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INTRODUCTION

Recent studies of minerals at very high pressures are yielding numerous surprises that
present a considerable challenge to our understanding of mineral structure and bonding. In
the context of earth sciences, the exploration of high pressure has opened up mineralogy to
the investigation of the bulk of our planet that lies beneath the surface. The earth’s interior
is a unique environment in which the behavior of minerals often overturns our textbook
intuition. Primarily because in situ experimental studies of minerals over the entire range of
conditions encountered within the Earth are so new and just now being explored, the nature
and evolution of the earth’s interior is poorly understood, and difficult to predict with
current theoretical understanding. In contrast, we have a better understanding in many
ways of the interiors of distant stars. For example, we are able to calculate the structures
and evolutionary history of stars with some certainty, an exercise that is not yet possible for
the earth. The reason is that, because the pressure is so high, the electrons obey an almost
trivial limiting behavior, the uniform electron gas (Ichimaru 1982). The underlying physics
is that the kinetic energy of electrons increases with the charge density, p, as p*3 while the
potential energy binding the electrons to the nuclei increases only as p'3; the kinetic energy
dominates at high pressure and the electrons become unbound (see Bukowinski 1994 for
an extended discussion).

The contrast with planetary interiors can be illustrated by expressing the pressure in
terms of atomic units, one atomic unit (29.4 TPa) being comparable to the pressure
required for complete ionization and the formation of a degenerate electron gas. The
structure of planets are such that pressures are much less than unity. The behavior of
planetary materials will be far from plasma-like, and therefore much more complex; the
pressure-temperature domain is such that materials are best described as condensed matter.
Using other language, although chemical effects are still dominant (i.e. properties
controlled by the orbital structure of atoms), strong perturbations of these properties can
introduce new and unsuspected complexity. A more useful pressure scale in the context of
planetary interiors is formed from an energy typical of the spacing between electronic bands
g eV) and a volume typically occupied by a valence electron in a mineral (20 Bohr® =3

3). This pressure scale (~50 GPa) is characteristic of the earth's interior and of the bulk
modulus of typical earth-forming constituents. On quite general grounds we must expect to
find in planetary interiors not only significant compression and phase transitions, but also
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electronic transitions (e.g. insulator to metal) and substantial changes in the mechanisms of
bonding, all of which complicate our picture of planetary structure and evolution.

The recognition that minerals at high pressure are characterized by complex multi-
phase behavior places tremendous demands on the required accuracy of theoretical
methods. They must be general, applicable to essentially all classes of elements, and must
not make any assumptions regarding the nature of bonding. This generality rules out most
semi-empirical approaches that are based on our more traditional notions of mineral
behavior, such as the otherwise powerful ionic model. Moreover, energies and volumes
must be accurate to well within typical heats and volumes of solid-solid transformations,
ruling out essentially all weak screening approaches that treat condensed matter in
perturbative fashion beginning with the free electron gas. Indeed, early calculations using
one such approach (Jensen 1938) incorrectly predicted that iron is substantially less dense
than the earth’s core (Birch 1952). On the other hand, the goal of theory is not only to
provide accurate quantitative predictions of physical properties that can be measured
experimentally (at least in principle); theory should provide important physical insight and
understanding into phenomena that may not be apparent from measurements or from large-
scale computations. Thus, the simpler approaches play an important role in providing this

Over the past decade or so, theoretical methods have been developed that have
sufficient generality and power to tackle the complex behavior we expect to find in high-
pressure mineralogy. These first-principles methods are relatively new to the earth sciences
literature and have not been widely reviewed. Moreover, unlike more venerable semi-
empirical or ab initio models, they are based on a microscopic view of minerals that differs
radically from our traditional intuition. This review explores some of the theoretical
methods that have been applied in high-pressure mineralogy, but focuses on first-principles
methods because of their relative historical and conceptual novelty. The following sections
review in some detail modern first-principles methods based on density functional theory as
they have been applied in the earth science literature, and the fundamental approximations
upon which these methods are based. First-principles methods are contrasted with those ab
initio and semi-empirical models that have also played an important role. We then discuss
the derivation of observable quantities from density functional theory, and briefly review
computational methods for solving the equations. Finally, we discuss applications of
theory to understanding and predicting the behavior of minerals deep within the Earth, and
explore some important unsolved problems and possible future directions.

THEORY

A wide range of theoretical methods have appeared in the earth sciences literature, and
many have been applied to understanding the behavior of deep Earth materials. These
methods differ vastly in the level of physics included and as a result in the quality and
security of their predictions. Two extremes of the theoretical spectrum-—semi-empirical to
first principles—reflect two superficially different views of the microscopic world. The
empirically-based ionic model, originally developed by Goldschmidt and Pauling (1960),
forms the foundation of much of our understanding of mineral behavior. It continues to
play an important conceptual role and forms the basis of most modemn semi-empirical
atomistic approaches. However, our traditional mineralogical intuition often fails us in the
very high-pressure environment. The marked changes in electronic properties of materials
that can occur under these exireme conditions require new approaches. First-principles
methods view minerals in a very different way which, being more closely tied to the
fundamental physics, permits understanding and prediction of unique high pressure
behavior. This review focuses primarily on the first-principles approach as embodied in
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density functional theory by exploring its properties and capabilities and by contrasting it
with semi-empirical and ab initio models that are more closely tied to our traditional views
of mineral structure and bonding.

From the point of view of any first principles theory, solids are composed of nuclei
and electrons; atoms and ions are constructs that play no primary role. This departure from
our usual way of thinking about minerals is essential and has the following important
consequences. We may expect our theory to be equally applicable to the entire range of
conditions encountered in planets (and even stars), the entire range of bonding
environments entailed by this enormous range of pressures and temperatures, and to all
elements of the periodic table.

To illustrate this way of thinking about solids and to introduce some important
concepts, we consider first the properties of the simplest system, the uniform electron gas
with embedded nuclei. The total energy consists of the kinetic energy of the electrons, and
three distinct contributions to the potential energy: (1) Coulomb interactions among nuclei
and electrons (2) electron exchange and (3) electron correlation. The first contribution is
straightforward and involves only sums over point charges and integrals over the electronic
charge density. The latter two are corrections to the independent electron approximation
which is invoked to render the full N-body problem (in which only Coulomb interactions
appear) tractable.

Exchange and correlation account for local deviations from uniform charge that arise
from the tendency of electrons to avoid each other. Correlation accounts for the mutual
Coulomb repulsion, whereas exchange embodies the Pauli exclusion principle and the
resulting tendency of electrons of the same spin to avoid each other. The net effect is that
each electron can be thought of as digging a hole of reduced charge density about itself.
Certain properties of the exchange-correlation hole are well understood; it is known for
instance that its integrated charge must exactly balance that of the electron. Exchange and
correlation reduce the total energy by reducing the Coulomb repulsion between electrons.

The total energy of our simple system is readily evaluated as a function of charge
density; the equation of state then follows from differentiation. Assuming that the nuclei are
in a close-packed arrangement, and including only the leading order high density
contributjons to exchange and correlation, the equation of state is (Hubbard 1984)

P=0.1767[1-(0.4072>" + 0.207)r,] )

where P is the static (athermal) pressure, Z the nuclear charge, and the Wigner-Seitz radius

173
3
(3

is a measure of the average spacing between electrons. The first term in Equation (1) is the
kinetic contribution, the second due to the Coulomb attraction of the nuclei for the electrons
and mutual repulsion of the electrons, and the third to exchange. Correlation, which is
smaller than exchange at high density, has been neglected as has the mutual Coulomb
repulsion of the nuclei.

Comparisons with the structure of planetary interiors reveal some fundamentally
important aspects of planetary matter (Fig. 1). First, the net Coulomb attraction of the
electrons by the nuclei plays an essential role at planetary densities—different mean nuclear
charges account to first order for the difference in mean charge (and mass) density between
Jupiter and earth. Second, screening has a first order effect on the equation of state,
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Figure 1. Pressure in the interior of Jupiter (Chabrier 1992) and earth (Dziewonski and Anderson 1981) as
a function of mass density (top) and charge density (bottom). The charge density has been calculated from
the observed mass density by assuming that the number of electrons is one-half the number of nucleons.
Planetary structures are compared with limiting high density equations of state (Eqn. 1) for three values of
the atomic number, Z.

accounting for the much lower densities of planets at a given pressure than predicted by
Equation (1). In planetary matter, the charge density is substantially enhanced in the
vicinity of the nucleus, reducing the ability of the point charges to attract the remaining
(valence) electrons. Screening is weaker in the case of Jupiter because it contains
dominantly lighter elements, and because the pressures are much greater. Nevertheless, for
all the planets screening is so strong that it must be accounted for. The major part of the
screening is from the tightly bound, essentially rigid core electrons. In the case of the
terrestrial planets, the charge density near the nuclei is so much higher than in the interstitial
region that this difference plays a central role in the design of modern computational
methods.

First-principles level

We tum now from simple to real systems and at the same time from analytically
expressible results to necessarily elaborate computations. Though the electronic structure
will be non-trivial, we retain the charge density as a central concept. This is appealing
because this quantity is experimentally observable; it is precisely what is measured by an x-
ray diffraction experiment. While we will focus on density functional theory here, there are
other first-principles methods that have been important in the earth science literature; among
these is the periodic Hartree-Fock method (Dovesi et al. 1987). What all first-principles
methods share is an approach that seeks to minimize approximations to the bare minimum.
Some approximation is necessary since we are as yet incapable of solving the Schrodinger
equation exactly for any mineralogical system.
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Density functional theory. The general problem we are faced with in a non-
uniform, non-degenerate electron system is formidable. Given- a periodic potential set by
the positions of the nuclei, we must solve the Schrodinger equation for the total
wavefunction, ¥(r,,r,,...,ry) of a system of N interacting electrons, where N is on the
order of Avagadro's number. Density functional theory (Hohenberg and Kohn 1964, Kohn
and Sham 1965) is a powerful and in principle exact method of dealing with this problem in
a tractable way (see Lundqvist and March 1987 for reviews).

The essence of this theory is the proof that the ground state properties of a material are
a unique functional of the charge density p(F). Among these properties are the ground state
total energy

E=T+U[p(F)|+E.[p(F)] 3

and its derivatives (pressure, elastic constants, etc.) where T is the kinetic energy of a
system of non-interacting electrons with the same charge density as the interacting system,
U is the electrostatic (Coulomb) energy, including the electrostatic interaction between the
nuclei, and E, is the exchange-correlation energy. A variational principle leads to a set of
single-particle, Schrodinger- like, Kohn-Sham equations

["VZ + VKS]W:‘ =&Y, 4

where ; is now the wave function of a single electron, ¢; the corresponding eigenvalue and
the effective potential

N
Vis [ p(7)] = zl 22 T Jl"p(r"l P+ Ve [ p(F)] ®)

where the first two terms are Coulomb potentials due to the nuclei and the other electrons,
respectively, the last is the exchange-correlation potential and the units are Rydberg atomic
units: #2/2m = 1, e2 = 2, energy in Ry, and length in Bohr.

The power of density functional theory is that it allows one to calculate, in principle,
the exact many-body total energy of a system from a set of single-particle equations. The
solution to the Kohn-Sham equations is that of the set of coupled generalized eigenvalue
equations

Hy(k ) (7, k) = &,k )0, (k )y ;(F. k) (6)
Hy(k) = [y (7. 6)(-V2 + Vis )y (7, K ) ©)
O5(k) = [w; (F, o ;(F e )dF @®)

where H and O are the Hamiltonian and overlap matrices, respectively and & is a vector in
reciprocal space. Because the Kohn-Sham potential is a functional of the charge density,
the equations must be solved self-consistently together with the definition of the charge
density in terms of the wavefunctions

p(7) = [ S n(Ep — &} (F. K, (7, K )dk )

where 7 is the occupation number, and Er is the Fermi energy.
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Approximations. The Kohn-Sham equations are exact. That only approximate
solutions have been possible to date is a limitation imposed only by our current ignorance
of the exact exchange-correlation functional. If the exact exchange-correlation functional
were known, we would be able to obtain exact solutions. All other terms in the Kohn-
Sham equations are straightforward and readily evaluated. In addition to the essential
approximation to the exchange-cormrelation potential, two other approximations are
commonly invoked in some first principles calculations: the frozen-core approximation and
the pseudopotential approximation. These three approximations are now discussed in detail:
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Figure 2. The difference between the exchange-correlation potential and its high-density limit (Egns.
10,11) in (bold line) the local density approximation (LDA), and (other lines) three commonly used
approximations to the LDA (Hedin and Lundqvist 1971, Slater 1951, Wigner 1934). For the Slater result,
we use o = 2/3 which yields the pure exchange potential.

The exchange-correlation potential. The exchange-comelation functional is
known precisely only for simple systems such as the uniform electron gas (Fig. 2). The
exchange portion is known analytically, as are the leading order contributions to
correlation, in the limit of high density (Gell-Mann and Brueckner 1957)

d

V. =—|pE 10
xc ap[p xc] (10)
173
xc=_i(2’£) v+ Alnr, + B an
4\ 4

where E,. is the exchange-correlation energy, the first contribution to E,. is exchange, and
the constants, A = (1-In 2)/n2 and B = -0.046644 (Perdew et al. 1996). At other densities,
accurate values of the exchange-correlation potential are known from quantum Monte Carlo
calculations (Ceperley and Alder 1980), which have been represented in a parametric form
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that obeys the high density limiting behavior (Egns. 10, 11) (Perdew and Zunger 1981).

The precision of modern condensed-matter computations have made the accurate
representation of the exchange-correlation potential of the uniform electron gas an important
issue. In this context, one must be aware that approximate representations of V.. have
appeared frequently in the geophysical literature and are still in use. Of these, the Hedin-
Lundqvist (1971) expression is most similar to the accurate Perdew-Zunger parameter-
ization, that of Wigner (1934) the least. The Wigner approximation shows a much stronger
dependence on density than the accurate potential, and leads to significant errors in density
functional computations for solids. None of the commonly used approximate expressions
satisfy the correct high-density limiting behavior (Eqns. 10, 11).

The charge density in real materials is highly non-uniform, and the exchange-
correlation potential cannot be evaluated. Fortunately, simple approximations to the
exchange-correlation potential have been very successful. The Local Density Approxi-
mation (LDA) is based on the uniform electron gas, taking into account nonuniformity to
lowest order by setting V. at every point in the crystal to that of the uniform electron gas
with a density equal to the local charge density (Lundqvist and March 1987).

The success of the LDA can be understood at a fundamental level in terms of the
satisfaction of exact sum rules for the exchange-correlation hole (Gunnarsson and
Lundgvist 1976). For example, the LDA correctly predicts an exchange-correlation hole of
unit charge. Ultimately, the appropriateness of the LDA can be judged only by comparing
its predictions to observation. Here, the LDA has been remarkably successful. The LDA
has been shown to yield excellent agreement with experiment for a wide variety of
insulators, metals, and semiconductors, for bulk, surface, and defect properties. The LDA
also shows some important flaws; for example, it fails to predict the correct ground state of
iron. It also shows failures in the transition metal oxides, predicting metallic ground states
where insulating ground states are observed.

These failures have prompted the development of new exchange-correlation
functionals. One shortcoming of the LDA may be its local character, that is, its inability to
distinguish between electrons of different angular momenta or energy. Generalized gradient
approximations (GGA) partially remedy this by including a dependence on local charge
density gradients in addition to the density itself. Some care must be taken in constructing
gradient approximations; a straightforward Taylor series expansion in the charge density
gradient about the LDA result fails completely since it violates the sum rule for the
exchange-correlation hole. The most widely used generalized gradient approximation
satisfies the sum rules exactly (Perdew et al. 1996). This approximation and its forerunners
have been shown to yield agreement with experimental data that is usually as good as LDA
and often substantially better (Perdew et al. 1992). For example, GGA's correctly predict
the bec phase as the ground state of iron (Bagno et al. 1989). GGA is not a panacea
however; for some materials, LDA results are in better agreement with experiment, e.g. 5d
transition metals (Korling and Higlund 1992). Moreover, GGA does not alleviate the
failure of LDA in the case of the transition metal oxides. The relationship of the GGA to the
LDA can be expressed in terms of the enhancement factor

VSCA(r s)
F s — XC had
e 3) == )

where V, is the exchange potential and F is a function of the charge density and the non-
dimensional charge density gradient s = 24/ 7r2|Vp/ p* 3| (Fig. 3).

12)
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Figure 3. The effect of charge-density gradients on the exchange-correlation potential according to the
generalized gradient approximation (GGA). The enhancement factor for zero gradient (s = 0) reflects the
contribution of correlation to V..

The frozen core approximation. The physical motivation for this approximation
is the observation that only the valence electrons participate in bonding and in the response
of the crystal to most perturbations of interest. Unless the perturbation is of very high
energy (comparable to the binding energy of the core states), the tightly bound core states
remain essentially unchanged. The frozen core approximation is satisfied to a high degree
of accuracy for many applications, for example in the case of finite strains of magnitudes
typically encountered in the earth's interior.

Within this approximation, the charge density of the core electrons is just that of the
free atom, which can be found readily. We then need solve only for the valence electrons in
Equation (4), often a considerable computational advantage. An important technical point is
that, although in many cases the choice is obvious, there is no fundamentally sound way to
decide a priori which electrons are core and which valence. Some care is required; for
example, the 3p electrons in iron must be treated as valence electrons as they are found to
deform substantially at pressures comparable to those in the earth's core (Stixrude et al.
1994).

The pseudopotential approximation. This approximation goes one step beyond
the frozen core. It replaces the nucleus and the core electrons with a simpler object, the
pseudopotential, that has the same scattering properties (Pickett 1989). The pseudopotential
is chosen such that the valence wave function in the free atom is the same as the all electron
solution beyond some cutoff radius, but nodeless within this radius. The advantages of the
pseudopotential method are (1) spatial variations in the pseudopotential are much less
rapid than the bare Coulomb potential of the nucleus and (2) one need solve only for the
(pseudo-) wavefunctions of the valence electrons which show much less rapid spatial
variation than the core electrons, or the valence electrons in the core region. This means that
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in the solution of the Kohn-Sham equations, potential and charge density can be
represented by a particularly simple, complete and orthogonal set of basis functions (plane-
waves) of manageable size. With this basis set, evaluation of total energies, stresses, and
forces acting on the atoms is particularly efficient.

The pseudopotential is an approximation to the potential that the valence electrons
“see” and its construction is non-unique; different pseudopotentials may yield significantly
different predictions of bulk properties. Several different methods for constructing
pseudopotentials have been developed (Lin et al. 1993, Troullier and Martins 1991,
Vanderbilt 1990). Care must be taken to demonstrate the transferability of the pseudo-
potentials generated by a particular method and to compare with all electron calculations
where these are available. When these conditions are met, the error due to the pseudo-
potential is generally small (few percent in volume for earth materials).

Ab initio models

Whereas first-principles methods seek to reduce approximations to a bare minimum,
ab initio models construct an approximate treatment of some aspects of the relevant
physics, such as the charge density or of the interactions between orbitals. The cost of
additional approximation is often outweighed by the increase in computational simplicity
and efficiency. For example, ab initio models have been widely used to explore transport
properties or the properties of liquids which are very difficult (costly) to examine with fully
first-principles approaches. Moreover, these models often yield insight that is sometimes
difficult to extract from more complex and elaborate first principles calculations.

Gordon-Kim type approaches. This class of approaches, first introduced by
Gordon and Kim (1972) bridges the gap between traditional ionic models of minerals and
density functional theory. While based on the idea that materials are composed of closed-
shell atoms or ions, it shows the power of density functional theory and the local density
approximation even when these are not used self-consistently. Instead of solving for the
charge density self-consistently with the potential, the total charge density is modeled by
overlapping atomic or ionic charge densities and then the total energy is computed for that
charge density using the LDA. This approximation leads to much faster computations
because the charge density of isolated atoms or ions is easily calculated and self-
consistency is not enforced. The method is less accurate than the self-consistent solution to
the Kohn-Sham equations, even if the model density is good, because the local density
form for the kinetic energy is not accurate enough in many cases (for example it does not
give the proper shell structure for atoms). The Kohn-Sham approach does not make this
approximation to the kinetic energy even in the LDA and the kinetic energy derives from the
occupied orbitals. In subsequent work, the kinetic and correlation interactions were
modified (leading to the term modified electron gas, or MEG) to give better results for
atoms (Cohen and Gordon 1975, 1976). The MEG model generally gives equations of
state that are too stiff for the rare gas solids, but is quite successful considering the
simplicity of the model. These shortcomings of the simple Gordon-Kim model can be
partially overcome in the case of rare-gas solids by allowing the atomic charge densities to
respond to the embedding crystal potential, so that the atom is compressed with increasing
pressure (LeSar 1988). However, the principal error arises from the simplicity of the
principal interactions, particularly the Thomas-Fermi kinetic energy functional (scaled in the
case of MEG) as opposed to the Kohn-Sham approach.

Care must be taken in the treatment of oxides within this approach because the O* ion
is unstable in the free state. This difficulty is overcome by surrounding the ion with a
Watson sphere which mimics the embedding crystal potential that stabilizes the ion in the
crystal (Watson 1958). Thus O is surrounded by a sphere of charge +2: when an electron
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moves far from the atom it sees an object of positive charge +1 behind it, the electron is
bound and the configuration remains stable. The remaining question is how to choose the
radius of the sphere. The original Gordon-Kim calculations of oxides used rigid ion
potentials in which the ion was stabilized with a sphere whose radius was chosen so that
the electrostatic potential in the sphere was equal to the Madelung potential at the site at a
given volume (Muhthausen and Gordon 1981). In subsequent calculations, an important
contribution from the self-energy of the ion was included; this is crucial for predicting
volume (i.e. pressure) dependent properties (e.g. Hemley et al. 1985, 1987). This
approach was used to study a number of deep mantle minerals at high pressures.

The Potential Induced Breathing (PIB) model represented an extension of this
approach (Boyer et al. 1985). It was also introduced to improve the accuracy of elasticity
calculations, including the correct prediction of the deviation from the Cauchy conditions
(accurate values for the shear and off-diagonal elastic constants, which for rigid ion
potentials are equal; e.g. ¢;;=cy for cubic). In this model, the Watson-sphere radius is
given by the Madelung potential as atoms are displaced or the lattice strained,
Rye=Zya/Puas giving a non-rigid ion, many-body, potential. The successes of this
approach led to the development of the lattice dynamics of the PIB model (Cohen et al.
1987). Reasonable dispersion curves were obtained for the alkaline earth oxides. In the
PIB model, the Watson-sphere radii are given by the Madelung potential, but the Madelung
potential is not well behaved in the long-wave limit. A better procedure, though somewhat
slower, is to optimize the total energy with respect to Watson sphere radii rather than to
choose the radius using the Madelung potential (Wolf and Bukowinski 1988). This gives a
Watson sphere radius close to that of PIB at zero pressure, but it changes more rapidly with
compression than PIB due to the compression of the atom by short-range forces, in
addition to the electrostatic crystal field. This model is known as the VIB, or variationally
induced breathing, model. For example, anomalous behavior shown by the PIB model is
absent in the VIB model. In the VIB model, the LO-TO splitting is the same as given by a
rigid ion model, since all atomic deformations are spherical. There is no dipolar charge
relaxation. In spite of the absence of atomic polarizability, the VIB model is very accurate
and gives results that compare quite well with self-consistent results and experiment. Ab
initio models have undergone further development by including the crystal potential in the
atomic calculation, and a self-consistency cycle between the atomic densities and the crystal
potential (Edwardson 1989, LeSar 1983). In the Self-Consistent Charge Deformation
model (SCAD) (Boyer et al. 1997, Stokes et al. 1996) atomic densities are computed in the
crystal potential, and states are occupied in order of energy, allowing charge flow between
the atoms. The inclusion of non-spherical charge deformations has increased the accuracy
of the models, but at the cost of increased complexity.

Tight binding. In its simplest parametric form, as originally formulated by Slater
(1954) and extensively illustrated by Harrison (1989), the tight-binding method differs
from those described so far in that the charge density does not appear explicitly. In this
form of the method, the wavefunctions are constructed from basis functions consisting of
atomic-like orbitals. For basis functions ¢;, (7 - R;), where ¢ labels the type of orbital (e.g.
s, p, d, ...), and { labels the atom, the Hamiltonian and overlap matrices consist of elements

Hipip(k )= IE(,)exp[il? © Ry(1)1S,50 Ry(1)]hopl Ry(1)] (13)

Oigyplk) = Izoexp[ﬂE o Ry(1)ISypl Ry(D)]ogsl Ry(1)] (14)
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where R;(]) is the distance between the i-th atom in the reference unit cell (labeled / = 0) and
the j-th atom in the I-th unit cell, the Sqp are functions of direction only and, in the two-
center approximation, the fq and 0qg are functions only of internuclear distance. Indices i
and j run over all atoms in the unit cell, and [ runs over all unit cells. Under the assumption
that the basis set consists of functions with the symmetry of s, p, d, ... atomic orbitals, the
functions S,p can be written in terms of spherical harmonics. The distance dependent
functions, hqp and 0gp, are taken to be parametric functions of distance, with parameters
chosen such that first principles results are reproduced. In this way, all explicit reference to
the wavefunctions or charge density is eliminated. This simplifies the calculations
tremendously, but renders the calculation non-self-consistent.

The non self-consistency of the tight binding approach has an important consequence
which has not been widely recognized (Cohen et al. 1994). In general, the total energy can
be written

E=[Y e(k)dk +F[p(7)] (15)

where the first term is a sum over the self-consistent eigenvalues, and the second term, a
functional of the charge density, contains all non-band structure contributions to the
energy. In non self-consistent calculations, the band structure now contains an arbitrary
zero which must be fixed in order to calculate the total energy. The arbitrariness of the
energy zero in the tight binding method can be exploited to recast the total energy as

E= [ &i(k)dk (16)

where the new eigenvalues are shifted in energy such that & =¢; - F[p(7)]. With this
formulation, the total energy is given simply as a sum over the bands, eliminating the need
for pair potential repulsive terms which are often included in other treatments. The
parameters of the tight binding model are determined by fitting to accurate LAPW band
structures and total energies. This approach has been very successful in describing the
properties of a wide variety of monatomic systems such as iron, silicon, and xenon (Cohen
et al. 1997b). The approach can be generalized to multicomponent systems including
silicates but this has not yet been accomplished.

Semi-empirical atomistic models

The primary advantage of these highly approximate methods is that they are
computationally fast, allowing one to examine much larger systems, or more complex
physics than one could otherwise. In most cases they revert to our more traditional view of
solids as being composed of ions rather than nuclei and electrons; the latter generally do not
appear explicitly. This strictly precludes these methods from the study of systems in which
electronic effects are important, such as those in which electronic (e.g. insulator-metal)
transitions occur or in which magnetism is relevant. The atomistic picture also limits the
transferability of semi-empirical models to a more or less narrow range of compounds or
structures over which the bonding does not change substantially. Within the range of
transferability, semi-empirical potentials may be made to fit experimental data with some
accuracy and can lead to useful predictions of material behavior under conditions that have
not yet been accessed experimentally, of previously unobserved behavior, or of similar

materials.

Many of these models can be cast in the following form
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E=Y Vy(ry)+ D Vs T T )+ e (17)

i<j i<j<k

where E is the total energy of an atomic configuration, the sums are over the atoms in the
system, and V; and V; are two-body (pair) and three-body potentials respectively. Higher
order terms can be included although the sum may not converge rapidly for many systems.
This approach is appealing in the case of ionic materials such as oxides and silicates
because the largest part of the energy is the Madelung term, a sum of pair-wise interactions,
The simplest semi-empirical model of an ionic solid consists of the Madelung term and
pair-wise short-range repulsive forces. This widely studied model was originally applied to
simple systems such as alkali halides but has more recently been used to investigate the
behavior of oxides and silicates (Burnham 1990). However, short-range attractive and
repulsive interactions, though energetically secondary, can strongly influence the structure
and other properties of the system. These forces are often substantially more complex than
the Coulomb potential and may require elaborate and non-unique functional forms and/or
three-body or even higher-order terms for accurate representation.

DERIVATION OF OBSERVABLES

Total energy and band structure

For a given arrangement of nuclei (crystal structure) we may use any of the above
methods to determine the total energy. First-principles and ab initio methods also yield the
charge density, and the quasi-particle eigenvalue spectrum (electronic band structure). By
examining the dependence of the total energy on perturbations to the volume V or shape of
the crystal (described by the deviatoric strain tensor £;) or to the positions of the atoms, the
Helmholtz free energy F as a function of V, €, and temperature T can in principle be
deduced. For example, the static pressure and the equation of state are simply given by the
variation of the total energy with volume.

One may determine the elastic constants from total energy calculations. For small
deviatoric strains under hydrostatic stress (Wallace 1972)

’ 1 ’ ’
F(V,e},T)=Fy(V)+ Fpy(V,T)+ EC"f’"(V' T)ejey (18)

where F, is the static (zero temperature) contribution, F: 7r 1S due to the thermal excitation of
electrons and phonons, and cyu is the elastic constant tensor. This equation shows that
combinations of elastic constants are related to the difference in total energy between a
strained and unstrained lattice.

It is possible in principle to calculate thermal contributions to the thermodynamic and
thermoelastic properties of crystals. Calculating thermal properties is much more difficult
than calculating static properties, however. The reason is simple: the atomic vibrations
induced by finite temperature break the symmetry of the crystal so that it is now periodic
only in a time averaged sense. In the context of total energy calculations, our task is then to
evaluate the partition function, an integral over all atomic configurations realized by a
crystal at high temperature. While this is not difficult with semi-empirical or ab initio
models, it is still essentially impossible with first-principles methods for most systems.
More efficient ways of evaluating thermal free energies from first principles are required.
Some future directions are indicated in the penultimate section.

Forces, stresses, and structures

The Hellman-Feynman theorem allows one to calculate first derivatives of the total
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energy directly in terms of the ground state wavefunctions. The application of this theorem
allows one to determine the forces acting on every atom and the stresses acting on the

lattice.

This is important for two related reasons. First, it allows one to determine ground state
crystal structures very effectively. In first principles calculations, this has become possible
only recently for relatively complex structures such as MgSiO; perovskite (Wentzcovitch et
al. 1993). The key innovation has been the development of a structural optimization
strategy based on a pseudo-Lagrangian that treats the components of the strain tensor and
the atomic positions as dynamical variables (Wentzcovitch 1991). The optimization is
performed at constant pressure. At each step of the dynamical trajectory, the Hellman-
Feynman forces and stresses (Nielsen and Martin 1985) acting, respectively, on the nuclei
and lattice parameters are evaluated and used to generate the next configuration. The
optimization is complete when the forces on the nuclei vanish and the stress is hydrostatic

and balances the applied pressure.

Second, once the ground state structure at a given pressure is determined, one can

calculate the static elastic constants. This is done in a straightforward way by applying a
deviatoric strain to the lattice and calculating the resulting stress tensor. The elastic
constant, ¢;, is then given by the ratio of stress oy to strain &
O = Cijn€ul (19
Care must be taken to re-optimize the positions of the atoms in each strained configuration
since vibrational modes typically couple with lattice strains in silicate structures. In
addition, the elastic moduli under pressure (so-called effective elastic constants) may be
defined in several ways; and attention must be given to the correct definition.

Linear response

This approach goes one step beyond the Hellman-Feynman theorem by computing
changes in the total energy to second order. This is accomplished by computing the first
order changes in the charge density in response to generalized perturbations. These
perturbations may include the displacement of an atom, or the application of an electric
field. The wavelength of the perturbation need not be commensurate with the unit cell,
allowing one to investigate, for instance, phonon modes without resorting to supercells, a
tremendous computational and conceptual advantage (Baroni et al. 1987).

In the context of mineralogy, the advantage of this approach is that properties that are
related to second-derivatives of the total energy can be computed directly. Examples include
elements of the dynamical matrix, the dielectric constant tensor and the Born effective
charge tensor. With these quantities, the full phonon spectrum can be determined
throughout the Brillouin zone (Lee and Gonze 1995, Stixrude et al. 1996). In addition to
making contact with experimental observation of zone-center vibrational frequencies, these
predictions allow one to investigate phase stability, and, to the extent that thermal properties
are quasiharmonic, high temperature properties. The computation in polar substances is
subtle and necessarily involves not only the calculation of force constants, but also that of
the dielectric constant and Born effective charge tensors so that coupling to the MAacroscopic
field at zone-center is properly accounted for (LO-TO splitting).

COMPUTATION

Methods

First-principles methods based on density functional theory solve Equations (6-8) by
expanding the wavefunctions in a basis
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g N —
VilF k)= c;9;(F.k) (20)
Jj=1

where N is the number of basis functions, ¢; and c;; are the coefficients to be determined by
solution of the Kohn-Sham equations.

The LAPW method is the current state-of-the-art in density functional theory
computations. It makes no essential approximations beyond that to the exchange-correlation
functional, allowing one to routinely solve for all electrons, core and valence. For example,
it makes no approximations to the shape of the charge density or potential. The accurate
representation of the potential and the core states means that the LAPW method is equally
applicable to all elements of the periodic table, and over the entire range of densities of
interest in planetary or astrophysical studies.

The LAPW differs from its forerunner, the APW method, in that in practical
application, APW assumes a constant potential between the muffin-tin spheres that
surround each nucleus (Bukowinski 1977, 1985). Because of its precise representation of
the potential, the LAPW method is sometimes referred to as FLAPW, for “full-potential”.
LAPW shares the ability to precisely represent the full potential and charge density with the
full-potential LMTO method (Soderlind et al. 1996). The FP-LMTO method is very similar

to LAPW in its capabilities and level of accuracy, differing primarily in the details of the
basis functions.

-4 -2 0 2 4 -
X (Bohr) x {Bohr)

Figure 4. Left: A single LAPW basis functionzin the vicinity of a hydrogen nucleus located at the origin:
k=0, G=(0,7/2,0), I, =6, E(Ry) = -(l+1)". Right: The plane wave G =(0,7/2,0).

The accuracy and flexibility of the LAPW method derives from its basis which
explicitly treats the first-order partitioning of space into near-nucleus regions, where the
charge density and its spatial variability are large, and interstitial regions, where the charge
density varies more slowly (Fig. 4) (Anderson 1975, Singh 1994, Wei and Krakauer
1985). These two regions are delimited by the construction of so-called muffin-tin spheres
of radius Rj; centered on each nucleus o. A dual-basis set is constructed, consisting of
plane-waves in the interstitial regions that are matched continuously to more rapidly varying
functions inside the spheres. Within the muffin-tin spheres r’< RZ,
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i+G 2y [ «a a oy b (E® -
¢ (r)— almu,(El ,r)+ ,mul(El ,r)Y}m(r/r) (21)

and for r’'> Ry
§"+0(7) = expli( + G) o d 22)

where ' =7 — Ry, Ry are the positions of the nuclei,  is in the first Brillouin zone, Gisa
reciprocal lattice vector, u and 4 are, respectively, the solution to the radial part of the
Schrdinger equation and its energy derivative for the spherically symmetric portion of the
potential inside the muffin-tin sphere at energy E, and the coefficients a and b are
determined by requiring continuity of the basis function and its first radial derivative on the

muffin-tin sphere.

With this basis set, all-electron calculations for silicates or transition metals typically
require on the order of 100 basis functions per atom. The primary disadvantage of the
LAPW method is that the complexity of the basis functions makes it relatively intensive
computationally. In practice, this limits the size of the system that can be studied. Even so,
LAPW computations for structures as complex as that of MgSiO; perovskite (20 atoms in
the unit cell) have been performed (Stixrude and Cohen 1993).

Basis sets consisting solely of plane waves, because of their analytical simplicity have
significant advantages over the LAPW basis. However, all-electron calculations are
virtually impossible with a plane wave basis set; the number of basis functions needed to
represent the rapid spatial oscillations of the core region is much too large to be practical.
For this reason, the plane wave basis is generally linked in practice to the pseudopotential
approximation, in which the Fourier content of charge density and potential are limited by

design.

Convergence

There are two primary convergence issues: the size of the basis, and the integrations
over reciprocal space (e.g. Eqn. 9). Both LAPW and plane-wave basis sets have the
property of smooth convergence; this means that convergence of the computations is
readily assessed; quantities of interest vary smoothly as the basis set size is increased. In
the LAPW method, the size of the basis set is described by the dimensionless quantity
RyrK max, Where K, is the maximum wavenumber of the plane waves included in the
basis set. In the pseudopotential method, the size of the basis is set by the maximum kinetic
energy of the plane waves Ec,;= Kpox In atomic units. Typical values for computations of
silicates are RyrKmaz = 7 and E.,, = 40-80 Ry, depending on the pseudopotential that is

used.

Sampling of the Brillouin zone is treated with the special points method, which has
been shown to yield rapid convergence (Monkhurst and Pack 1976). For insulators, only a
few points (1-10) are typically needed to achieve fully converged total energies; metals
require denser sampling because of the often complex structure of the Fermi surface. The
special points method constructs a uniform grid of k-points of specified resolution in the
first Brillouin zone. The resulting set of k-points is divided into subgroups (stars) of
symmetrically equivalent points. The Kohn-Sham equations are solved for only one
member of each star, and the wavefunctions at other points in the star reconstructed with
the appropriate symmetry operations, weighting the contribution of each star by its

degeneracy.
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Figure 5 (left). Difference in charge density of MgO generated with overlapping ions using a Gordon-
Kim model (potential-induced breathing, or PIB model) (Isaak et al. 1990) and calculated self-consistently
using the linearized augmented plane wave (LAPW) method (Mehl et al. 1988). Contour interval: 0.005
e/Bohr? (see also Hemley and Cohen 1996).

Figure 6 (right). Band structure of MgO near zero pressure calculated using the LAPW method (lines)

compared with that determined from the potential generated by the overlapping ion PIB charge density (Isaak
et al. 1990, Mehl et al. 1988).

SELECTED APPLICATIONS

Bonding and electronic structure

Ab initio models give insight into bonding and electronic structure that are often not
obvious from self-consistent computations alone. One example is the relationship among
and meaning of ionicity, covalency, and band width. One might think for example that a
purely ionic model would have atomic-like energy levels, and that band width would arise
from hybridization or covalency. Figure 5 shows the difference in charge density of MgO
computed with overlapping PIB ions and computed self-consistently using the LAPW
method. The agreement is excellent. Furthermore, the bands that one finds using the crystal
potential computed from the PIB charge density are in excellent agreement with the self-
consistent band structure (Fig. 6). Thus, the PIB charge density is a good approximation to
the self-consistent charge density for ionic materials such as MgO. A similar comparison
should be made for rare-gas solids.

Thus, bands computed from the potential generated from overlapping ionic charge
densities not only have width, but are in excellent agreement with self-consistent
computations for ionic crystals. If one were to ask the origin of the band width in a tight-
binding representation, one would find that the O 2p band width in MgO, for example,
comes primarily from O-O ppo interactions (Kohan and Ceder 1996). We see that even a
purely ionic charge density, generated by overlapping spherical ions, has a charge density
that generates a potential, that when used in the KS equations implies a band width
consistent with hybrid electronic states. There is a sort of duality in the description of jonic
materials in that they can also be described from a charge density or tight-binding (or
LCAO) perspective. In either case, there must be long-range Madelung terms in the total
energy, that gives rise to LO-TO splitting in the lattice dynamics.
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Figure 7. The equation of state
of three different polytypes of
MgSiO; perovskite as determined
by LAPW calculations in the
LDA approximation (Stixrude
and Cohen 1993). The Pbnm
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Not all ionic solids are formed from closed shell ions. For example, FeO (wiistite) and
solid solutions between MgO and FeO (magnesiowiistite) behave like ionic solids, yet Fe**
is a d; ion and is not closed shell. FeO belongs to a class of materials known as Mottt
insulators, which are discussed below. Such materials are very difficult to treat
theoretically, and in spite of the importance of Fe in minerals, there is not yet a good
method for obtaining first-principles results that are completely correct. Moreover, ab initio
models such as PIB fail to give accurate predictions for the equation of state and other
properties for these materials, even if one sphericalizes Fe, and treats it as ionic.
Nevertheless, much can be learned about these materials from self-consistent computations
as described below. Perhaps simple and accurate ab initio models can be developed for

these materials, but it has not yet been done.

150 N\

100 / P4/mbm -

Figure 7. The equation of state
of three different polytypes of
MgSiO, perovskite as determined
by LAPW calculations in the
LDA approximation (Stixrude
and Cohen 1993). The Pbnm
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Equation of state

The error due to the LDA in first principles calculations can be evaluated by comparing
the results of LAPW calculations, which make no further essential approximations beyond
the LDA, with experiment (Fig. 7). In investigations of silicates and oxides, it has been
found that errors in volumes are typically 1-4% with theoretical volumes being uniformly
smaller than experimental (Cohen 1991, 1992; Mehl et al. 1988, Stixrude and Cohen
1993). Part of this small difference is due to the higher temperatures of experiments (300
K) compared with the athermal calculations. This is a highly satisfactory level of agreement
for a theory which is parameter free and independent of experiment.

All electron LDA computations of transition metals show errors of similar magnitude
in the zero pressure volume; for the 3d and 4d metals, the calculations uniformly
underestimate the experimental volumes, while for the 5d metals, the situation is more
complex (Sigalas et al. 1992). For the heaviest materials, additional effects such as spin-
orbit coupling, often neglected in computations, may become important and contribute to
the discrepancy between theory and experiment. The generalized gradient approximation
improves the agreement between theory and experimental equations of state for most
materials including the 3d transition metals. In the case of iron, LAPW and FP-LMTO
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calculations differ from the experimentally measured room temperature equation of state by
3 % at zero pressure and by less than 1 % at core pressures (Sherman 1997, Soderlind et

al. 1996, Stixrude et al. 1994); agreement with high temperature Hugoniot data is equally
good (Stixrude et al. 1997).

Pseudopotential calculations make additional approximations that lead to additional
errors (Fig. 8). These are small in magnitude and comparable in size to the LDA error. At
this level of detail, different pseudopotentials yield results that differ from each other and
from the all-electron LDA result from LAPW. Because the pseudopotential method is
nearly as accurate as the much more elaborate LAPW method, it is often preferred for many
applications, since its computational advantages allow much larger, and more complex
systems to be studied.

Structure and compression mechanisms

The structure and compression mechanisms of a number of complex silicates have
been studied with density functional theory at high pressure, including MgSiO; enstatite
and perovskite, Mg,SiO, forsterite, ringwoodite and inverse ringwoodite, and SiO, in the
quartz, stishovite, CaCl, and columbite structures (Cohen 1991, 1992; Karki et al. 1997a,
Karki et al. 1997d, Kiefer et al. 1998, Wentzcovitch et al. 1995a, Wentzcovitch et al.
1993, Wentzcovitch et al. 1995b, Wentzcovitch et al. 1998, Wentzcovitch and Stixrude
1997). Although simple ab initio models provide important predictions for high-pressure
behavior of many deep earth materials, such as MgSiO, perovskite (Hemley et al. 1987,
Cohen 1987b, Wolf and Bukowinski 1987), the need for an extended treatment relative to
such simple approaches is readily seen: for example in the case of MgSiO,: the density,
crystal structure parameters, and elasticity cannot all be explained from standard ionic
models (i.e. assuming full charges on the ions) (Hemley and Cohen 1992). These
investigations (1) provide an important test of the approximations upon which first-
principles methods are based (2) illustrate in detail often not obtainable by experiment the
nature of compression mechanisms and (3) provide a sensitive test of the hypothesis that
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Figure 9. Compression of coordination polyhedra in normal and inverse Mg,SiO, ringwoodite from LDA
pseudopotential calculations (Kiefer et al. 1998),

some minerals undergo high-order symmetry-invariant phase transformations.

Using the method of Wentzcovitch (Wentzcovitch 1991, Wentzcovitch et al. 1993),
the first principles optimization of complex crystal structures such as forsterite is an
efficient procedure. Typically, on the order of 10-20 iterations are required for full
structural convergence in this mineral with 7 internal degrees of freedom and three lattice
parameters (Wentzcovitch and Stixrude 1997). In the case of ringwoodite, the results of
first principles calculations show that, in the normal form, volume compression is mostly
taken up by the MgOg octahedra which are much softer than the SiQ, tetrahedra (Fig. 9). In
the inverse form, the MgO, tetrahedra are the most compressible polyhedra, softer even
than the MgOg octahedra in the normal form. This result can be understood by recognizing
that, in the inverse structure, Si- and Mg-polyhedra combine to form relatively rigid
octahedral layers, leaving most of the compression to the tetrahedral layers (Kiefer et al.
1998).

Phase stability

In many ways, phase stability provides the most stringent test of first-principles
methods. The reason is that we are comparing total energies computed for two different
structures, with different basis sets and Brillouin zones at the level of heats of
transformations, generally a minuscule fraction of the total energy (less than one part per
million).

First principles LDA total energy calculations of transformations in oxides and silicates
have shown excellent agreement with experiment (Cohen 1991, 1992; Isaak et al. 1993,
Karki et al. 1997b,d; Kingma et al. 1996, Mehl et al. 1988, Teter et al. 1998). These
include the prediction, based on LAPW calculations, of the stishovite to CaCl, transition
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(Cohen 1991, 1992) which was later found and confirmed experimentally (Kingma et al
1995). Subsequent pseudopotential calculations are in excellent agreement with the earlief
LAPW r;sults showing that careful calculations yield consistent results even though
f:omputa.tlonal methods may be quite different (Figs. 10 and 11). There is considerable
interest in the possibility of still higher pressure phases that may be stable deep within the
lower mantle. First principles calculations predict a phase transition near 96 GPa from the
CaCl, structure to the columbite (a-PbO,) structure (Karki et al. 1997d.e). This ultrahigh
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Figure 10. Opposite page: Representations of dense silica structures calculated by LDA (Teter et al.
1998). (a) CaCl,, (b) SnO, (4 x 4) (c) NaTiF, (3 x 3), (d) P2,/c (3 x 2), and (1) a-PbO, structure types. The
left-hand figures show one layer of the ABAB ... ... stacking of hcp oxygen anions (white) with one-half of
the octahedral interstices filled with silicon ions (black). The right-hand figures show how these patterns
form edge-sharing octahedral chains with various degrees of kinking (given in parentheses above).
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pressure structure is built of SiO, octahedra and differs from the lower pressure
polymorphs primarily in the kinking of the chains of octahedra. Teter et al. (1998) found
that there is a large number of closely related, and energetically competitive phases that are
stable at pressures above 50 GPa (Fig. 10). These structures are all based on essentially
close packing of the oxygen anions with different ordering of Si in the octahedral sites. The
calculations predict that the columbite structure is stable above 80 GPa, in agreement with
the calculations of Karki et al. (1997d,¢e), but that there should be extensive metastability of
phases with similar bonding topology at these pressures; this appears to be observed
experimentally (Hemley et al. 1994, Teter et al. 1998).

In the case of transition metals, the form of the exchange-correlation potential is
critical. LDA fails to predict the correct ground state of iron, finding incorrectly that the hcp
phase has a lower total energy than the bec. The GGA correctly recovers the bec ground
state. Moreover, it accurately predicts the pressure of the phase transition from bec to hep
near 11 GPa (Stixrude et al. 1994). This is an important result because the energetics are
particularly subtle in the case of this transition since it involves a ferromagnetic and a non-
magnetic phase. These calculations find that the hcp phase is the stable low temperature
phase of iron at pressures beyond 11 GPa, in excellent agreement with experiment (Mao et
al. 1990). First principles calculations show that it is highly unlikely that bee will reappear
as a stable phase at extreme pressures and temperatures, independent of the form of the
exchange-correlation potential. The reason is that bee is found to undergo an elastic
instability with respect to a tetragonal strain at high pressure (Fig. 12). At pressures beyond
150 GPa, the bee structure will spontaneously distort (Stixrude and Cohen 1995). The
inner core is likely composed of a close-packed structure, either hep or a similar hexagonal

or nearly hexagonal phase, or fcc.
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Another approach towards phase stability is the investigation of the dynamical stability of
lattices. One example of this approach is that of Stixrude et al. (1996) who performed linear
response computations with the LAPW method on CaSiO; perovskite in the cubic
perovskite structure (Fig. 13). Unlike MgSiO,, which is orthorhombic, experimental
studies have found CaSiO, to be cubic. Unexpectedly, however, cubic CaSiO, was found
in the theoretical calculations to be unstable at the M- and R- points on the Brillouin zone
boundary. The unstable vibrational modes correspond to rotations of the SiO; octahedra
which lower the symmetry. Frozen phonon calculations confirmed this result. The results
suggest strongly that CaSiO, is not cubic but tetragonal or lower symmetry. The small
strain predicted theoretically is consistent with the expected precision of x-ray studies that
were interpreted as showing a cubic structure for CaSiO,.

Ab initio models can also be used to study the stability of a variety of structures to
search for possible phase transitions. This was done successfully for Al,O,, where the PIB
model showed a high pressure elastic instability (Cohen 1987a). Detailed PIB computations
for different structures showed a phase transition at high pressures to the Rh,0, II structure
(Cynn et al. 1990), and the transition was confirmed and pressure computed accurately
using the LAPW method with the PIB structural parameters (Marton and Cohen 1994).
Pseudopotential calculations are in good agreement (Thompson et al. 1996). These
computations predicted a phase transition near 90 GPa, in excellent agreement with later
experiments (Funamori and Jeanloz 1997). The pseudopotential calculations predict a
further transition to a perovskite phase at pressures above those found in the lower mantle
(i.e. at 223 GPa).

Elastic moduli

The elastic moduli are of central importance in studies of the earth’s interior since they
govern the passage of seismic waves, our primary source of information on the structure of
the subsurface. Despite their importance, density functional calculations of the elastic
constants of earth materials have appeared only recently. The key development has been
that of an efficient structural optimization scheme (Wentzcovitch et al. 1993), and
calculation of stresses from the Hellman-Feynman theorem. Elastic constants are
determined by calculating the stress generated by deviatoric strains applied to the
equilibrium structure as described above. It is straightforward to demonstrate that one is
within the linear regime by performing the calculation at a variety of values of the strain
magnitude and extrapolating to the limit of zero strain (Karki et al. 1997b). These
calculations show that strains of the order of 1 % are appropriate for silicates and oxides.
By carefully choosing the symmetry of the applied strain, it is possible to calculate all
elements of the elastic constant tensor with a small number of different strains. For
example, the three elastic constants of a cubic mineral can be determined from a single
strain; four different strains have been used for orthorhombic minerals (9 independent
elastic constants) (Silva et al. 1997).

The full elastic constant tensors of a number of silicates and oxides have been determined
with the plane-wave pseudopotential method, including that of MgO periclase, MgSiO;
perovskite, Mg,SiO, forsterite and ringwoodite, and SiO, in the stishovite, CaCl,, and
columbite structures (Karki et al. 1997ab,c; Kiefer et al. 1997, Silva et al. 1997.
Wentzcovitch et al. 1993). Once the elastic constant tensor is determined, it is
straightforward to calculate the elastic wave (seismic) velocities in any direction, the elastic
anisotropy, and the seismic-wave velocities of isotropic aggregates. Results for silica (Fig.
11) show several interesting features: (1) the phase transition from stishovite to the CaCl,
structure is associated with an elastic instability (c,;-c;,->0) that originates from the coupled
octahedral rotation and basal plane shear that relates the two structures; (2) this elastic
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instability is accompanied by a very large (60 %) change in shear wave velocity; so large
that it may be seismologically observable if as little as a few percent of free silica exists in
the earth’s mantle, and (3) all phases of silica are highly anisotropic elastically with the
anisotropy diverging in the neighborhood of the phase transition.

Extensive computations have been performed for MgSiO,, although it is difficult to
study because there are 20 atoms in the primitive unit cell. MgSiO, appears to be more ionic
than stishovite (Hemley and Cohen 1992, Stixrude and Cohen 1993), but the fully charged
jonic model is not as successful as it is for simple minerals such as MgO. In the case of
MgO, ab initio ionic models find proper violations of the Cauchy relations in alkali halides
and alkaline earth oxides are found which agree reasonably with experiment (Mehl et al.
1986). For perovskite the predictions of single crystal elastic constants for MgSiO, (Cohen
1987b) were in reasonable agreement with later experiments (Yeganeh-Haeri 1994), and
high-pressure elastic constants are still not available experimentally. More recently, large
scale computations of elastic constants have been performed for MgSiO; using a plane
wave basis with pseudopotentials (Karki et al. 1997a) (Fig. 14). Agreement with available
experiments is excellent, and these computations give predictions of the elasticity of
perovskite for pressures throughout the mantle. These results will be benchmarks for future
computations of thermoelasticity at mantle temperatures.

Magnetic collapse

This phenomenon may occur in a wide variety of transition metal bearing minerals at
high pressure and has been predicted on the basis of first principles calculations in FeO at
pressures above 100 GPa (Isaak et al. 1993) (Fig. 15). The predicted magnetic collapse is a
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Figure 15. Magnetic collapse in FeO shown as a function of volume predicted from different levels of
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generalized gradient approximation (GGA,) results are labeled PW91, The high-spin/low spin transition is
discontinuous in AFM and continuous in FM (Cohen et al. 1998).

type of high-spin low-spin transition, which has been observed in other materials such as
Nil, and MnS . High-spin low-spin transitions can be either continuous higher-order phase
transitions, or first-order phase transitions. Recent Méssbauer measurements indicated a
100 GPa transition in FeO (Pasternak et al. 1997), although recent x-ray X, s spectra show

no transition to at least 130 GPa (see Hemley, Mao, and Cohen, this volume). More work
is needed to understand these reported differences.

Magnetic collapse can be understood in terms of pressure-induced changes in the band
structure with the Stoner model, discussed below. This picture contrasts with the
conventional local atomic view which focuses only on the Brillouin zone center. In the
conventional view, a high-spin to low-spin transition occurs when the crystal-field splitting
between d orbitals of eg and 2, character exceeds the exchange splitting between up- and
down-spin states (Burns 1993). Furthermore, the conventional view is that the egtry
splitting is due to the Coulomb potential from the transition metal atom’s coordination
polyhedron, and that the splitting increases as r,5. Although reported crystal-field splittings
vary approximately as ;5 in many cases, this view does not appear to be correct. In fact,
the on-site contributions to the crystal field-splitting that arise from the electrostatic
interaction with the surrounding O ions have the wrong sign, and would give e; lower
than 1,, by a small amount, rather than 15 being lower, as observed. Instead, the main
contribution to the e,-1,, splitting is due to d-d hybridization between transition metal ions,
which also varies as ;5. These d-d interactions operate only at the Brillouin zone-center (-
point), also the only point where the €g - I, Symmetry is appropriate. At other points in the
Brillouin zone, the band width is due to hybridization with O 2p states (Mattheiss
1972a,b). Optical Spectroscopy measures not only the states at T, but rather is sensitive to
vertical transitions throughout the zone, and thus to the entire bandwidth. The d-p
interactions lead to a band width that behaves approximately as r;7. Thus, the band width
and apparent crystal field splitting should vary between r,5 and rs7 with increasing
pressure. The distinction between the present picture and the conventional view can be seen
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most easily in terms of the behavior of the Hamiltonian. In the conventional view, it is the
on-site, diagonal, elements that vary rapidly with pressure, giving rise to increased
splitting, whereas band theory says that it is the off-diagonal, covalent, contributions which
change the band widths with pressure.

The decrease in magnetism with increasing pressure can be understood in a qualitative
sense in that as pressure increases, band widths increase, and eventually become greater
than the exchange splitting. This can be examined quantitatively with the Stoner model
(Cohen et al. 1997a). In the Stoner model, the effect of magnetism on the total energy is

a2 2
M I+ M 23)
2 2N(0)

where M is the magnetic moment, the Stoner Integral / is an atomic property, and N(0) is
the density of states at the Fermi level (or top of the valence band) in the non-magnetic
state. The first-term is the exchange energy due to magnetization and the second is the
change in the band energy with magnetic moment. Minimizing AE with respect to M leads
to the Stoner criterion for a stable magnetic state, IN(0) >1. As pressure is increased I,
being a property of the atom, remains constant but N(0) decreases as band widths widen
with increasing hybridization. In the absence of new bands crossing the Fermi level or
changes in band topology at the Fermi level or top of the valence band, magnetism will
decrease and disappear with increasing pressure.

AE =

Mott insulators

Band theory is known to fail in the case of transition metal oxides in the sense that it
often predicts metallic ground states when these are observed to be insulating. The cause of
this failure may be similar to the failure to predict accurate band gaps in other materials, but
it is also believed that there is a more specific failure of LDA-like theories for the transition
metal oxides, which is that LDA is local, as discussed above, and does not distinguish
between electrons of different angular momentum. The Hohenberg-Kohn theorem says that
such orbital dependent potentials should not be necessary to find the energy and ground-
state charge density of a system, but the exact functional that would give this behavior is
unknown, and would likely be extremely complex in order to give the proper charge
density of transition metal oxide compounds, especially those that involve orbital ordering.
The main problem with LDA-like theories is believed to be the mean-field treatment of the
local Coulomb repulsion U, which is a measure of the increase in energy when an electron

is added to an atom.

A promising method for realistic computations of real Mott insulators, but which
needs further investigation is the LDA+U model (Anisimov et al. 1993, Anisimov et al.
1991, Mazin and Anisimov 1997). In this method an orbital dependent potential is added to
simulate the effect of U. The parameter U can be estimated by computing the change in
energy with orbital occupancy in constrained LDA calculations. LDA+U appears to be an
excellent approximation at zero pressure where the band width (W) is small, but it is
unclear whether it will give reasonable results at high pressures, where U/W is much
smaller. The parameter U/W decreases with pressure since U is relatively insensitive to
pressure, but the band width increases rapidly with pressure due to increased hybridization.
One explanation for the success of band theory in the case of the high pressure transitions
in transition metal oxides discussed above is that U/W is small under at high pressure,
making band theory more applicable and predictive. Transitions predicted for the other
transition metal oxides should be re-examined.
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High-temperature and transport properties

The effect of temperature is directly linked to the dynamics of a crystal: thermal
contributions can be written as a sum over lattice vibrations (phonons). Because dynamics
break the symmetry of the primitive unit cell, determination of dynamics from first
principles is a substantial computational challenge. This can be accomplished either by
determining the dynamical matrix and diagonalizing to find the phonon frequencies (e.g.
via linear response, discussed above), or by molecular dynamics, a brute force approach
which simply solves Newton’s equations of motion for a periodic array of nuclei.
Molecular dynamics has the advantage of also being able to treat transport properties such
as chemical diffusivity, and liquids. Nearly all previous studies of vibrations, high
temperature properties, or transport properties have been based on semi-empirical or ab
initio methods. Molecular dynamics simulations using the pseudopotential method have
now been performed on deep earth materials for the first time in a study of liquid iron at
core conditions (Wijs et al. 1998). The first-principles investigation of other solid and fluid
earth materials by this technique represents an exciting future direction.

The biggest advantage of fast, ab initio methods such as PIB or VIB is that one can
perform lattice dynamics and long molecular dynamics simulations on systems of
reasonable size, and study a wide variety of thermodynamic and transport properties. For
example, Isaak et al. (1990) performed lattice dynamics on MgO as a function of lattice
strain, going beyond the normal quasiharmonic approximation, and studied the effects of
temperature and pressure on elasticity and the equation of state. In that study, the dynamical
matrix was found throughout the Brillouin zone in order to obtain the free energy, and this
was repeated for different lattice strains. In spite of increased computational power in the
last eight years, no such study has yet been done self-consistently. The Isaak et al. study
gave what are still one of the few estimates of cross derivatives of pressure and temperature
on elasticity that are available. The results were then used to help understand the increase in
seismic parameter dInV/dInV, with depth in the Earth, a quantity that has been difficult to
constrain experimentally.

Going beyond lattice dynamics, Inbar and Cohen (1995) determined the thermal
equation of state of MgO using molecular dynamics and the PIB model. Such studies are
just becoming possible using self-consistent methods, and still have not been performed.
Using molecular dynamics and the VIB model, it is also possible to study complex
phenomena, such as thermal conductivity (Cohen 1998) and diffusion (Ita and Cohen
1997, 1998). The diffusivity of O in MgO, for example, is obtained in agreement with
measurements within experimental error.

Because high temperature properties are difficult to obtain self-consistently,
Wasserman et al. (1996) applied the particle-in-a-cell model to compute thermodynamic
properties of iron at high pressures and temperatures in conjunction with a new fast and
accurate tight-binding model (discussed above in the tight binding section) that allows
computations for large unit cells (Cohen et al. 1994). They obtained excellent agreement
with shock compression data up to ultrahigh pressures and temperatures (Stixrude et al.
1997). They also performed molecular dynamics using the tight-binding model for iron
liquid at outer core conditions (Fig. 16), and obtained an estimate of the viscosity of liquid
iron in excellent agreement with subsequent pseudopotential calculations (Wijs et al. 1998).
These results are geophysically significant because the viscosity of the outer core had been
uncertain by 13 orders of magnitude.
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Figure 16. Radial distribution function of tiquid iron at two temperatures at a density corresponding to the
bottom of the earth’s outer core. Calculations were perfomed via molecular dynamics based on the tight-
binding total energy method of Cohen et al. (Cohen et al. 1994). The Stokes-Einstein viscosity calculated
from these simulations is 5(+3) centipoise, and is weakly dependent on temperature over the range shown.

CONCLUSIONS AND OUTLOOK

Modern first-principles methods are now capable of realistic predictions of many
experimentally observable properties of minerals such as the equation of state, phase
stability, crystal structure, and elasticity. Parameter-free and completely independent of
experiment, these methods have been shown to reproduce observations even of subtle
features such as phase transitions and the elastic anisotropy with good accuracy. First-
principles methods including density functional theory represent the ideal complement to
the experimental approach towards studying the behavior of earth materials under extreme
conditions. This review has only given an indication of the realm of application of modern
condensed-matter theory to the study of minerals at high pressure. We have reviewed only
a subset of the important calculations that have been performed. One foresees accelerated
progress on a number of fronts in this challenging field resulting from the continued

interplay of theory and experiment.
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