JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. B11, PAGES 24,729-24,739 NOVEMBER 10, 1997

Composition and temperature of Earth’s inner core
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Abstract. We compare a theoretical prediction of the equation of state of iron at high
pressures and temperatures to the properties of the Earth’s inner core. The theoretical
result is based on a first principles treatment of the static pressure and the pressure due to
thermal excitation of electrons and an approximate ab initio (cell model) treatment of the
vibrational pressure. The density of iron is found to be greater than that of the inner core
even for unrealistically high temperatures of 8000 K. The isentropic bulk modulus of iron
is found to be consistent with that of the inner core over a wide range of temperatures
(4000-8000 K)). We conclude on the basis of these comparisons that the inner core contains a

substantial fraction of elements lighter than iron. Assuming ideal solutions, we find the
temperature and light component mass fraction required to simultaneously match the
density and bulk modulus of the inner core. For a temperature of 7000 K, 1 wt % O as
FeO, satisfies the inner core observations. The temperature and mass fraction of S
required depend on whether S is included as pyrite (2 wt % S, 5500 K) or as Fe; oS
(>8 wt % S, <3500 K). On the basis of this result and empirical mixing rules for Fe-O
solutions, we argue that Fe-light element solid solutions at inner core conditions may be
significantly nonideal. We derive expressions for the properties of nonideal
multicomponent solutions that are valid in the limit of small amounts of impurities. These
lead to general results for the properties of the alloy fraction that are required by
comparisons of our equation of state of iron with seismological models.

1. Introduction

The composition and temperature of the Earth’s inner core
are of fundamental geophysical interest. The temperature of
this central region provides a basic constraint on the thermal
state and evolution of the planet. A great deal of attention has
focused recently on determining the temperature at the inner
core boundary, which is assumed to represent the equilibrium
boundary between the solid inner core and the overlying liquid
outer core. Equilibrium between these two regions has the
important consequence that the composition of the inner core
will reflect that of the much larger overlying liquid outer core
from which it forms. Determination of the identity and amount
of light element in the inner core would place important con-
straints on the earliest geochemical evolution of the Earth,
especially of its siderophile fraction.

Major uncertainties remain, however. Estimates of the melt-
ing temperature of iron are currently uncertain by 30% [Yoo et
al., 1993; Boehler, 1993; Williams et al., 1987]. Moreover, the
uncertainty in the melting temperature of the core associated
with the effect of the (unknown) light alloying element(s) is
expected to be of comparable magnitude. Arguments based on
geochemistry, or determinations of the properties of candidate
alloys at high pressures and temperatures, have so far been
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unable conclusively to rule out any of the oft-cited candidates
for the light element in the core including O, S, H, Si, C, and
others [Jeanloz, 1990; Poirier, 1994].

Most previous attempts to constrain the temperature and
composition of the core have not dealt with the inner core
itself. Estimates of the temperature have relied primarily on
determinations of the melting point of iron and iron alloys at
the inner core-outer core boundary, while estimates of core
composition have focused primarily on comparisons with the
properties of the liquid outer core. Here we take a different
approach. We focus on the inner core because (1) its seismo-
logical properties, though somewhat more uncertain than
those of the outer core, are known sufficiently precisely that
they can place important constraints on the temperature and
composition of the core and (2) the properties of solid iron are
in principle better constrained and better understood at a
fundamental level than are those of the corresponding liquid.
The static equation of state of solid iron is measured to inner
core pressures and the effects of temperature, including those
due to the thermal excitation of phonons and electrons, can be
accurately treated. Previous analyses of the temperature and
composition of the inner core based on comparisons with seis-
mological observations have relied on substantial extrapola-
tions of the experimental equation of state of iron in pressure
and temperature, based on semiempirical estimates of its ther-
modynamic properties [Jephcoat and Olson, 1987]. Moreover,
previous analyses have focused only on the density of the inner
core and have not compared the bulk modulus of iron alloys to
that of the Earth.

We focus here on the properties of iron itself. We show that
the equation of state of iron to the pressure-temperature con-
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ditions of the inner core is now well understood on the basis of
first principles theoretical calculations that are independent of
experiment yet explain existing static and dynamic compres-
sion data. Comparisons of the equation of state of iron with
those of the inner core show that the inner core is less dense
than iron but has a similar bulk modulus for plausible inner
core temperatures. We conclude from these results that the
inner core must contain a significant fraction of light elements.

2. Equation of State of Close-Packed
Solid Iron

We assume that the solid phase of iron relevant to the inner
core is close-packed. This is based on (1) the general notion
that pressures in the inner core are large (more than twice the
bulk modulus of iron) and will therefore favor efficiently
packed phases and (2) detailed first principles calculations
which show that non—close-packed phases are highly unfavor-
able energetically at inner core pressures and are unlikely to be
thermodynamically stable. Indeed, the only phase other than
fcc or hep which has been seriously considered as the stable
phase of iron in the inner core (bcc) is not only energetically
unfavorable compared with fcc and hep because of its lower
density but is predicted to be mechanically unstable at high
pressure [Stixvrude and Cohen, 1995a].

Because we are dealing with only isotropically averaged
properties in this study (density, bulk modulus), the precise
structure of the close-packed phase is unimportant. First prin-
ciples results show that fcc and hep phases have nearly indis-
tinguishable equations of state from 0 to at least 400 GPa
[Stixrude et al., 1994]. Other close-packed phases, such as dhcp
are also expected to have densities very similar to that of fcc or
hep. Although we will not deal with elastic anisotropy here, we
note that the issue of the structure of the close-packed phase is
all important in discussions of the seismic anisotropy of the
inner core [Stixrude and Cohen, 1995b]. Elastic anisotropy may
differ substantially even for phases such as fcc and hcp iron
which have very similar bulk moduli. Indeed, the symmetry of
the anisotropy in cubic and hexagonal phases is fundamentally
different and the magnitude of the anisotropy is expected to be
much greater in cubic phases.

The starting point for our ab initio description of the equa-
tion of state of iron is the division of the Helmholtz free energy
of the system, F'(V, T), into contributions due to static com-
pression, F, thermal excitation of electrons, F, and thermal
excitation of phonons (vibrational contribution), F .,

FV,T)=FyV) + Fa(V, T) + Fy(V, T). (1)
The first two terms are calculated from first principles using
the linearized augmented plane wave (LAPW) method
[Stixrude et al., 1994]. The only essential approximation in these
calculations is to the exchange-correlation potential, for which
we use the generalized gradient approximation (GGA) [Per-
dew and Wang, 1992].

In general, the vibrational contribution is given by the par-
tition function in the canonical ensemble, Z. Evaluation of this
quantity requires an integration of a functional of the total
energy over all vibrational degrees of freedom, an impossible
task using a purely first principles approach. In order to treat
the vibrational degrees of freedom, we make two approxima-
tions: (1) The total energy is evaluated with an approximate
tight-binding total energy Hamiltonian [Cohen et al., 1994].
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The parameters of this Hamiltonian are fit to accurate LAPW
total energies and band structures of fcc, hep, and bee iron over
a two-fold range of compression [Cohen et al., 1997]. The
Hamiltonian reproduces the first principles results very pre-
cisely and is not expected to introduce any significant addi-
tional uncertainty in our calculations. (2) We approximate the
partition function by assuming that the vibrations of atoms are
uncorrelated. This mean-field approximation, known as the
cell model [Holt and Ross, 1970, Holt et al., 1970; Ree and Holt,
1973; Westera and Cowley, 1975; Cowley et al., 1990], allows one
to factorize the partition function so that the integral over all
states is reduced to an integral over the coordinates of a single,
so-called wanderer, particle within its Wigner-Seitz cell

N

Zcel] = /\3N[ f eXp [_B(U(l‘) - U())] dr » (2)

where k is Boltzmann’s constant, £ is Planck’s constant, f =
(kgT)"', A = h/(2mmkgzT)"? is the de Broglie wavelength
of the atoms, U, is the potential energy of the system with all
atoms on ideal lattice sites, U(r) is the potential energy of the
system with the wanderer atom displaced by the radius-vector
r from its equilibrium position, and N is the total number of
atoms in the system. The integration is over the Wigner-Seitz
cell, A, centered on the equilibrium position of the wanderer
atom. The phonon contribution F,, is then F.y, = —kgT In Z

The cell model is applicable in the classical regime of inter-
est here, between the Debye temperature and the melting
temperature. It ignores diffusion and vibrational correlations.
In this sense, it is similar to the Einstein model [e.g., Wallace,
1972], to which it reduces in the limit of small amplitude
vibrations. However, unlike the Einstein approximation, an-
harmonicity, which is expected to be important at inner core
temperatures, is accounted for. The neglect of diffusion and
vibrational correlation is supported by our results which find
that displacements comparable to the Wigner-Seitz radius do
not contribute significantly to the integral (2), except at the
highest temperatures and pressures of our study (V' < 50
Bohr?) (1 Bohr = 52.92 pm). At these extreme conditions,
diffusion or correlated vibration may contribute a few percent
to the thermal pressure (see below).

Thermodynamic quantities of interest, such as pressure and
bulk modulus, are obtained by differentiating the Helmholtz
free energy, for instance,

P = —(3F/aV)r = Pu(V) + Py(V, T) + P(V, T) (3)
Figure 1 plots these three contributions to the total pressure
for iron along the Hugoniot. As one can see from Figure 1, the
largest contribution is from static compression. Significantly,
the static term (P,), together with the other contribution that
is evaluated purely from first principles, that due to thermal
excitation of electrons, accounts for the largest part of the
pressure (>80%) even at inner core temperatures. The vibra-
tional contribution is, however, not negligible, amounting to
more than 50 GPa in the inner core.

Equation of state results for fcc and hep iron using these
methods have been reported previously [Wasserman et al.,
1996]. For the purposes of this study, we have constructed
simplified representations of our results which are valid over
the range of volumes (V = 45-55 Bohr*/atom) and temper-
atures (I' = 4000-8000 K) of interest here. The representa-
tion is based on the completely general division of pressure
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into a contribution from isothermal compression at a reference
temperature, T, and a thermal part,

T

aKr dT',

PV, T) = PV, T + j @

Tr
where aK ;- = (0 P/9T), is in general a function of volume and
temperature [Anderson, 1995].

For iron, we have found that K is nearly independent of
volume at high pressure and that it depends approximately
linearly on temperature [Wasserman et al., 1996]. This behavior
contrasts with that of insulators [Anderson, 1995] and origi-
nates in the electronic contribution to the thermal pressure.
We constructed a linear fit to our results at VV = 55 Bohr?,

aKr=ay+a(T— Ty, %)
which leads to the thermal pressure
Pru=ay(T— Tp) + %aI(T - Ty (6)

The thermal pressure determined from the cell model begins
to show a slight volume dependence at the highest densities
(V < 50 Bohr’) and temperatures of our study. An examina-
tion of the wanderer potential U(r) under these conditions
indicates that the deviation is not intrinsic to the system but is
rather due to a breakdown of the cell model approximation;
displacements comparable to the Wigner-Seitz radius begin to
contribute significantly to the integral. Nevertheless, the effect
is small: the maximum deviation between cell model results
and the representation (5 and 6) is 6% in Py, over the pres-
sure regime of the inner core.

The isotherm at the chosen reference temperature 7, =
4000 K was fit to a finite strain-like expansion in V'~ 2/3

PV, Tp) = mg + m, V2 + m, V4,

@)

The isothermal bulk modulus, K, = —V(9P/aV) 4, is calcu-
lated by differentiating (7). The isentropic bulk modulus K is
obtained from the thermodynamic identity
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Figure 2. Calculated electronic contribution to the constant
volume heat capacity for pure iron. The calculations are rep-
resented by (10) for temperatures 3000—8000 K and V =
45-55 Bohr*/atom (au = atomic unit = Bohr*/atom).

Ks=K7(1+ ayT), ()

where the thermal expansivity was determined as o =
(aK;)/K; and the Griineisen parameter from

y = aKV/Cy, (€]

where C,, is the isochoric heat capacity. We find that the
Grineisen parameter depends significantly on temperature at
high pressure, violating the usual quasi-harmonic approxima-
tion. The temperature dependence originates in the electronic
contributions to aK; and the heat capacity.

In order to complete the thermodynamic description and to
be able to calculate the isentropic bulk modulus, one needs the
volume and temperature dependence of C .. The lattice heat
capacity was assumed to be 3R, R being the universal gas
constant. As we demonstrated before [Wasserman et al., 1996],
at the density-temperature regime of the core the deviation of
the lattice heat capacity from 3R is much less than the elec-
tronic heat capacity and can therefore be neglected without
introducing a significant error.

The electronic heat capacity C5} was calculated under the
assumption that coupling between thermal excitation of elec-
trons and phonons is negligible. The temperature dependence
of the calculated C§ is given in Figure 2. The results of our
calculations are in good agreement with the study of Boness et
al. [1986]. For the purpose of this study, C$ was calculated on
a dense mesh of temperatures from 3000 K to 8000 K and
volumes ranging from 45 to 55 Bohr’/atom and interpolated
with a least squares polynomial

1 3
cyl=> > c;V'T.

i=0 j=1

(10)

This polynomial approximation was found to be entirely satis-
factory over the range of interest: deviations from the calcu-
lated electronic heat capacity are no more than 1.0%. Though
temperatures less than 3000 K are not of interest here, we note
that the polynomial has the correct low-temperature limiting
form, and it can be extrapolated to temperatures lower than
3000 K with relative error of 3%. This result may be useful in
reducing shock wave data. The coefficients appearing in (5)—
(7), and (10) are given in Tables 1 and 2.
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Table 1. Fit Parameters for the Equation of State of
Close-Packed Iron (Equations (5)-(7))
Parameter Value

m, 1431.6 GPa

m, —53,395 GPa Bohr‘2

m, 506,065 GPa Bohr”

ag 12.96 MPa K ™!

a, 7.8kPa K2

One Bohr = 52.92 pm.

3. Estimate of Uncertainties

Our calculation of the equation of state of iron at pressures
and temperatures of the inner core involves several levels of
approximation. The degree of accuracy of these approxima-
tions differs considerably for the three contributions to pres-

namaly gtatin nracanire contribiitian ds ta tharmal ax

sure, nameiy, StatiC pressure, contribution duc to thermal cx-
citations of electrons, and that of phonons. Fortunately, the
largest contribution, that due to static compression, is evalu-
ated most accurately. In this section we estimate the accuracy
of our equation of state and provide a conservative estimate of
the probable error.

The LAPW calculations that are used to calculate the static
pressure and the pressure due to thermal excitation of elec-
trons involve one serious approximation, the generalized gra-
dient approximation (GGA) to the exchange-correlation po-
tential. We estimate the error in this approximation by
comparmg our theoretical static cquauuu of state to the ex-
perimentally determined one at room temperature. The stan-
dard deviation in pressure of the athermal calculations of
Stixrude et al. [1994] from the experimental measurements of
Mao et al. [1990] is less than 10 GPa for the density range of
interest (Figure 3). (Deviations are larger at low pressures; this
may be due to magnetic contributions, which are unimportant
at high pressures, and are neglected here.) Adding zero point
motion and 300 K thermal pressure to the LAPW results im-
proves agreement with experiment. The relative error in the
pressure due to thermal excitation of electrons is more difficult
to estimate but is likely to be comparable to that in the static
pressure. Under this assumption, uncertainties in P, would
add an additional uncertainty of less than 1 GPa which is small
compared to the absolute uncertainty in the static pressure
alone.

Calculation of the vibrational pressure involves two approx-
imations: the tight-binding Hamiltonian and the cell model.
The well-known agreement between the Einstein model, a
special case of the cell model, and a variety of high-
temperature experimental data indicates that the errors in-
curred by the cell model approximation are not likely to be
large [Wallace, 1972]. We can make a quantitative, if indirect,
evaluation of the likely error by comparing to calculations on
the fcc argon, for which cell model results may be compared
with essentially exact Monte Carlo evaluations of the partition
function [Cowley et al., 1990]. The discrepancy between cell
model and Monte Carlo results is no more than 3% up to
temperatures 10 times that of the Debye temperature. If we
allow for an additional uncertainty of 6% to account, conser-
vatively, for possible errors in the representation of the ther-
mal pressure (6), we find an error of 9%, or 5 GPa in the
vibrational pressure for the conditions of the inner core.

The total uncertainty in our equation of state then is of the
order of 16 GPa over the density range of interest. This cor-
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responds to a relative uncertainty in pressure of 5% and an
uncertainty in density of 0.16 Mg m™> or 1%. We can inde-
pendently evaluate this estimate of uncertainty by comparing
theory with the experimentally measured room temperature
equation of state and the density, bulk sound velocity, and
Griinseisen parameter measured along the Hugoniot (Figure
3). The maximum deviation of the calculations from the solid-
phase portion of the experimental Hugoniot at core pressures
is less than 5 GPa, less than half of our estimated uncertainty,
consistent with our estimate being a conservative one. The

mavimum deviation 1 im
maximum deviation between theoretical and experimental

bulk sound velocity is 3%. Comparisons with other experimen-
tal results are reported by Wasserman et al. [1996].

We compare our equation of state of iron to the properties
of the inner core as determined sei olommllv For the first
time, we compare to not only the density of the inner core but
also its bulk modulus. This is significant as the comparison with
two properties places greater constraints on the possible com-
position and temperature of the inner core. We will assume for
the purposes of these comparisons that the inner core is iso-
thermal. We support this assumption below by analyzing the
thermal state of the inner core and provide further support for
our contention that the inner core is not likely to be composed
of pure iron.

The density profile of the inner core is compared with iso-
therms of pure iron calculated with our equation of state in
Figure 4a. For temperatures in the middle of the range typi-
cally estimated for the inner core (6000 K) the density of iron
is 3% greater than that of the inner core. This difference lies
outside the combined uncertainties in our equation of state
and in the seismological models [Masters and Shearer, 1990].
We note that even for temperatures as high as 8000 K, some-
what higher than the highest estimates of inner core temper-
atures, iron is still slightly denser than the inner core.

We find that temperatures in excess of 8000 K are required
for the density of iron to coincide with that of the inner core.
The conclusion that very high temperatures are necessary is
consistent with previous results, although the requisite temper-
atures found here are somewhat higher than those found by
Jephcoat and Olson [1987]. They found that a temperature of
7000 K was adequate to yield agreement between the equation
of state of iron and the inner core. The differences between
our result and theirs are due to the different equations of state
used. Because of the limited experimental data then available,
Jephcoat and Olson were forced to extrapolate their semiem-
pirical equation of state well outside the range of measure-

qum

Table 2. Coefficients of the Polynomial Approximation for
the Electronic Heat Capacity of Close-Packed Iron
(Equation (10))

Coefficient Value
Co —0.273 X 10793
Coa 0.552 x 10797
Co3 —0.119 x 107"
C1 0.115 x 10794
Cia —0.884 x 107
Cq3 —0.150 x 10713

The volume is in units of Bohr®*/atom, temperature in kelvins, and
C¢lis in units of the universal gas constant R.
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Figure 3. Theoretical prediction compared with experimental measurements of iron. (a) The low-
temperature equation of state: theory, lines; experiments, squares and solid circles [Jephcoat et al., 1986] and
open circles [Mao et al., 1990]. Dashed line indicates the theoretically predicted bec-hep transition pressure (11
GPa). (b) The Hugoniot: theory, line; experiment, solid circles are solid phase and open circles are liquid
phase. (c) Bulk sound velocity along the Hugoniot: theory, bold line; experiment, light line and open circles.
Dashed line is the fit of Brown and McQueen [1986] to their data. (d) Grineisen parameter: theory, bold line;
experiments, light line, dashed extrapolation, large error bar [Jeanloz, [1979] and symbols [Brown and Mc-

Queen, 1986].

ments. They also did not include an explicit division of vibra-
tional and electronic thermal pressures. In any case, in the
absence of independent estimates of the temperature of the
inner core, comparisons based on the density alone cannot
constrain the composition of the inner core. It is clearly pos-
sible to find inner core temperatures (albeit higher than all
previous estimates, i.e., T > 8000 K) such that pure iron
provides an acceptable match to the density of the inner core.

The isentropic bulk modulus of the inner core is compared
with that of iron calculated with our equation of state in Figure
4b. The isentropic bulk modulus of iron depends weakly on
temperature and is very close to that of the inner core for
temperatures ranging from 4000 to 8000 K. We have found
that the temperature which produces the best fit between the

bulk modulus of iron and the inner core is 7000 K. At 6000 K
the maximum deviation between iron and seismological mod-
els of the inner core is 2%.

We have also compared our results to the larger number of
seismological models which are parameterized only in terms of
Vp and Vg, the P and S wave velocities of the inner core, by
examining the bulk sound velocity V5 (Figure 4c),

V= Kip = V3 -3V3.

Because the bulk modulus of pure iron is comparable to that of
the inner core, and its density higher, the bulk sound velocity
of iron does not match that of the inner core even for the
highest temperatures we examined (8000 K). The maximum



24,734

142 |

14.0
Fe 4000 K

13.8

136 Fe 6000 K

13.4
Fe 8000 K

Density (Mg m™®)

13.2

13.0

12.8

L LA LA LA AL LA AL, \LLLL LU LA LU LA L L L

(@

12.6 ' ‘ ' :
320 330 340 350 360 370

[JL (IYTTTVETE IRTSTTTITI FRYVNTICTI FRRVUITN, PRYTAIVITI FUUY, VORI (ORVUCT Y NAPRI

0

Pressure (GPa)

1550 I T | I T

1500 Fe 6000 K

Fe 4000 K

1450

1400

[Trrr[rrrr[rrrr oot

1350

Bulk Modulus, Kg (GPa)

1300

Fe 8000 K (b)

1250 | | | | |
320 330 340 350 360 370 380

PRRTERET NN N T S S AU SN SO N [ S S A A V1

Pressure (GPa)
105

104

103

10.2

10.1

10.0

Bulk Sound Velocity (km s™)

Fe 4000 K

9.9

RN RARRN LAARNRARLYA VOl VARRAN LR VI LRERY LARRS LLLY LARLE LY LLLLE LR

(©

RTTEITETI IARRUNRTTIRRRAEARI IRURUATAR] INRUARETANNUT) YOO\ VATRNR) YOI

98 1 | | | J
320 330 340 350 360 370 380

Pressure (GPa)

Figure 4. Properties of pure iron along three isotherms (sol-
id lines) compared with those of the inner core (a) density (b)
isentropic bulk modulus, and (c) bulk sound velocity. The
properties of the inner core are represented by the seismolog-
ical models of Dziewonski and Anderson [1981] (solid circles);
Dziewonski et al. [1975] (open circles); and Morelli and Dz-
iewonski [1993] (squares).
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difference between V' of iron at 6000 K and that of the inner
core is 3%.

Our comparisons show that it is possible to find inner core
temperatures such both the density and bulk modulus of iron
match that of the inner core within the combined uncertainties
of theory and seismological models (7 = 8000 K). This tem-
perature is higher than most estimates of the temperature of
the inner core. If the temperature is significantly less than 8000
K, our analysis indicates that a significant fraction of lighter
elements is present in the inner core.

5. Thermal State

Here we justify our assumption that the inner core is ap-
proximately isothermal and provide an independent estimate
of its temperature. We can estimate a probable upper bound
on the temperature gradient in the inner core by assuming that
it is perfectly insulating. If the inner core grows through freez-
ing of the overlying outer core, its temperature profile will then
directly reflect the solidus temperature. We estimate the depth
dependence of the solidus temperature 7, using the Linde-
mann law

aInT/a1n p,= 2(yu — 1/3), (11)

where p, is density of the solid at T, and v,,, is the lattice
Griineisen parameter, the phonon contribution to y. Assuming
that the inner core is in hydrostatic equilibrium and neglecting

the depth dependence of density and bulk modulus,

T/ r\?
Ts(r):Tx(O) exp[?(g) ]’

where r is radial distance, ¢ is the radius of the inner core, I' =
2(Viae — 1/3), and I1 = 2wGp*c?/3 is the pressure due to the
inner core’s self-gravitation. We find that v, varies somewhat
over the pressure range of the inner core and over the range of
previous estimates of the temperature of the inner core. How-
ever, it is well approximated by the value 1.6 for the purposes
of estimating the temperature gradient. Taking K = 1400
GPa and p = 13 Mg/m® and evaluating (12), for a central
temperature of 6000 K we find that the temperature difference
across the inner core is less than 400 K.

Conductive or convective heat loss will decrease the temper-
ature difference across the inner core relative to the insulating
case. For example, if the inner core is convecting [Jeanloz and
Wenk, 1988], its temperature distribution will be adiabatic. The
temperature gradient is then given by (12) with I' = y. The
thermodynamic Griineisen parameter vy is a weighted average
of y,,, and the electronic contribution 7., We have found in
our ab initio results that y ~ vy,,, = v.;. Then, the adiabatic
temperature difference is less than that in the insulating case
by a factor 2[1 — (3)"'], or ~250 K. Plausible amounts of
radioactive heat production, H, in the inner core are unlikely
to change these estimates substantially. Even if H is 10 times
the bulk Earth value (2.5 X 107® W m™? [Verhoogen, 1980]),
the superadiabatic steady state temperature drop across the
inner core, for a conductivity of k = 100 Wm ™' K™, is only
60 K [Jeanloz and Wenk, 1987]. We conclude that the temper-
ature difference across the inner core is small; the variation in
p and K over the estimated temperature range is smaller than
uncertainties in our theoretical calculations and in the seismo-
logical models. It is then sensible to assume that the inner core

(12)
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is isothermal for the purposes of comparing theoretical and
seismological equations of state.

We can estimate an upper bound to the temperature at the
inner core boundary on the basis of our ab initio results in the
following way. We assume that the core solidus lies below the
melting point of pure iron. Our estimate of the melting tem-
perature of iron is based on our calculation of the temperature
along the Hugoniot. We find that the Hugoniot temperature at
the melting pressure of 243 GPa [Brown and McQueen, 1986],
is Ty = 5600 K [Wasserman et al., 1996]. Our result agrees
well with the estimates of Brown and McQueen [1986] and
Bonness and Brown [1990] and is ~800 K less than that mea-
sured by Yoo et al. [1993]. The difference in density between
the Hugoniot melting pressure and the pressure at the inner
core boundary (329 GPa) is small (4%). We may then perform
a short extrapolation to find the melting temperature of iron at
the inner core boundary using the Lindemann law (12) [Brown
and McQueen, 1986)]. For the melting temperature of iron at
the inner core boundary we obtain

Tycs = Teu(pics/pau) 27 ¥ = 6150 K, (13)

where ICB quantities are those at the inner core boundary, and
H quantities are those at the conditions of melting along the
Hugoniot, and we have used p;cg = 12.76 Mg m™> [Dziewonski
and Anderson, 1981], p,;; = 1230 Mg m > and v,,, = 1.6
[Wasserman et al., 1996). This estimate of the upper bound of
the inner core boundary temperature agrees with that of Brown
and McQueen [1986] and is unlikely to be in error by more than
1000 K on the basis of the estimated uncertainties in our
equations of state and comparison with independent experi-
mental results. This estimate is significant because it means
that a pure iron composition for the inner core can now be
ruled out on the basis of a comparison with the density alone.
At a temperature of 6150 K the density of pure iron is 0.37 Mg
m ™3 or 3% greater than that of the inner core.

6. Light Element in the Inner Core

The discrepancy between the properties of pure iron along
probable geotherms and the inner core is most likely caused by
the presence of additional, lighter elements. Major questions
include the identity (O, S, H, etc.) and amount of light element
in the inner core. It is likely that more than one element
besides iron exists in substantial quantities in the inner core,
not all of which need be lighter than iron. For example, Ni is
expected to be present in the inner core on the basis of its
association with iron in meteorites.

Current geophysical observations and laboratory measure-
ments of the equations of state of candidate alloying compo-
nents cannot rule out conclusively any of the large number of
light alloying elements which have been proposed on geo-
chemical grounds. In particular, although important advances
are being made in the determination of the equation of state of
Fe-O Fe-S, Fe-H, and Fe-Si alloys, these are not yet of com-
parable precision to our knowledge of the iron equation of
state. Moreover, theoretical predictions of the high pressure-
temperature equations of state of these alloys complementary
to our results for iron do not yet exist.

6.1.

Because of the uncertainty in the identity of the alloying
elements in the core and the material properties of candidate
alloying components, it is not yet possible to place definite
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limits on the amount of elements other than iron in the inner
core. The approach we take here is to identify the material
properties that the alloying fraction must have in order to
satisfy, when combined with our equation of state of iron, the
properties of the inner core [Jeanloz, 1979]. Unlike previous
approaches, we do not assume that the solution is binary or
that mixing is ideal.

To proceed, we assume that the inner core consists of a solid
solution, rather than a mechanical mixture of two or more
phases. The formation of solid solutions, at least over limited
ranges of composition, is expected on general grounds at the
high temperatures of the inner core. Solvi may exist, but we
assume that they occur outside the relatively narrow composi-
tional range of interest here, i.e., less than 10 wt % or 20 mol
% light elements.

As our starting point, we take the following general expres-
sion for the Gibbs free energy of a binary solution consisting of
Fe (component 1) and other components (2, - -+, N):

N
G =D x[G,+ RT Inf.x],

i=1

(14)

where x; are the mole fractions of the end-member compo-
nents, G, are their Gibbs free energies, R is the gas constant,
and f; are the activity coefficients. The volume is the derivative
of G with respect to P at constant 7 and composition

N

V=2 XVt Vi), (15)
i=1
where all nonideal volume terms are contained in V,;, which
depends on the composition vector x,
N
dIn f;

V() =RT ), x,-( an> (16)

i=1

If the solution is ideal (f; = 1, all i), or if the activity coef-
ficients depend only weakly on pressure over the range of
interest, V;, is negligible.

Since we are interested in nearly pure iron solutions, we
expand V ;. in a Taylor series aboutx, = xg, =1,

N
V= xpeVe + E xif/i + O(Xiz),

=2

(17)

where

f/i =Vi+ (Vi 0X) x,=1- (18)
This result is significant because it shows that to lowest order
in the light element concentrations, the volume may be treated
as that of an ideal solution but one where the partial molar
volumes of the light components are replaced by the volumes
of virtual (fictive) components (V). The volumes of these
virtual components can be thought of as effective partial molar
volumes which account for the effects of the nonideal volume
of mixing. The difference between the volume of a component
and its virtual counterpart will be large to the extent that
nonideal effects are important (Figure 5). It is worth pointing
out that (17) is in essence a restatement of Henry’s law.

The density and bulk modulus of the solution are given by
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(Pure Fe) Mole Fraction of Light Element i, x;

Figure 5. Schematic illustration of the difference between
the molar volume of an alloying component (V) and its virtual
counterpart (V) in a nonideal solution where the volume of
mixing is significant.

m;

VR

P = —mpl +m 2y (19)
i=2
and
N m.
(pK) ™' = (1 = m)(Krepr) ™ +m 2, (Kip) ™, (20)
i=2

where m; is the mass fraction of component i, m is the total
mass fraction of alloying components, p;, = w,/ I7i is the effec-
tive density of component i, where w, is its molar weight, and
K, = —(8P/o In V,) is the effective bulk modulus of com-
ponent i.

Finally, we find for the properties of the alloy fraction

pu = = (21)
P = mpd
and
£ = mpy'
8 (pK)™'— (1 — m)(pecKes) ™"’
where p, and K, are the average density and bulk modulus of
the alloying constituents

(22)

N N
Aol _ mi -1 _ mi
Pa % m Pi K, % m K. (23)

We have assumed that the densities and bulk moduli of the
alloying constituents are not very different from each other. In
these equations the unsubscripted material properties are
those of the inner core, and those subscripted Fe are taken
from our iron equation of state. Equations (21) and (22) have
the same form as those derived by Jeanloz [1979] but replace
the density and bulk modulus of a single component of an ideal
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binary solution with the average over an arbitrary number of
components in a multicomponent nonideal solution.

6.2. Nonideal Solutions

Equations (21) and (22) yield the density and bulk modulus
that must be satisfied simultaneously by the alloy fraction.
Because good constraints now exist on the density and bulk
modulus of both the inner core and pure iron, these equations
place limits on the nature of the inner core alloy. We note that
these equations contain singularities; p, and K , are positive
for values of m such that

m>1- 25 (24)
and
m>1—p‘;§“, (25)

respectively. While negative values of p, and K, are not
strictly forbidden on thermodynamic grounds, this would re-
quire that the volume of mixing be comparable in magnitude to
the molar volume itself. If we assume that p, and K 4 are
positive, (24) and (25) set lower bounds on the mass fraction of
alloying elements in the inner core. The lower bound depends
on temperature through its effect on pg, (thermal expansion)
and K. Calculations for a pressure of 345 GPa, the mean
pressure of the inner core, show that the greatest lower bound
is set by the bulk modulus equation (25) for all temperatures of
interest. The lower bound only exceeds zero for the highest
temperatures of our study (near 8000 K) (Figure 6).

The required properties of the alloy fraction depend on its
abundance (Figure 7). Because pure iron is denser than the
inner core, the effective density of the alloy fraction vanishes as
its mass fraction vanishes. As the alloy mass fraction ap-
proaches unity, the required properties approach those of the
inner core. The required bulk modulus diverges as the limit
(25) is approached. This means in practice that the singularity

2.0

Minimum Alloy Mass Fraction, m (%)
[=)
I
|

Ka>0
0.0 | L/ |
6000 6500 7000 7500
Temperature (K)

8000

Figure 6. Lower bounds on the mass fraction of alloying
components in the inner core imposed by the inequality (25)
(solid line) and by the assumption that the bulk modulus of the
alloy fraction is less than twice that of iron (dashed line).
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in (22) places somewhat more stringent limits on the minimum
allowable alloy mass fraction than the inequality (25) would
suggest. For mass fractions which are as much as twice the
lower bounds given by (25), the required bulk modulus of the
alloy fraction is more than 3000 GPa, more than twice that of
iron or of plausible alloying components. If we exclude the
possibility of alloying components which have bulk moduli
more than twice that of the inner core, or volumes of mixing
which are comparable to molar volumes, then the smallest
allowable mass fraction of alloying components according to
our analysis is 1% at 8000 K (Figure 6).

6.3.

If we assume that the solid solution in the inner core is ideal,
then the volume of mixing is zero and we have

Ideal Solution Approximation

4 K, = KA’ (26)

o

Pa =

where p, and K, are the actual properties of the alloy fraction.
Within this approximation then, we may compare our results
for the required properties of the alloy fraction to those ex-
perimentally measured on several possible alloying compo-
nents (Figure 7). This comparison will also allow us to test the
assumption of ideality.

Empirically, nonideal behavior increases with the difference
in atomic radii of the constituent species: solutions of species
with similar atomic radii behave most ideally. On this basis,
iron-sulfur solutions are expected to behave most ideally and
to provide the most direct comparison with our results. On the
other hand, there is some evidence that the Fe-S system re-
mains eutectic to high pressures (80 GPa), implying that solid
solution in this system is limited [Williams and Jeanloz, 1990].
However, even if the Fe-S system remains eutectic up to much
higher pressures, the free energy gain due to the entropy of
mixing due to limited amounts of solid solution would be
substantial at inner core temperatures. It is likely that at least
limited solid solution exists in the inner core. It is important to
recall in this context that we are concerned here with limited
solid solutions: the inner core is expected to contain less than
10 wt % light element. In the Fe-O system, there is some
evidence from measurements of the melting curve for ideal
behavior in the solid state and complete solid solution between
Fe and FeO [Knittle and Jeanloz, 1991].

To estimate the properties of iron-sulfur and iron-oxygen
compounds at inner core conditions, we have used the ther-
modynamic parameters derived from shock wave experiments
on pyrite (FeS,) [Ahrens and Jeanloz, 1987] and the high-
pressure phases of pyrrhotite (Fe oS) [Brown et al., 1984] and
wiistite (FeQ) [Jackson et al., 1990] (Table 3). The sulfides are
expected to melt along the Hugoniot at pressures of 110 and
140 GPa, respectively. This means that substantial extrapola-
tion of the solid-phase portions of the Hugoniots is necessary.
The uncertainties in density and bulk modulus at inner core
pressures may be 5% and 10%, respectively, and are due
mostly to the uncertainty inherent in the extrapolation. The
properties of these components are computed along the 345
GPa isobar between the temperatures of 4000 K and 8000 K
and compared with the required properties of the alloy fraction
from our results under the assumption of ideal mixing in Fig-
ure 8. We determine the required mass fraction of the com-
pound, m and the corresponding mass fraction of the light
element, M. For a light element containing comipound with the
general formula Fe,L,, these two quantities are related by
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Figure 7. Properties of the alloy fraction required by the
theoretical iron equation of state and seismological models of
the inner core for a pressure of 345 GPa. The density and bulk
modulus which must be simultaneously satisfied for a given
mass fraction (m) are shown as a function of m at three
different temperatures (a) 4000 K, (b) 6000 K, and (c) 8000 K.
Estimated uncertainties are represented in Figure 7b (1% in
density, 5% in bulk modulus).
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Table 3. Equation of State Parameters of Fe, ,S, FeS,, and Fe 4,,0

) Po> Kos, By,
Composition Mg/m’® GPa Kig Yo Jkg ' K™ Yel References
Fe0S 534 118 41 1.54 025 1.34 1,2
FeS, 5.01 162 4.7 1.56 0.0 e 1,3
Fe(.0460 6.63 205 6 1.63 0.0 - 4

References: 1, Anderson and Ahrens [1996]; 2, Brown et al. [1984]; 3, Ahrens and Jeanloz [1987}; 4,
Jackson et al. [1990]. The parameters §, and v, define the electronic heat capacity C§} = By(p/p,)*'T.

=1
WEe + b> ,
WL
where wy, and w, are the molar weights of Fe and the light
element, respectively.

For a given Fe-light element compound and under the as-
sumption of ideal behavior, constraints can be placed on the
temperature and alloy mass fraction required to match the
properties of the inner core. The largest source of uncertainty
is in the extrapolation of the solid-phase Hugoniot data. The
temperature dependence of the properties of the alloy fraction
according to (21) is much stronger than the temperature de-
pendence of the density or bulk modulus of the actual com-
pounds. Thus for ideal solutions of Fe with O as wiistite, the
temperature in the inner core must lie between 6500 and 7500
K. This range of temperatures exceeds our estimate of the
melting point of pure iron. It is worth pointing out, however,
that addition of a light element will not necessarily depress the
freezing point. Indeed, experiments indicate that the melting
temperature of FeO and intermediate compounds are higher
than that of pure iron [Knittle and Jeanloz, 1991; Boehler, 1992].
Ideal solutions of Fe with S require substantially lower tem-
peratures. For S as pyrrhotite, the required temperatures are
probably unrealistically low, below 4000 K. These tempera-
tures are comparable to some estimates of the temperature at
the core-mantle boundary. For S as pyrite, inner core temper-
atures lie between 5000 K and 6000 K. Required alloy mass
fractions in the ideal solution limit are 4% FeO (1% O), >20%
pyrrhotite (>8% S), and 6% pyrite (2% S).

The fact that the mass fraction of S and the required inner
core temperature differ substantially depending on whether S
is included as Fe,, oS or FeS, may indicate that the Fe-S solid
solution at inner core conditions is substantially nonideal. The
existence of nonideality in the Fe-S system is consistent with
recent shock temperature measurements on iron sulfides
[Anderson and Ahrens, 1996). These indicate that pyrite has a
strongly reduced lattice heat capacity (2/3 the Dulong Petit
value) which is attributed to the survival of strong S-S bonds to
high pressure. The presence of such asymmetric interactions in
a binary compound would be direct evidence of nonideality.
However, as Anderson and Ahrens point out, the finding of a
reduced heat capacity should be approached with caution until
more data are obtained. By the same token, our conclusions
regarding the nonideality of the Fe-S system must be regarded
as tenuous as they are based on a threefold extrapolation in
pressure of the solid-phase Hugoniots. Clearly, there is a need
for a better understanding of bonding in the Fe-S system at
high pressure and for investigations of iron light element so-
lutions in the iron-rich limit.

M:m<a 27)

7. Discussion and Conclusions

Our theoretical equation of state of iron at high pressures
and temperatures shows that the Earth’s inner core is not likely

to be composed of pure iron. The alloying elements must be
lighter on average than iron and have a similar bulk modulus.
The amount of the noniron fraction in the inner core remains
uncertain. An analysis of binary Fe-O and Fe-S mixtures under
the assumption of ideal mixing indicates that the non-iron mass
fraction may lie in the range M ~ 2-10% (m =~ 4-30%).
The uncertainty has two important sources. First, the identity
of the light element is unknown. The mass fraction of S re-
quired to satisfy seismological observations may be as much as
a factor of ten greater than the required mass fraction of O.
Second, the amount of S required depends on the form in
which it is incorporated. The required amount of S as FeS
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Figure 8. Properties of the alloy fraction required by the
theoretical iron equation of state and seismological models of
the inner core for a pressure of 345 GPa. The information
conveyed by the thin solid lines is identical to that in Figure 7:
for the indicated temperatures, the required effective density
of the alloy fraction is plotted against its required effective bulk
modulus. The symbols represent alloy mass fractions of, from
left to right along a single line, 2, 5, 10, and 20%. For example,
if the inner core had a temperature of 4000 K, and contained
5 wt % alloy fraction, the alloy fraction must have a density of
6.47 Mg m ™~ and a bulk modulus of 1240 GPa. The dashed
lines connect points of common mass fraction. Superimposed
for comparison (bold lines) are experimentally based estimates
of the properties of FeO, Fe,,S, and FeS, at 345 GPa and
temperatures ranging from 4000 K (top right point of line
segments) to 8000 K (bottom left point of line segments).
Estimated uncertainties in the properties of these compounds
are indicated: 5% in density and 10% in bulk modulus. Esti-
mated uncertainties in the required properties of the alloy
fraction are indicated on the curve corresponding to T = 6000
K (1% in density and 5% in bulk modulus).
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differs by at least a factor of 4 from that of S as FeS,. This
difference may be caused by significant nonideality in the iron-
sulfur system at inner core pressures and temperatures.

Elements heavier than iron are also likely to be present in
the inner core, although their amount is uncertain. If heavier
elements are present in significant amounts, the required
amount of light elements would be greater than that estimated
here. In the case of Ni, possibly the most abundant heavy
impurity, analysis of meteorite chemistry suggests that the
mass fraction of this element is 6% in the core [Birch, 1952;
Ringwood, 1977]. Because its atomic weight is so similar to that
of iron, addition of Ni in this amount changes the density by
only 0.3%, less than the uncertainty in our theoretical equation
of state or in the seismological models.

Our estimates of the amount of light element in the inner
core are consistent with previous estimates of the composition
of the outer core. Because of its greater density and because it
is thought to form by freezing of the outer core, the inner core
is expected to have a smaller abundance of alloying elements.
Previous estimates of the mass fraction of O in the outer core
(10% |Jeanloz and Ahrens, 1980]) are a factor of ten larger than
our estimates for the inner core, while estimated abundances
of S (10% [Brown et al., 1984] and 11% [Ahrens and Jeanloz,
1987]) are comparable to our highest estimate of the mass
fraction of S in the inner core.
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