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Density functional theory is used to investigate the equation of state, phase
stability, magnetism, elasticity, and high temperature properties of iron. The
equations of density functional theory are solved with the state-of-the-art
linearized augmented plane wave (LAPW) method with gradient-corrected
exchange-correlation functionals. A parametric tight-binding Hamiltonian,
which is fit to the results of the elaborate LAPW calculations, is used to
investigate elasticity and high temperature properties, the latter in the cell
model approximation. The results of these calculations show that (1) the bec
phase of iron is mechanically unstable above 150 GPa and is unlikely to exist
in the inner core (2) the anisotropy of hcp iron is similar in its magnitude and
symmetry to that of the inner core, indicating that this is the stable phase of
iron in this region and that the inner core is either very strongly textured, or
that it consists of a single crystal, and (3) iron is significantly denser than the
inner core, indicating the presence of a few weight percent light alloying
elements in the solid inner core.

INTRODUCTION this most remote region of the Earth’s interior in un-

precedented detail and promises to shed new light on
the origin and evolution of the core. With this discov-
ery come new questions relating to the origin of the

The inner core is a relatively small portion of the
Earth’s interior, with a mass comparable to the Earth’s

moon. Despite its small size, it has been the subject
of increasing attention over the past decade. The inner
core is now known to be anisotropic [Morelli et al., 1986;
Woodhouse et al., 1986; Tromp, 1993], a surprising and
unpredicted observation which reveals the structure of
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anisotropy, which is still unknown, the dynamics of the
inner core [Jeanloz and Wenk, 1986; Song and Richards,
1996], its growth, and its interaction with the magnetic
field [Karato, 1993].

The effect of the inner core on the magnetic field has
also received new attention. Recent numerical models
have shown that the inner core can have a major effect
on the typical length scale of lateral variability in the
field, its time variability and on its reversal frequency
[Hollerbach and Jones, 1993]. Conversely, the mag-
netic field may exert torques on the inner core which
cause it to rotate faster than the mantle [Glatzmaier
and Roberts, 1995].

These new results in seismology and geomagnetism,
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as well as long-standing questions of the composition
and temperature of the inner core, focus our attention
on the physics of its most abundant constituent at the
extreme pressures and temperature that prevail. The
fact that the pressures and temperature exceed those
that are readily accessed in the laboratory means that
our understanding of the physics of iron in the core is
still limited. For example, the relative stability of the
different phases of iron at inner core conditions, and
therefore the crystalline structure of the inner core, is
unknown. The elastic properties of iron are unknown at
high pressure, limiting our ability to interpret seismo-
logical observations of the anisotropic, or even isotropic,
structure of the inner core. The electromagnetic prop-
erties of iron such as the conductivity, or magnetic sus-
ceptibility, that govern the influence of the inner core
on the field, are unknown beyond zero pressure.

First principles theory is an ideal complement to ex-
perimental approaches in this context. First principles
approaches, such as density functional theory (DFT)
solve the fundamental quantum mechanical equations
that govern the behavior of matter with a minimum
of approximations. They are completely independent
of experiment, and yet are now capable of reproducing
many experimental measurements. There is no diffi-
culty in applying these methods at high pressure - cal-
culations at high pressure are in fact marginally faster,
in terms of computational load, primarily because the
charge density tends to become more uniform under
compression. Finally, these methods permit access to
the fundamental physical mechanisms that underly bulk
behavior.

We review here the contributions of the density func-
tional theory to our understanding of iron at high pres-
sure and of the inner core. We begin with an overview of
computational methods, including the state-of-the-art
linearized augmented plane wave (LAPW) method and
the parametric tight binding model that is derived from
the LAPW calculations [Cohen et al., 1994a). We also
discuss methods that have been developed to treat the
effect of temperature on the properties of iron. We then
discuss applications of the LAPW method to perfect lat-
tices of the observed phases of iron: body-centered cu-
bic (bcc), face-centered cubic (fcc), and hexagonal close-
packed (hcp), including their relative stability and their
equations of state. The LAPW calculations of the bec
phase also illustrate the effect of pressure on the mag-
netism of iron. Predictions of the elastic constants of
fce and hep phases allow us to determine the anisotropy
in elastic wave velocities in iron and to compare with
the anisotropy of the inner core. Finally, the cell model
is used to determine the equation of state of iron up
to core temperatures. The implications of these results

for the crystalline structure of the inner core, the ori-
gin and nature of its anisotropy, its magnetic state, its
composition, and temperature are discussed.

COMPUTATIONAL METHODS

Band Structure and Total Energy

All the computational methods discussed here are ul-
timately based on density functional theory [Hohenberg
and Kohn, 1964; Kohn and Sham, 1965]. The essence of
this theory is the proof that the ground state properties
of a material, including its ground state total energy

E=T+U[p(7)] + Ezc[p(7)] (1)

are a unique functional of the charge density p(7). T is
the kinetic energy of a system of non-interacting elec-
trons with the same charge density as the interacting
system, U is the electrostatic (Coulomb) energy, includ-
ing the electrostatic interaction between the nuclei, and
E,. is the exchange-correlation energy. A variational
principle leads to a set of single-particle, Schrédinger-
like, Kohn-Sham equations, with an effective potential
given by

Vs = Veen [p(M)] + Vee [p(M] + Vae [p(M]  (2)

where the first two terms are Coulomb potentials due
to the nuclei and the other electrons, and the last is the
exchange-correlation potential. The power of density
functional theory is that it allows one to calculate, in
principle, the exact many-body total energy of a system
from a set of single-particle equations. In practice, this
is not possible because the exact exchange-correlation
functional E, is unknown. Fortunately, simple approx-
imations to this potential have been very successful.
The success of the local density approximation (LDA),
which replaces V. at every point in the crystal by the
accurately known exchange-correlation potential for a
homogeneous electron gas of the same local charge den-
sity, can be understood in terms of the satisfaction of
exact sum rules for the exchange-correlation hole [Gun-
narson and Lundquist, 1976]. The LDA has been shown
to yield excellent agreement with experiment for a wide
variety of insulators, metals, and semiconductors, but
fails to predict the correct ground state for iron. More
recently proposed functionals, such as the Generalized
Gradient Approximation (GGA) [Perdew and Wang,
1992], which uses information about local charge den-
sity gradients as well as the local density, yield much
improved results for 3d transition metals [Bagno et al.,
1989; Leung et al., 1992].

The solution to the Kohn-Sham equations for the
single-particle (quasi-electronic) eigenvalues, €(k), and



eigenvectors, \II(E), where k is a vector in reciprocal
space, is that of the set of coupled generalized eigen-
value equations (units such that h2/2m=1)

H;;¥; = €0;;¥; 3)
Hy(R) = / U (-V2 4 Vks) Udi (&)
050 = [wrwsar %)

where H and O are the Hamiltonian and overlap matri-
ces, respectively. Because the Kohn-Sham potential is a
functional of p, the eigenvalue equations must be solved
self-consistently with the definition of the charge density
in terms of the wavefunctions. First principles methods
solve Equations (3-5) by expanding the wavefunctions
and the potential in a complete and computationally
convenient basis, ¥; = c;;¢;.

The choice of basis functions in the LAPW method
[Wei and Krakauer, 1985] explicitly treats the first-
order partitioning of space into near-nucleus regions,
where the charge density and its spatial variability are
large, and interstitial regions, where the charge density
varies more slowly. A dual-basis set is constructed, con-
sisting of plane-waves in the interstitial regions that are
matched continuously to more rapidly varying functions
inside spheres centered about each nucleus. The advan-
tages inherent in the LAPW method - no approxima-
tions to the shape of the charge density, potential, or to
the nature of bonding - are expected to be particularly
important in high pressure studies where qualitative
changes in the nature of the electronic structure, such
as insulator-metal transitions, changes in valence state,
and coordination, may be induced by large compres-
sions. The method is equally applicable to essentially
all the elements of the periodic table, to metals, insu-
lators, semi-conductors, and magnetic materials. The
only essential limitations of the method are those in-
herent in the LDA or GGA approximations.

There are two major differences between tight bind-
ing methods, originally formulated by Slater and Koster
[1954], and the first principles approaches discussed so
far. First, the basis functions are chosen to be centered
on the nuclei. For basis functions ¢;, (7 — ﬁi), where
a labels the type of orbital {e.g., s, p, d, ...), and 7 la-
bels the atom, the Hamiltonian matrix then consists of
elements

Hiajp(k) =

> exp(ik - Bij(1))Sap(Bij())hap(Risi))  (6)

=0
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Oinjp(k) =

> exp(ik - Rij(1))Sap(Ri;(D)oap(Riji1))  (7)
=0

where R;;(l) is the distance between the i-th atom in
the reference unit cell (labeled ! = 0) and the j-th atom
in the I-th unit cell, the S,s are functions of direction
only and, in the two-center approximation, the h,g and
0o are functions only of internuclear distance. Indices
1 and j run over all atoms in the unit cell, and ! runs
over all unit cells. Under the assumption that the basis
set consists of functions with the symmetry of s, p, d,
atomic orbitals, the functions S,s can be written
in terms of spherical harmonics. The distance depen-
dent functions, hqg and 043, are taken to be parametric
functions of distance, with parameters chosen such that
first principles results are reproduced. In this way, all
explicit reference to the wavefunctions or charge density
is eliminated. This simplifies the calculations tremen-
dously, but renders the calculation non-self-consistent.
The non self-consistency of the tight binding ap-
proach has a very important consequence which has not
been widely recognized [Cohen et al., 1994a]. In gen-
eral, the total energy can be written

E=Y / e:(R)dF + F [p()] (®)

where the first term is a sum over the self-consistent
eigenvalues, and the second term, a functional of the
charge density, contains all non-band structure contri-
butions to the energy. The band structure now contains
an arbitrary zero which must be fixed in order to cal-
culate the total energy. The arbitrariness of the energy
zero in the tight binding method can be exploited to
recast the total energy as

E=Y / ¢ (R)dk ©)

where the new eigenvalues are shifted in energy such
that €] = ¢; — F [p(7)]. With this formulation, the total
energy is given simply as a sum over the bands, elimi-
nating the need for pair potential repulsive terms which
are often included in other treatments. The parameters
of the tight binding model are determined by fitting
to accurate LAPW band structures and total energies.
This approach has been very successful in describing the
properties of monatomic systems, such as iron [Cohen
et al., 1994b].

For a given arrangement of nuclei (crystal structure)
the LAPW or tight binding total energy methods allow
one to determine the total energy and charge density,

O
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and the quasi-particle eigenvalue spectrum (electronic
band structure). By examining the dependence of the
total energy on perturbations to the volume V or shape
of the crystal (described by the deviatoric strain tensor,
€};), or to the positions of the atoms, the Helmholtz free
energy as a function of V, eﬁj, and T can in principle be
deduced. Assuming that the deviatoric strain is small
and that the stress is hydrostatic [Wallace, 1972]
F(V,e.,, T) =

157
1
(V) + Fry(V,T) + §Cijkl(Va T)Elije;cl (10)

where Fy is the static (zero temperature) contribution,
Frpy is due to the thermal excitation of electrons and
phonons, and C;ji is the elastic constant tensor. This
equation shows that the difference in Helmholtz free
energy between a strained and unstrained lattice is in
general related to a combination of elastic constants.
We have made use of this to determine the full elas-
tic constant tensor by applying a minimal set of high
symmetry, volume conserving strains [Mehl et al., 1990;
Stizrude and Cohen, 1995a).

Thermal Properties

The temperature in the core far exceeds its Debye
temperature so that the phonon spectrum is fully pop-
ulated. In this limit, we can write Fry in (10) as

Fru(V,T) = Fu(V,T) - kTln 2 (11)

where F; is due to the thermal excitation of electrons
and Z is the (classical) statistical mechanical partition
function associated with atomic vibrations in the canon-
ical ensemble

Z =)\ / exp (U N))) dr ¥ (12)

where A\ = h/(2rmkpT)/? is the de Broglie wavelength
of the atoms, kg is Boltzmann’s constant, h is Planck’s
constant, 8 = (kgT)™!, U is the total energy, and 7V
indicates integration over the Cartesian coordinates of
N atoms (N ~ 1023). Evaluation of this quantity re-
quires an integration of a functional of the total energy
over all vibrational degrees of freedom, an impossible
task using a purely first principles approach.

In order to treat the vibrational degrees of freedom,
we make use of a mean-field approximation known as
the cell model [Holt et al., 1970; Ree end Holt, 1973,
Couwley et al., 1990]. The motivation for using the cell
model is that it accounts for anharmonicity and is com-
putationally efficient, permitting precise determinations
of all thermodynamic properties including free energies.

Alternative methods for evaluating the vibrational par-
tition function either ignore anharmonicity (e.g., quasi-
harmonic lattice dynamics), or, as in the case of molec-
ular dynamics, make fewer approximations, but are tens
of thousands of times less efficient computationally.

The essential feature of the cell model is that the vi-
bration of an atom is assumed to be uncorrelated with
that of its neighbors, an approximation which is ex-
pected to be good at high temperature. In this limit,
the partition function factorizes

N

zceu=x3N[ [ exp(—ﬂ(U(F)—Uo))dF] . (3)

where the integral is now over the coordinates of a single
atom within its Wigner Seitz cell A. Here Uy is the
potential energy of the system with all atoms on ideal
lattice sites, U(7) is the potential energy of the system
with the wanderer atom displaced by the radius-vector 7
from its equilibrium position, and N is the total number
of atoms in the system.

The pressure due to the thermal excitation of elec-
trons is readily evaluated and is calculated with the
same accuracy as the static pressure. This contribution
is determined by performing self-consistent high tem-
perature density functional calculations [Mermin, 1965;
McMahan and Ross, 1977). We have shown [ Wasser-
man et al., 1996] that this term is well approximated
by a rigid band picture in which the band structure is
assumed to be independent of temperature. We have
assessed the accuracy of this assumption by compar-
ing with fully self-consistent high temperature LAPW
calculations. The temperature dependence of the band
structure - which arises because the charge density, and
therefore the potential change as higher lying states are
populated - has a negligible effect on bulk thermody-
namic properties.

RESULTS

Total Energy of Perfect Lattices

Calculations of the total energy of bcee, fcc, and hep
phases of iron over a range of volumes that span the
pressure regime of the Earth’s interior, show that den-
sity functional calculations are capable of describing the
compression, phase stability, and magnetism of iron.
They also clearly show the advantages of the GGA ap-
proximation to the exchange-correlation functional over
the older LDA approximation [Stizrude et al., 1994].

Both GGA and LDA correctly predict that hep iron is
the equilibrium low-temperature structure at high pres-
sure (Figure 1). Moreover, GGA correctly predicts that
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Figure 1. LAPW calculations of the total energy of iron in
GGA (top) and LDA (bottom) approximations. Results for
ferromagnetic bcc (filled squares), non-magnetic fcc (open
squares), and hcp (circles) are shown. Results for both ideal
(open circles) and minimum energy (filled circles) c/a ratios are
shown for the hcp phase. The inset shows the magnetic
stabilization energy of bcc: the difference in total energy
between non-magnetic and ferromagnetic states. From
Stixrude et al. [1994].

ferromagnetic bce is the ground state structure, stable
at zero pressure, as first shown by Bagno et al. [1989].
The incorporation of gradient corrections (the GGA
functional) thus corrects a well known deficiency of the
LDA, that it does not recover the correct ground state.
We used the common tangent construction to determine
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the phase transition pressure from bcc to hep predicted
by the GGA calculations (Figure 2). The result, 11
GPa, is in excellent agreement with experimental obser-
vations and other density functional calculations [Asada
and Terakura, 1992; Séderlind et al., 1996]. This is an
important illustration of the accuracy of density func-
tional theory and the GGA - phase transition pressures
are among the most challenging of experimental obser-
vations to reproduce theoretically because they depend
on small differences between large numbers. For exam-
ple, to accurately reproduce the bcc to hep total energy
difference at zero pressure requires one to calculate the
total energy correctly to 8 significant figures.

In order to determine the equation of state of the
three known phases of iron, we fit our total energy re-
sults to a Birch [1952] Eulerian finite strain expansion
(Figure 3). Expansions to third order in finite strain
were found to yield excellent fits to the total energies
over the more than twofold compression range of our
study (rms misfits were slightly less than the preci-
sion of the calculations, i.e., 0.1 mRy). The equation
of state parameters determined from our GGA calcula-
tions [Stizrude et al., 1994] show good agreement with
the experimentally measured equation of state of bcc
iron. The zero pressure volume and bulk modulus of
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Figure 2. Detail of Figure 1 (top) showing the region of the
bce to hep transition in the GGA approximation. Total
energies of ferromagnetic bce (closed squares), hep with ideal
¢/a ratio (open circles and dashed line), and hcp with minimum
energy c/a ratio (closed circles with solid line) are shown. The
short thin line is the common tangent to bce and hep curves
and represents the phase transition pressure (Prg) between the
two phases.
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Figure 3. GGA equations of state of bce (dashed), fcc (dotted),
and hcp (solid) phases of iron compared with the experimental
data of Jephcoat et al. [1986] (bcc, filled squares; hcp, open
squares) and Mao et al. [1990] (hcp, open circles). From
Stixrude et al. [1994].

the bee phase predicted by GGA are within 3 and 10%
of experiment. The agreement between GGA and the
experimentally determined zero pressure properties of
hep iron is not as good. The theoretical zero pressure
volume is 9% smaller than the experimental value ex-
trapolated to zero pressure. This level of disagreement
-is surprising in light of the much better agreement with
the zero pressure properties of the bcc phase and the
performance of density functional theory in other sys-
tems, including nonmagnetic fcc 3d transition metals
[Leung et al., 1992]. We speculate that the discrep-
ancy may be caused by the presence of magnetism in
hcp iron at very low pressures. We have investigated
only the non-magnetic state of the hcp phase as previ-
ous calculations have indicated that the ferromagnetic
moment is zero for non-negative pressures [Asade and
Terakura, 1992]. In all cases GGA agrees better with
experiment than does LDA. The gradient corrections
partially correct the well known tendency of local func-
tionals to underestimate the volume.

The agreement between experiment and theory is sig-
nificantly better at high pressure. At the lowest pres-
sure at which the volume of hcp iron is actually mea-
sured, GGA and experiment differ by 6% in volume.
Significantly, at the pressures of the Earth’s core (136-
363 GPa) GGA reproduces the experimental equation
of state to within 2 %, and to within 1 % at inner core

pressures (328-363 GPa). These results have been con-
firmed by Sherman [1995] also using the LAPW method
and by Sdderlind et al. [1996] using the full potential
linear muffin tin orbital (LMTO) method. The agree-
ment between different theoretical results is significant
because it demonstrates the reproducibility of first prin-
ciples calculations even, as in the case of Sdderlind et
al., when different computational methods are used to
solve the Kohn-Sham equations.

We use our results to address the relative stabil-
ity of bec, fce, and hep phases at high temperature
[Stizrude and Cohen, 1995b]. The relative stability of
these phases at core temperatures will depend on ther-
mal contributions to their free energy. Without eval-
uating these thermal contributions explicitly, we find
that the static total energy of the bce structure at high
pressure is so much higher than that of hcp that its sta-
bility at any temperature is highly unlikely. The total
enthalpy, H = E + PV of the bcc structure becomes
much larger than that of hep at high pressure. This is
primarily a result of the larger volume of the bec struc-
ture (Figure 4). The relative stability of bee and hep
structures is governed by the difference in Gibbs free
energies, G

AG = AH —TAS (14)
f 1

10 -
g
= sl
a«
E
T 6F
T
(]
e
g 4r
£
o
Z 2
[}
£
&

0

2l ! ! 1 ! 1

0 100 200 300 400 500 600
Pressure (GPa)

Figure 4. GGA total enthalpy of bce (solid squares) and fcc
(open squares)relative to that of hcp (open circles) as a function
of pressure. The enthalpy difference is divided by the universal
gas constant (R) resulting in units of temperature. Enthalpy
differences are compared with the pressure range (horizontal
bar) and range of estimates of the temperature (vertical error
bar) of the inner core (IC). From Stixrude and Cohen [1995b].



where AG = Gpce — Grep- For the bee structure to be
stable with respect to the hcp structure at temperature
T, we require

T > AH/AS (15)

If we take typical entropies of melting as an upper
bound on the entropy difference, AS < R, where R
is the gas constant, then the bec structure is stable for
temperatures T > 8000 K at inner core pressures. This
temperature exceeds even the highest estimates of the
temperature in the Earth’s inner core. Moreover, it ex-
ceeds the highest estimates of the melting temperature
of iron at inner core pressures. The stability of the bcc
structure at inner core conditions is thus highly unlikely.
The energetic unfavorability of bee at high pressure was
recently confirmed by Moroni et al. [1996], who com-
bined LMTO calculations with an approximate treat-
ment of the vibrational contribution to the free energy.

Magnetism

In the crustal environment, temperature plays a cru-
cial role in determining the magnetic state of metals
and transition metal-bearing silicates and oxides. The
entropy of orientational disorder of magnetic moments
becomes favorable at high temperatures and leads to a
vanishing net magnetic moment above the Curie tem-
perature. However, local magnetic moments survive
and are often essentially unchanged in magnitude from
their values in the magnetic low temperature structure.
At core pressures, a different phenomenon occurs; the
local magnetic moments themselves vanish under com-
pression.

At zero pressure our GGA calculations of the ferro-
magnetic state of bee iron [Stizrude et al., 1994] show
that the theoretical magnetic moment is in excellent
agreement with experiment (2.174 vs. 2.12 upg) (Fig-
ure 5). Interestingly, and despite the failure of the LDA
to recover the correct ground state for iron, the mag-
netic moment that it predicts for (metastable) ferro-
magnetic bee iron is essentially identical to that pre-
dicted by GGA at the same volume.

Our GGA and LDA calculations show that the mag-
netic moment of ferromagnetic bec iron vanishes at high
pressure (Figure 5). The density at which the mo-
ment approaches zero is similar to that of the inner core
(V =~ 48 Bohr?®). The dependence of the magnetic mo-
ment on voluine is quasi-linear between V=60 and 90
Bohr?3, but then begins to decrease much more rapidly
at smaller volumes. These results have been confirmed
by Séderlind et al. [1996], whose LMTO calculations
show an essentially identical dependence of magnetic
moment on compression.

The collapse of the magnetic moment in iron can
be understood in terms of band broadening. Many
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Figure 5. Magnetic moment of bcc iron in the GGA (solid
squares, solid line) and LDA (open squares, dashed line)
approximations in units of Bohr magnetons. From Stixrude et
al. 11994).

transition metals are metallic because of the strong
localization characteristic of d-states. These localized
states produce a very narrow band with little dispersion
through the Brillouin zone. However, under compres-
sion, the dispersion of these states increases because of
enhanced d-d hopping, broadening the d-band and de-
stroying their unique character. These arguments can
be formalized in terms of a Stoner model [Marcus and
Moruzzi, 1988].

Iron at densities comparable to, or slightly higher
than that of the inner core, is expected to be nonmag-
netic. It is worth re-emphasizing that this is a conse-
quence of pressure, not of temperature. Pressure causes
local magnetic moments to vanish. Without local mo-
ments, the concept of a Curie temperature, and the
ability of high temperature to disorder moments has no
significance.

Elasticity

The simplest elastic distortion of the cubic phases of
iron - a stretching along one crystallographic axis - re-
veals a structural relationship between the bec and fee
lattices, and the mechanical instability of the bce phase
[Stizrude et al., 1994; Stizrude and Cohen, 1995b}. The
bec structure is recovered for ¢/a=1, while the fcc struc-
ture is obtained when c/a = v/2. We investigated the
total energy of iron as a function of the c/a ratio of this
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Figure 6. Total energy of iron as a function of ¢/a ratio. The
values of ¢/a which correspond to the bee 151.0) and fcc (V2) are
indicated. Results at a volume of 70 Bohr” (near zero pressure,
circles) are compared with those at 50 Bohr3 (near 200 GPa,
squares). Ferromagnetic GGA results are indicated by the filled
symbols, ferromagnetic LDA results by the open symbols.
From Stixrude et al. [1994].

tetragonal lattice with the LAPW method and using
both LDA and GGA exchange-correlation functionals.

At low pressure, the total energy as a function of
c/a ratio displays two local minima, one corresponding
to the bec structure and one to the fec structure (Fig-
ure 6). This is in agreement with experimental observa-
tion. Both of these phases are known to be elastically
stable at low pressure. In both theory and experiment,
as the lattices are strained, their total energy rises, cor-
responding to an elastic restoring force. At high pres-
sure, a completely different picture is revealed by our
theoretical results. While the fcc phase is still elasti-
cally stable, the bcc phase is elastically unstable. As
the bee lattice is strained by small amounts, its energy
is lowered. This means that there is no restoring force
that preserves the bcc structure at high pressure. In
the presence of infinitesimal thermal fluctuations, the
bec lattice will undergo a spontaneous distortion to the
fcc structure. The mechanical instability of the bec lat-
tice was recently confirmed by Sdderlind et al. [1996],
whose LMTO calculations show mechanical instability
for volumes less than approximately 55 Bohr?, consis-
tent with our results.

The mechanical instability of the bcc lattice can also
be understood in terms of the Born stability criterion.

?—-—m

The second derivative of the total energy with respect
to c/a is proportional to the combination of elastic con-
stants Cs = Cy; — C12 which must be greater than zero
for a mechanically stable structure. The negative cur-
vature exhibited by bec above 150 GPa corresponds to a
negative value of C's and violation of the Born criterion.

There is no evidence for a stable tetragonal structure
in iron at any pressure. Such a structure was proposed
by Séderlind et al. [1996] on the basis of the apparent
local minimum in total energy for ¢/a < 1 (Figure 7). It
is important to recognize that this minimum is merely
a saddle point and does not correspond to a mechan-
ically stable structure. This becomes clear when one
considers the orthorhombic strain energy surface. The
fce structure can be derived from the bce structure in
one of two ways: (1) by increasing the c¢/a ratio or (2) by
decreasing c/a and b/a. By decreasing c/a below unity,
a structure is generated which is intermediate between
bee and fece. Tight-binding calculations at a series of
volumes that span inner core conditions (V' = 40 — 50
Bohr®) confirm that the apparent local minimum is a
saddle point and does not represent a mechanically sta-
ble structure.

Because the bee phase is not only energetically unfa-
vorable, but also mechanically unstable, it is highly un-
likely to exist in the Earth’s core. We investigated the
elasticity of the remaining observed phases of iron, fcc

Total Energy (mRy)
0
o

-40

V=40

c FCC
1 | ] Jt
08 09 10 11 12 13 14 15

[11]

|—()----------crmmmmmee oo

-60 1 |

Axial Ratio c/a

Figure 7. Total energy of iron as a function of c/a ratio in the
GGA approximation. Results at four volumes are shown as
indicated. The horizontal axis is extended towards smaller c/a
ratios to illustrate the apparent minimum which develops near
¢/a=0.9 for V=50 and 60 Bohr>.



and hcp in more detail with the tight binding method.
We used this model to determine the full elastic con-
stant tensor of both phases.

The elastic constants as a function of pressure of fcc
and hcp iron are shown in Figure 8. We find that the
elastic constants depend sublinearly on pressure. In the
case of hep, the diagonal elastic constants are similar
in magnitude with Cs3 slightly larger than Cp; at all
pressures (by 6% at inner core densities). Similarly,
Cse = (C11 — C12)/2 is slightly larger than Cy4 (by 5%
at inner core densities). The differences between these
pairs of elastic constants correspond to anisotropies in
P- and S-wave velocities.

Our predicted fcc and hcep elastic constants are in gen-
erally good agreement with LMTO results [Sdderlind et
al., 1996]; the RMS difference between the two sets of
predictions is 70 GPa, or 6% at inner core densities.
The largest difference occurs in Ciz of hep: while we
find that C;2 and C;3 are similar, differing by no more
than 6%, the LMTO study finds that C3 is more than
50% smaller than C;3 at inner core densities. While
the cause of this discrepancy is unclear, we note that
experimental data on other hep transition metals [Bran-
des, 1983] show Ci2 =~ Ci3, consistent with our results.
Moreover, Sdderlind et al. performed their elastic con-
stant calculations using the ideal, rather than the equi-
librium value of ¢/a. We speculate that this may have
biased their results.

The elastic constants completely specify elastic wave
propagation in a single crystal as a function of prop-
agation direction 7 and polarization direction w. The
wave velocities V are given by the eigenvalues of the
Cristoffel equation

C,-]-kmjwknl = pV2w,- (16)

where p is the density. We find that the magnitude of
the anisotropy is threefold greater in the cubic phase
and threefold greater for S-waves than for P-waves: at
the density of the inner core (V=48 Bohr?) P-wave
velocities vary with propagation direction by 10 and
3%, respectively in fcc and hep, while S-wave veloci-
ties are 30 and 10% anisotropic (Figure 9). The greater
anisotropy of the cubic structure, the directions of maxi-
mum and minimum velocities, and the greater anisotropy
of S-waves can be understood in terms of a parame-
ter free nearest neighbor central force model [Born and
Huang, 1954]. The magnitude of the P-wave anisotropy
in hep is very similar to that observed seismologicaily
in the inner core.

We may also compare the absolute values of elastic
wave velocities determined theoretically with those of
radial seismological models. The theoretical P- and S-
wave velocities of isotropic aggregates of iron are higher
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Figure 8. Elastic constants of fcc (top) and hcp (bottom) iron
as a function of pressure.

than those observed for the inner core by 5 and 50%,
respectively [Stizrude and Cohen, 1995a]. This differ-
ence is due to the difference in temperature between
the static calculations and the inner core, and to the
relatively low frequencies of seismic waves; our theoret-
ical elastic constants correspond to infinite frequency
values. One way to illustrate this is to compare the
Poisson’s ratio ¢ from our calculations with that of the
inner core. We find that o = 0.31 at inner core den-
sities, a typical value for solids and much lower than
that of the inner core (0.44). This comparison suggests

L
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is athermal - the static pressure of hcp iron at the den-
= \ 7 sity of the inner core is 240 GPa, more than 65% of the
T pressure at Earth’s center. However, the thermal con-
Vv tribution to the pressure is non-negligible. In a metal,
P such as iron, there are two important contributions: (1)
= 1.0 The pressure due to the thermal excitation of electrons.
8 This term is unique to metals and arises from the pop-
£ ulation of high energy electronic states according to the
2 Fermi-Dirac distribution. (2) The thermal pressure due
§ 09 | to atomic vibrations. This contribution is also present
e in insulators.
2 At inner core densities, we find that the pressure due
to the thermal excitation of electrons is approximately
) 10 GPa. The pressure due to atomic vibrations con-
0.8 — tributes approximately 50 GPa to the total pressure at
inner core densities or 15% of the total pressure. The
three contributions to the total pressure are shown sep-
001 11 110 100 ara,tel.y .along the T=6000 -K isotherm in.Figure 10. By
Propagation Direction combining LAPW calculations of the static pressure and
that due to the thermal excitation of electrons, with cell
110 model determinations of the thermal pressure, we ob-
tain a complete description of the equation of state of
iron.
1.08 Our theoretical high temperature equation of state of
iron is in good agreement with available experimental
1.08 data [Wasserman et al., 1996]. We have shown that
> the Hugoniot calculated with the cell model and our
% 1.04 tight binding Hamiltonian is within a few GPa of the
8 experimental Hugoniot at core pressure. Our predicted
S 102 Hugoniot temperatures are in excellent agreement with
£ the estimates of Brown and McQueen [1986], but fall
2 100 approximately 800 K lower than the values measured by
= Yoo et al. [1993]. We have also compared our equation
0.98 400
350 § %} ~ —-P_(GPa
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Figure 9. Velocity anisotropy in fcc (top) and hcp (bottom) 0] . N
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are normalized to those for propagation in the [001] direction. 3 NS
Planes of polarization of S-waves are indicated. From Stixrude 100 F ~ \"-\
and Cohen [1995a]. b St
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that the anomalously high o of the inner core may be Ob s s i T
due to anelasticity and dispersion at high temperature 45 50 55 60 65 70
[Jackson, 1994]. V (bohr®/ atom)
High Temperature Properties Figure 10. Different contributions to pressure at T=6000 K:
static pressure (dashed line), static +electronic pressure (dot-
Our calculations of the static equation of state of iron dashed line), total pressure (solid line). Also shown is the
show that the largest part of the pressure in the core pressure in the inner core according to PREM model (circles).




of state to measurements of the thermal expansivity of
hep and fec iron and found good agreement.

We compare our equation of state of iron to the prop-
erties of the inner core as determined seismologically
(Fig. 11). For temperatures in the middle of the range
typically estimated for the inner core (6000 K) the den-
sity of iron is 3.5% greater than that of the inner core.
This difference is larger than the estimated uncertainty
in our theoretical equation of state - the difference be-
tween our results and comparable experimental data
(e.g., the Hugoniot) is substantially less (1%). The dif-
ference between the density of iron and of the inner core
also lies outside uncertainties in the seismological esti-
mates of the inner core density. [Masters and Shearer,
1990]. We note that even for temperatures as high as
8000 K, somewhat higher than the highest estimates of
inner core temperatures, iron is still 1% denser than the
inner core.

We find that temperatures in excess of 8000 K are
required for the density of iron to coincide with that
of the inner core. The conclusion that very high tem-
peratures are necessary is consistent with previous re-
sults, although the requisite temperatures found here
are somewhat higher than those found by Jephcoat and
Olson [1987]. These authors found that a temperature
of 7000 K was adequate to yield agreement between
the equation of state of iron and the inner core. The
differences between our result and theirs is due to the
different equations of state used. Because of the limited
experimental data then available, Jephcoat and Olson
were forced to extrapolate their semiempirical equation
of state well outside the range of measurements. They
also did not include an explicit division of vibrational
and electronic thermal pressures.

DISCUSSION AND CONCLUSIONS

It is now possible to understand the physics of iron
at the pressures and temperatures of the Earth’s core
on the basis of density functional theory. LAPW cal-
culations, and parametric extensions of first principles
methods, such as our tight binding method, allow one to
predict, independently of experimental data, the phys-
ical behavior of iron at extreme conditions. Together
with experimental measurement, these results place new
constraints on the composition of the core, its thermal
state, the crystalline structure of the inner core, and
the origin of its anisotropy.

Density functional theory places some of the first con-
straints on the crystalline structure of the inner core.
All of the observed structures of iron have been consid-
ered as the stable phase at inner core conditions [An-
derson, 1986; Ross et al., 1990; Jeanloz 1990]. Den-
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sity functional theory effectively eliminates one of these
phases, bcc, as a likely constituent of the inner core. We
find that it is highly unfavorable energetically with re-
spect to hep and fce phases at high pressure, primarily
because of its larger volume. More importantly, we find
that it is mechanically unstable - it violates the Born
stability criterion above 150 GPa.
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Our calculations favor a hexagonal phase as the crys-
talline structure of the inner core. We find that hcp is
the stable low temperature phase from 11 GPa, to pres-
sures well beyond those of the inner core. Moreover, we
find that the elastic anisotropy of the hcp phase pro-
vides a natural explanation of the anisotropy of the in-
ner core. We find that the P-wave anisotropy of hcp
iron is very similar to that of the bulk inner core. As-
suming that the inner core is a polycrystalline aggre-
gate, we have shown that very simple textural models,
combined with our predicted elastic constants, can ac-
count for seismic travel time observations. An aggre-
gate in which the c-axes of the constituent hcp crystals
are nearly aligned with the spin axis can account for
60% of the variance in BC-DF travel time anomalies.
An alternative model, one which accounts for the seis-
mic data equally well and is motivated by the strong
alingment that is required, is that the inner core con-
sists of a single crystal of hep iron [Stizrude and Cohen,
1995a]. Based on these results, we cannot rule out the
possibility that the inner core is composed of a different
hexagonal phase (e.g., dhcp) which may be similar to
hep elastically and energetically.

First principles calculations show that the magnetic
state of iron at high pressures is likely to be very differ-
ent from its familiar low pressure state. The hcp and fec
phases are expected to be nonmagnetic at high pressure.
This means that not only is the net magnetic moment
zero, but that magnetic moments do not exist, even lo-
cally: spin pairing is complete. This is to be contrasted
with the state of iron at zero pressure, where, above its
Curie temperature, the net magnetic moment may be
zero, but local moments, while disordered, remain vir-
tually undiminished in magnitude from their values in
the ferromagnetic, low-temperature state.

Our theoretical equation of state of iron at high pres-

sures and temperatures shows that the Earth’s inner

core is not likely to be composed of pure iron. The al-
loying elements must be lighter on average than iron.
The amount of the light element in the inner core re-
mains uncertain, but is likely to be several weight %,
depending on the identity of the light element (S, O,
...), and the as yet poorly constrained properties of the
relevant alloys.
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