293–417. New York, NY: Academic Press.

Mei S and Kohlstedt DL (2000a) Influence of water on plastic
deformation of olivine aggregates 1. Diffusion creep regime.
Journal of Geophysical Research-Solid Earth
105: 21457–21469.

Mei S and Kohlstedt DL (2000b) Influence of water on plastic
deformation of olivine aggregates 2. Dislocation creep
regime. Journal of Geophysical Research – Solid Earth
105: 21471–21481.

Merkel S, Goncharov AF, Mao HK, Gillet P, and Hemley RJ
(2000) Raman spectroscopy of iron to 152
gigapascals: Implications for Earth’s inner core. Science
288: 1626–1629.

Murakami M, Sinogeikin SU, Hellwig H, Bass JD, and Li J (2006)
Sound velocity of MgSiO3 perovksite to Mbar pressure. Earth
and Planetary Science Letters 256: 47–54.

Nowick AS and Berry BS (1972) Anelastic Relaxation in
Crystalline Solids. New York and London: Academic Press.

Nye JF (1985) Physical Properties of Crystals: Their
Representation by Tensors and Matrices, 2 edn. Oxford, UK:
Oxford University Press.

Oganov AR, Gillan MJ, and Price GD (2003) Ab initio lattice
dynamics and structural stability of MgO. Journal of
Chemical Physics 118: 10174–10182.

Pasternak MP, Taylor RD, Jeanloz R, Li X, Nguyen JH, and
Mccammon CA (1997) High pressure collapse of magnetism
in Fe0.94O: Mossbauer spectroscopy beyond 100 GPa.
Physical Review Letters 79: 5046–5049.

802 Constraints from Mineral Physics on Seismological Models

Treatise on Geophysics, vol. 1, pp. 775-803



Author's personal copy

Ribe NM (1989) Seismic Anisotropy and Mantle Flow. Journal of
Geophysical Research-Solid Earth and Planets
94: 4213–4223.

Rigden SM, Jackson INS, Niesler H, Liebermann RC, and
Ringwood AE (1991) Spinel elasticity and seismic structure
of the transition zone of the mantle. Nature 354: 143–145.

Rivers ML and Carmichael ISE (1987) Ultrasonic studies of
silicate melts. Journal of Geophysical Research – Solid Earth
and Planets 92: 9247–9270.

Robie RA and Hemingway BS (1995) Thermodynamic
Properties of Minerals and Related Substances at 298.15 K
and 1 Bar (105 Pascals) Pressure and at Higher Temperature,
461 pp. Washington, DC: US Geological Survey.

Shapiro NM and Ritzwoller MH (2004) Thermodynamic con-
straints on seismic inversions. Geophysical Journal
International 157: 1175–1188.

Shim SH, Jeanloz R, and Duffy TS (2002) Tetragonal structure of
CaSiO3 perovskite above 20 GPa. Geophysical Research
Letters 29: 1399.

Sinogeikin SV and Bass JD (2000) Single-crystal elasticity of
pyrope and MgO to 20 GPa by Brillouin scattering in the
diamond cell. Physics of the Earth and Planetary Interiors
120: 43–62.

Sinogeikin SV and Bass JD (2002) Elasticity of Majorite and a
Majorite-Pyrope solid solution to high pressure: Implications
for the transition zone. Geophysical Research Letters
29(2): 1017 (doi:10.1029/2001GL013937).

Sinogeikin SV, Lakshtanov DL, Nicholas JD, and Bass JD (2004)
Sound velocity measurements on laser-heated MgO and
Al2O3. Physics of the Earth and Planetary Interiors
143: 575–586.

Spetzler H (1970) Equation of state of polycrystalline and single-
crystal Mgo to 8 kilobars and 800 degrees K. Journal of
Geophysical Research 75: 2073–2087.

Speziale S, Jiang SF, and Duffy TS (2005a) Compositional
dependence of the elastic wave velocities of mantle miner-
als: Implications for seismic properties of mantle rocks.
In: Vander Hilst, Bass JD, Matas J, and Trampert J (eds.)
Earth’s Deep Mantle: Structure, Composition, and Evolution,
pp. 301–320. Washington, DC: American Geophysical
Union.

Speziale S, Milner A, Lee VE, Clark SM, Pasternak MP, and
Jeanloz R (2005b) Iron spin transition in Earth’s mantle.
Proceedings of the National Academy of Sciences of the
United States of America 102: 17918–17922.

Speziale S, Zha C-S, Duffy TS, Hemley RJ, and Mao H-K (2001)
Quasi-hydrostatic compression of magnesium oxide to
52 GPa: Implications for the pressure-volume-temperature
equation of state. Journal of Geophysical Research-Solid
Earth 106: 515–528.

Stixrude L (1998) Elastic constants and anisotropy of MgSiO3

perovskite, periclase, and SiO2 at high pressure.
In: Gurnis M, Wysession M, Knittle E, and Buffet B (eds.) The
Core–Mantle Boundary Region, pp. 83–96. Washington, DC:
American Geophysical Union.

Stixrude L, Cohen RE, and Singh DJ (1994) Iron at high pres-
sure: Linearized augmented plane wave calculations in the
generalized gradient approximation. Physical Review B
50: 6442–6445.

Stixrude L, Cohen RE, Yu R, and Krakauer H (1996) Prediction
of phase transition in CaSiO3 perovskite and implications for

lower mantle structure. American Mineralogist
81: 1293–1296.

Stixrude L, Hemley RJ, Fei Y, and Mao HK (1992)
Thermoelasticity of silicate perovskite and magnesiowustite
and stratification of the earth’s mantle. Science
257: 1099–1101.

Stixrude L and Lithgow-Bertelloni C (2005a) Mineralogy and
elasticity of the oceanic upper mantle: Origin of the low-
velocity zone. Journal of Geophysical Research-Solid Earth
110: B03204 (doi:10.1029/2004JB002965).

Stixrude L and Lithgow-Bertelloni C (2005b) Thermodynamics
of mantle minerals – I. Physical properties. Geophysical
Journal International 162: 610–632.

Stixrude L, Lithgow-Bertelloni C, Kieter B, and Fumagaelli P
(2007) Phase stability and shear softening in CaSiO3

perovskite at high pressure. Physical Review B 75: 024108.
Trampert J, Vacher P, and Vlaar N (2001) Sensitivities of seismic

velocities to temperature, pressure and composition in the
lower mantle. Physics of the Earth and Planetary Interiors
124: 255–267.

Vacher P, Mocquet A, and Sotin C (1998) Computation of seis-
mic profiles from mineral physics: The importance of the
non-olivine components for explaining the 660 km depth
discontinuity. Physics of the Earth and Planetary Interiors
106: 275–298.

Wallace DC (1972) Thermodynamics of Crystals, 1st edn. New
York: Wiley.

Watt JP (1988) Elastic properties of polycrystalline minerals –
Comparison of theory and experiment. Physics and
Chemistry of Minerals 15: 579–587.

Watt JP, Davies GF, and O’Connell RJ (1976) The elastic prop-
erties of composite materials. Reviews of Geophysics and
Space Physics 14: 541–563.

Weidner DJ, Bass J, Ringwood AE, and Sinclair W (1982) The
single-crystal elastic moduli of stishovite. Journal of
Geophysical Research 87: 4740–4746.

Weiner JH (1983) Statistical Mechanics of Elasticity, 439 pp.
New York: Wiley.

Wentzcovitch RM, Karki BB, Cococcioni M, and Gironcoli S de
(2004) Thermoelastic properties of MgSiO3-perovskite:
Insights on the nature of the Earth’s lower mantle. Physical
Review Letters 92(1): 018501.

Wentzcovitch RM and Stixrude L (1997) Crystal chemistry of
forsterite: A first principles study. American Mineralogist
82: 663–671.

Williams Q (1995) Infrared, Raman and optical spectroscopy of
earth materials. In: Mineral Physics and Crystallography,
Ahrens TJ (ed.) A Handbook of Physical Constants.
Washington, DC: American Geophysical Union.

Williams Q and Garnero EJ (1996) Seismic evidence for
partial melt at the base of Earth’s mantle. Science
273: 1528.

Workman RK and Hart SR (2005) Major and trace element
composition of the depleted MORB mantle (DMM). Earth and
Planetary Science Letters 231: 53–72.

Yoneda A (1990) Pressure derivatives of elastic-constants of
single-crystal MgO and MgAl2O4. Journal of Physics of the
Earth 38: 19–55.

Zaug JM, Abramson EH, Brown JM, and Slutsky LJ (1993)
Sound velocities in olivine at Earth mantle pressures.
Science 260: 1487–1489.

Constraints from Mineral Physics on Seismological Models 803

Treatise on Geophysics, vol. 1, pp. 775-803




