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We predict the phase diagram of CaSiO3 perovskite, finding the tetragonal I4/mcm structure transforming to

cubic Pm3̄m with increasing temperature. The transition temperature is 1150 K at 0 GPa, and 2450 K at
140 GPa. The c /a ratio of the tetragonal structure is 1.018 at 100 GPa and increases on compression, as does
the static enthalpy difference between tetragonal and cubic structures. The elastic constants of the tetragonal
phase at static conditions differ substantially from those of the cubic phase with the Voigt-Reuss-Hill shear
modulus 29% less at 100 GPa. Computations are based on density functional theory in the local density and
generalized gradient approximations. The phase diagram and high temperature elastic constants are computed
using a mean field theory with parameters of the Landau potential determined via structurally constrained
density functional theory calculations. We present a simple scheme for systematically searching for the ground
state over all perovskite structures derivable from octahedral rotations within the context of symmetry-
preserving relaxation, which confirms tetragonal I4/mcm as the ground state in density functional theory. We
argue that the experimental x-ray diffraction pattern can be explained by the I4/mcm phase by considering the
development of preferred orientation under uniaxial compression.
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I. INTRODUCTION

Among the perovskite structured oxides are materials ex-
hibiting technologically important properties such as high
temperature superconductivity,1 colossal magnetoresistance,2

ferroelectricity,3 and superionic conductivity.4 Such a variety
of disparate physical behavior originates in the remarkable
flexibility of the perovskite structure in accommodating cat-
ions with a wide range of radii and valences. The relative
sizes of the two cations conform to the Goldschmidt toler-
ance factor t= �rO+rA� /�2�rO+rB��1 where the A cation oc-
cupies a larger site that is 12-fold coordinated in the ideal
cubic structure and the B cation occupies a smaller octahe-
drally coordinated site.5 When t�1 the octahedra rotate,
driven by soft phonon modes at the Brillouin zone
boundary,6 reducing the value of the interoctahedral B-O-B
angle to less than 180°, and producing ferroelastic
distortions.7

The name perovskite derives from the naturally occurring
mineral of CaTiO3 composition,8 but the structure is geologi-
cally most important as that of high pressure silicate phases
that are thought to be the most abundant in the Earth.9

The lower mantle, extending from 660 km to 2900 km
depth �24–136 GPa� is composed almost entirely of two per-
ovskites of ideally MgSiO3 and CaSiO3 composition with
little intersolubility. The contrast in elastic properties be-
tween these two phases might be used to constrain the
chemical composition of the deep Earth by comparing to
seismologically determined elastic wave velocities.10

The structure of CaSiO3 perovskite remains a major un-
certainty with important geophysical implications since

phase transitions associated with even subtle octahedral
rotations are known to produce large elastic anomalies.11

Whereas experiments find a tetragonal structure with
c /a�1 �Refs. 12 and 13�, density functional theory also pre-
dicts a tetragonal ground state �I4/mcm� but with c /a�1
�Refs. 14–16�.

Resolving the apparent discrepancy between theory and
experiment is critical for understanding elasticity since the
experimentally observed distortion is not ferroelastic. There
are as yet no measurements of the elastic constants of
CaSiO3 perovskite other than the bulk modulus.17 Only the
elastic constants of the cubic phase have been predicted via
density functional theory.18

We apply density functional theory in a different way to
face the challenges of a high pressure system in which the
energetics of phase stability are subtle and intrinsically an-
harmonic: the quasiharmonic approximation, which has been
used to investigate many other high pressure phase transfor-
mations and elasticity,19 does not apply. Because of the ap-
parent discrepancy between theory and experiment, we reex-
amine the identity of the ground state in density functional
theory using a systematic search strategy over all possible
structures derivable from octahedral rotations. Having con-
firmed the ground state as I4/mcm, we predict its elastic
constants and find large differences as compared with the
cubic structure. The stability field of the shear-softened te-
tragonal phase is found to overlap with pressure-temperature
conditions of Earth’s interior via an effective Hamiltonian
with parameters determined by structurally constrained
density functional theory calculations.
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II. METHODS

A. Density functional theory

Calculations are based on density functional theory with
the projector augmented wave �PAW� method.20 Computa-
tions are performed with VASP �Ref. 21� at static �0 K� con-
ditions. We focus on the local density approximation �LDA�
since this yields better agreement with the experimental
equation of state, but also perform limited calculations
within the generalized gradient approximation �GGA�. At
each volume, the structure is fully relaxed: atomic positions
and lattice parameters are adjusted until net forces and
nonhydrostatic stresses vanish. The PAW potentials are
harder and presumably more representative of the all-
electron limit as compared with previous studies:15,16 for Ca
we use a core electronic configuration 1s22s22p6 and core
radius RCa=2.3 Bohr; for Si 1s22s22p6, RSi=1.6 Bohr; and
for oxygen 1s2, RO=1.1 Bohr.

The harder PAW potentials necessitate an energy cutoff
Ecut=1000 eV, for which the Pulay stress is less than 1 GPa
and the total energy difference between cubic and ground
state structures is converged to better than 2 meV. In all
calculations with unit cells containing 20 atoms, including all
elastic constant calculations, we used a 4�4�4 k-point
mesh. In calculations with 40 atom unit cells, we used a
2�2�2 mesh. Larger k-point meshes changed the total en-
ergy difference by less than 1 meV. Differences in total en-
ergy are always taken from calculations using the same size
unit cell and the same k-point mesh for both structures.

The method of computation of the elastic constant tensor
follows previous work.22 Once the equilibrium structure at a
given volume is found, the structure is strained, and the
stress tensor recomputed. Atomic positions are rerelaxed in
the strained configuration. A minimal set of longitudinal and
shear strains of ±0.25% are applied. The elastic constants are
then given by the appropriate ratios of deviatoric stress to
applied strain.

B. Systematic search strategy for the ground state structure

Assuming that the octahedra be essentially rigid and that
the translational repeat unit not exceed two octahedra in each
direction, Ref. 23 derived 15 possible symmetrically distinct
space groups by octahedral rotations. They found that all
known perovskite structures with tilting distortions belonged
to one of these 15 space groups. They further derived the
subgroup-supergroup relations among these structures, which
are schematically illustrated in Fig. 1.

We performed a systematic search for the ground state
that takes advantage of the properties of symmetry-
preserving relaxation. This kind of relaxation is a common
feature of density functional theory based codes because ex-
plicit symmetrization of the wave functions, forces, and
stresses increases the efficiency. As a result, all symmetry
elements present in the initial structure are preserved during
the course of the relaxation. New symmetry elements may
develop if these lower the total energy. This means that in the
scheme of Fig. 1 symmetry-preserving relaxation is unidirec-
tional: starting from any particular space group, relaxation

can either leave the structure unchanged, if it is the ground
state, or it can move upwards along subgroup-supergroup
relations if these lower the total energy. Our symmetry-
preserving relaxation permits all structural distortions consis-
tent with the initial space group that lower the total energy,
including octahedral distortions and cation displacements, in
addition to octahedral rotation. Complete relaxation is essen-
tial, particularly in a system such as CaSiO3 in which energy
differences from the cubic parent structure are subtle. We
anticipate that our results will therefore be more accurate
than those based on incomplete structural relaxation in which
only octahedral rotation was considered.24

Our strategy is as follows. We initiate structural relax-
ations from each of the four minimal subgroups: Immm,

P42/nmc, P21/m, and P1̄. We used a 2�2�2 supercell
�40 atoms�, which is essential to our strategy because it is
the minimal translational unit that can represent all fifteen
structures commensurately. Initial structures corresponding
to each of these space groups are prepared by rotating
octahedra small finite amounts �7°–11°�.

C. Mean field theory

In order to investigate high-temperature elasticity and
phase stability, we make use of a mean field theory with
parameters constrained by first principles calculations. The
Landau potential governing perovskite structures related by
octahedral rotations at the R point on the Brillouin zone
boundary is25

FIG. 1. �Color� Schematic representation of space groups deriv-
able by octahedral rotations from the cubic parent structure

�Pm3̄m�. Lines represent subgroup-supergroup relationships and are
dashed when Landau theory predicts a first order transition. Struc-
tures are also identified by the pattern of octahedral rotation in the
notation of Glazer �Ref. 56� cubic axes are labeled a ,b ,c, and the
tilt about each axis by the symbols 0, �, �, to indicate, respec-
tively, no rotation or rotation of successive planes of octahedra in
the same �M point� or in the opposite sense �R point�. The minimal
subgroups are colored green and represent the starting point for our
systematic search. End points of symmetry-preserving relaxations
are colored red. The bold outline indicates the lowest energy of
these end points, identifying tetragonal I4/mcm as the ground state.
Bold black lines schematically illustrate possible paths followed by
symmetry-preserving relaxation from initial to final structures. After
Refs. 23 and 57.
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where qi is the octahedral rotation about axis i, the elastic
constants cij

0 are those of the cubic structure, ei are the ele-
ments of the strain tensor with the symmetry adapted com-
binations eo= �e1−e2� /�2, et= �2e3−e1−e2� /�6, and we have
neglected pure volumetric strain. In addition to the cubic
phase, we will pay particular attention to the tetragonal
I4/mcm phase, with nonzero q3 and et, and the orthorhombic
Imma phase, with nonzero q2=q3, et, eo, and e4.

We find the values of the parameters appearing in the
Landau potential �Eq. �1�� by fitting to a series of unrelaxed
density functional theory calculations for several fixed values
of qi and ei. These calculations were all performed in a 2
�2�2 supercell with initially cubic atomic coordinates and
lattice parameters. Oxygens were displaced according to sev-
eral fixed values of qi. We take qi=�x the change in the
fractional oxygen coordinate relative to the cubic parent
structure along the R-point soft-mode eigenvector. Lattice
parameters were altered according to several fixed values of
the strains. In order to constrain the coupling constants we
consider cases in which two or more of the relevant struc-
tural quantities �q1 ,q2 ,q3 ,et ,eo� are set to nonzero values.
Further details concerning the values chosen are found below
in Sec. III.

The elastic constants of the distorted phase are related to
those of the cubic phase by7

cij = cij
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and the derivatives are evaluated at equilibrium.
In the displacive limit the Landau potential is related to

the underlying microscopic Hamiltonian26–28
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where we have focused on the primary order parameter of
the phase transition from tetragonal I4/mcm to cubic, q3
= �q3

		 and the brackets indicate the ensemble �thermody-
namic� average. The conjugate momenta are p3

	, N is the
number of sites �octahedra�, J is the intersite coupling con-
stant, and the second sum is over nearest neighbors only. The
form of the intersite coupling: a sum, rather than a difference
of nearest neighbor rotations as is more commonly written, is

that appropriate for a transition driven by a zone-boundary
mode. The coefficients of the on-site term
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are related to those of the Landau potential: A=a, B=b+b�,
C=c+c�.

The critical temperature is related to the excess enthalpy
of the distorted phase �H via the depth of the on-site
potential well26,29

kBTC = 0.440
�H

s
�6�

and the coefficient is known from Monte Carlo simulations.
The value of s= 
A
 /24J is determined by the dispersion of
the unstable-mode branch along �−R �Ref. 14�


2��� = A + 12J�1 + cos ��� , �7�

where the octahedral rotations are modulated with wave vec-
tor 2�

a �� 1
2 , 1

2 , 1
2

� and the scalar � varies from zero at the
Brillouin zone center ��� to unity at the R point. For CaSiO3

perovskite, Ref. 14 found that the dispersion scales with the
frequency so that s=0.071, essentially independent of
compression. The fact that s�1 indicates that the transition
occurs in the displacive limit.

III. RESULTS

A. Ground state

A systematic search at V=35 Å3 per CaSiO3 reveals
I4/mcm as the ground state. Relaxations initiated with mini-
mal subgroups with at least one out-of-phase rotation

�P42/nmc , P21/m , P1̄� all yielded the tetragonal structure
I4/mcm with identical lattice vectors, atomic coordinates,
and total energies. The remaining minimal subgroup Immm
instead relaxed to tetragonal P4/mbm with very slight dis-
tortion and significantly higher total energy than for the
I4/mcm structure, by 28 meV per formula. Immm is unique
among the four minimal subgroups in not having I4/mcm as
a supergroup �Fig. 1�. Since there is no line connecting
Immm to the ground state I4/mcm, the relaxation continues
until the lowest energy supergroup is found, which in this
case turns out to be P4/mbm. Since all minimal subgroups
that are permitted to yield I4/mcm via symmetry-preserving
relaxation did in fact yield this structure, and since this was
the lowest energy structure found, all other space groups are
excluded as ground-state structures.

These results are in excellent agreement with those of
other studies that also conclude that I4/mcm is the ground
state based on an analysis of a subset of possible
structures.15,16 Another study,24 which found a different
structure �Pnma�, used a different electronic structure
method and did not fully relax the structure.

Our relaxation strategy reveals another important aspect
of the relative stability of the various structures. Symmetry
preserving relaxations performed in smaller unit cells
can become trapped in local minima that may represent
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elastically unstable saddle points. For example, the Imma
structure is elastically unstable at high pressure. Symmetry
preserving relaxation initiated with conventional 20 atom
unit cells in Imma cannot yield I4/mcm. The excited state is
related to the ground state by a shear strain �e5 in the Imma
coordinate frame� that is forced to vanish during the
symmetry-preserving relaxation �Fig. 2�. The elastic instabil-
ity can only be revealed by relaxing in the translationally
unrestricted 2�2�2 supercell which does relax to the cor-
rect ground state �I4/mcm�, or by applying the e5 strain and
breaking the symmetry.

B. Energetics, structure, and equation of state

The energy and enthalpy differences between the ground
state �I4/mcm� and cubic structures increase on compression

�Fig. 3�. The energy difference between these two structures
at V=35 Å3 �28 meV� is considerably smaller than that
found in a recent pseudopotential calculation at the same
volume16 �74 meV�, but agrees well with the previous all
electron result14 �31 meV at V=35.6 Å3�. The greater accu-
racy of the PAW result as compared with all electron calcu-
lations is expected. The smaller energy difference found in a
recent study15 is due to the different exchange-correlation
potential �19 meV, GGA�. The energy difference between
I4/mcm and Imma structure also increases on compression
to 4 meV at V=35 Å3 �Fig. 3�. Imma has the lowest enthalpy
at pressures below 5 GPa, well below the thermodynamic
stability field of perovskite.

The deviation of the ground-state structure from cubic
increases with increasing pressure �Fig. 4�. The lattice pa-
rameter ratio c /�2a increases from 1.013 at zero pressure to
1.020 at 140 GPa. The oxygen coordinate xO=1/4+�x, re-
lated to the octahedral rotation angle � by sin �=4�x, also
increases with increasing pressure and agrees with that found
in the all electron study.14

The equations of state of the three structures Pm3̄m,
Imma, and I4/mcm are nearly identical �Fig. 5�. A fit to
our results with the Birch-Murnaghan finite strain theory30

yields V0=44.0 Å3, K0=252 GPa, K0�=4.1, in excellent

FIG. 3. �Color online� Enthalpy differences between tetragonal

I4/mcm and cubic Pm3̄m �solid�, and between orthorhombic Imma
and cubic �dashed� as a function of pressure. The inset shows the
total energy differences as a function of volume compared with the
I4/mcm-cubic all-electron result �Ref 14�.

FIG. 2. �Color online� Comparison of the tetragonal I4/mcm
structure in the equilibrium state �left� and upon application of
e4=0.02 �middle�, where the strain is referred to the cubic reference
frame �right�. These views are down the tetragonal �and cubic� c
axis and show the q3 rotation in both cases. An additional rotation
about the cubic b axis �q2� is excited by the shear. At right is a

comparison of the Pm3̄m �subscript C�, I4/mcm �T�, and Imma �O�
lattice vectors. A change in c /a in the tetragonal frame corresponds
to an e5 strain in the orthorhombic frame. The orthorhombic lattice

vectors in the cubic frame are aO= �011�, bO= �200�, cO= �011̄�.

FIG. 4. �Color online� Lattice parameter ratios �top� and oxygen
coordinates �bottom� for tetragonal I4/mcm �circles� and ortho-
rhombic Imma �triangles�. The square in the bottom figure shows
the all electron result �Ref. 14�. The oxygen coordinate for I4/mcm
is represented by �x=xO−1/4 and those for Imma by �y =yO and
�z=zO. In the top panel, red symbols show experimental data �Refs.
12 and 13�, and green triangles show the results of static GGA PAW
calculations �Ref. 44�.
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agreement with previous LDA results.16 The value of V0 is
slightly smaller ��3% � and the value of K0 slightly larger
��0−6% � than a range of recent experimental values,12,13,17

consistent with the anticipated effects of phonon excitation.31

The I4/mcm structure has the smallest volume and the
cubic phase has the largest volume at all pressures. These
trends are consistent with the evolution of the enthalpy dif-
ferences �Fig. 3� according to the thermodynamic relation:
��H /�P=�V, where �V is the excess volume of the
distorted phase and P is the pressure.

The parameters of the Landau potential �Eq. �1�� are de-
termined by a series of constrained density functional theory
calculations �Fig. 6�. At V=35 Å3 these show the expected
behavior as a function of q3, with a local maximum at the
origin and a minimum at q3=0.25 similar to that of the
ground state structure. The ground state is slightly lower in
energy and has a slightly larger value of q3 because of cou-
pling to the tetragonal strain. Calculations with q2=q3 show
similar trends although the energy is higher than that of the
tetragonal structure, consistent with the results of our fully
relaxed calculations. A single calculation with q1=q2=q3 has
still higher energy. The values of the parameters are shown in
Table I. The phase transformation to the cubic structure is
more nearly critical than tricritical, since the ratio
�b+b��2 /4a�c+c���1 �Ref. 32�.

C. Elastic constants

The elastic constants of the tetragonal I4/mcm ground
state differ substantially from those of the cubic phase �Fig.

7�. The largest relative difference is in the shear elastic con-
stants, both of which are lower than that of the cubic struc-
ture at all pressures. Near 100 GPa, c44 is softened by 40%
and c66 is softened by 14%. At lower pressures, c66 is soft-
ened more than c44. The longitudinal �c11,c33� and off-
diagonal �c12,c13� elastic constants are split in the lowered
tetragonal symmetry in such a way that their average value is
similar to that of the cubic phase, at least up to 100 GPa. The
Voigt-Reuss-Hill shear modulus33 of the tetragonal structure
is much softer than that of the cubic structure, by 29% at
100 GPa �Fig. 7�. In contrast, the bulk moduli of cubic and
tetragonal structures are nearly identical, reflecting the
negligible effect of distortion on the equation of state.

The Landau potential �Eq. �1�� captures most of the
important differences between cubic and tetragonal elastic
constants �Table II�. The Voigt-Reuss-Hill bulk and shear
moduli of the tetragonal structure agree with the density
functional theory results to 1% and 4%, respectively.
The largest discrepancy is for c66, for which the Landau
potential predicts identically zero softening. To reproduce
the softening of this constant would require a higher order
Landau expansion. All the other elastic constants are
predicted by the Landau potential to be softer in the
low symmetry phase except for c13, which is considerably
stiffer, as also seen in density functional theory. The elastic
constants of the Imma structure computed from the Landau

TABLE I. Landau potential parameters. Units: keV/Å3; volume in Å3 per formula.

V a b b� c c� c� �2 �3

30.0 −0.00579 8.09 0.648 120 10800 −867 −0.0542 −0.0794

35.0 −0.00352 5.43 0.719 85.4 2020 −594 −0.0314 −0.0481

42.5 −0.00219 2.96 1.047 95.4 3030 −421 −0.0138 −0.0155

45.0 −0.00205 2.49 1.108 93.2 3280 −398 −0.0103 −0.00756

FIG. 5. �Color online� Volume difference between tetragonal

I4/mcm and cubic Pm3̄m �solid� and between orthorhombic Imma
and cubic �dashed� as a function of pressure. The inset shows the
equation of state of the three phases which are indistinguishable on
this scale.

FIG. 6. �Color online� Calculations used to determine the value
of the Landau potential parameters at V=35 Å3 with q3�0 �open
circles�, q2=q3�0 �open squares�, and q1=q2=q3�0 �triangle�.
The solid circle represents the ground state. In the calculation
represented by the solid square the atomic positions were fixed at
q2=q3=0.02 and the lattice was allowed to relax to a state of hy-
drostatic stress.

PHASE STABILITY AND SHEAR SOFTENING IN CaSiO3… PHYSICAL REVIEW B 75, 024108 �2007�

024108-5



potential show elastic instability: the value of c55 is negative,
as anticipated from crystallographic relationships �Fig. 2�.

Temperature softens the shear modulus of the tetragonal
phase still further with respect to the cubic phase, while the
difference in the bulk modulus between the two phases is
unaffected �Fig. 8�. Landau theory does not permit prediction
of the temperature dependence of the bare elastic constants,
i.e., those of the cubic phase. We assume, in the absence of
experimental measurements, that this dependence is the same
as that for MgSiO3 perovskite at a similar pressure:34

d� /dT=−21 MPa K−1 and dKS /dT=−14 MPa K−1, where �
is the shear modulus and KS is the adiabatic bulk modulus.
These values are similar to an independent estimate for
CaSiO3 perovksite based on systematic relations35

�−21 MPa K−1 and −13 MPa K−1, respectively�.

D. Phase stability

The temperature of the tetragonal to cubic phase transition
varies from 1150 K near 0 GPa, to 2450 K at 136 GPa, cor-
responding to the base of Earth’s mantle �Fig. 9�. These val-
ues are computed from Eq. �6� with the cubic-tetragonal en-
thalpy difference from density functional theory �Fig. 3� and
a constant value s=0.071 �see discussion in Sec. II and Ref.
14�. The tetragonal-cubic phase boundary lies somewhat be-

low the earlier LAPW prediction14 of 2200 K at 80 GPa. The
LAPW value is presumably more accurate and reflects the
larger energy difference between tetragonal and cubic phases
than in the PAW calculations. We may estimate the influence
of approximations to the exchange-correlation potential in
the same spirit: the temperature of the GGA phase boundary
is assumed to scale with the difference in the tetragonal-
cubic energy contrast between LDA �this work� and GGA.15

The tetragonal to orthorhombic phase boundary is
determined by computing the Gibbs free energy of the two
phases according to Eq. �1� as a function of temperature and
at a series of pressures by interpolating the coefficients of
Table I. These calculations show that the Clapeyron slope is
negative and that the tetragonal phase is stable at higher
temperature than the orthorhombic phase.

The predicted Clapeyron slope of the tetragonal to cubic
transition agrees with perovskite systematics.36 In those per-
ovskites for which the B-O bond is stiffer than the A-O bond,
the Clapeyron slope is invariably positive for transitions in-
volving octahedral tilting. The sense of curvature of the
boundary is also readily understood: the volume contrast be-
tween tetragonal and cubic increases on compression �Fig.

FIG. 7. �Color online� Elastic moduli of �symbols and solid line�
I4/mcm and �dashed lines� Pm3̄m structures. The identity of the
moduli in the I4/mcm structure are indicated along the right-hand
axis. The cubic moduli are �dash-dot� c11, �long-dashed� c12, �short-
dashed� c44. The inset shows the bulk �upper curve� and shear
�lower curves� for cubic �dashed� and tetragonal �solid� structures.
The bulk moduli are coincident on this scale. The bulk modulus is
compared �symbol� with the experimental value from the equation
of state �Refs. 13 and 17�.

TABLE II. Elastic constants at V=35 Å3.

K � c11 c33 c12 c13 c44 c66

Cubic 614 353 1057 1057 393 393 367 367

Tetragonal 606 251 1036 908 315 462 203 301

Tetragonal-Landau 614 262 1017 898 353 472 216 367

FIG. 8. �Color online� Voigt-Reuss-Hill bulk �top, right-hand
axis� and shear �bottom, left-hand axis� moduli at 100 GPa as pre-
dicted by the Landau potential �bold dashed lines� and including the
temperature dependence of the bare elastic constants �bold solid�.
Square and circle at T=0 are the bulk and shear moduli, respec-
tively, computed directly from the density functional theory results
for the elastic constant tensor as presented in Fig. 7. Corresponding
results from a recent molecular dynamics simulation at 2000 K are
shown as down- and up-pointing triangles for bulk and shear
moduli, respectively �Ref. 43�, and are placed on the temperature
axis assuming the LAPW value �Ref. 14� for the transition tempera-
ture TC=2200 K. Thin solid lines represent the bulk �upper� and
shear �lower� modulus of the Earth �Ref. 58� at 100 GPa �2270 km
depth�.
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5�, which requires the dT /dP slope of the phase boundary
also to increase according to the Claussius-Clapeyron equa-
tion. The tetragonal-cubic phase boundary in SrTiO3 shows
the same sense of curvature.37 The negative slope of the te-
tragonal to orthorhombic boundary is caused by the larger
volume of the low symmetry phase: while the orthorhombic
phase shows rotations about two axes, as opposed to only
one in the tetragonal phase, its volume is larger because the
magnitude of rotation is less.

IV. DISCUSSION

One way to understand the origin of large shear softening
in the I4/mcm phase is to examine the influence of strain on
the structure �Fig. 2�. Application of the e4 strain lowers the
symmetry and excites an additional octahedral rotation, q2
that is not present in the ground state structure. This addi-
tional octahedral rotation softens the elastic response. The
large shear softening can also be understood in terms of the
Landau potential. The analytical expression for c44 in the
limit c=c�=c�=0 is7

c44 = c44
0 −

�3
2

12�2
2/�c11

0 − c12
0 � − b�

. �8�

The �3 coupling term relates e4 to the octahedral rotation
present in the ground state q3 and an additional rotation q2

that is excited by strain. The results of the mean field theory
are thus in concert with our analysis of the strained structure.

The remarkable elastic properties of the I4/mcm phase
highlight the apparent discrepancy between theoretically pre-
dicted and experimentally observed structures. Our results
suggest a resolution. The experimental identification rests on
the observation that the �200�C diffraction line, where the
subscript C indicates reference to cubic axes, is split into two
peaks such that the one at larger d-spacing is more intense
�Ref. 12�. The key is to recognize that the experiments are
under nonhydrostatic stress, even with the use of quasihydro-
static pressure media and annealing. The spontaneous strain
of the ferroelastic ground state means that the elastic strain
energy is minimized by orienting the long axis �c� normal to
the load axis. This pattern of preferred orientation, combined
with the along axis scattering geometry, would produce a
more intense reflection from the larger d-spacing c axis than
from the a axis, in agreement with the pattern of relative
intensities observed. Strong preferred orientation of this kind
would not require large stresses to develop and could be
formed during the cubic-tetragonal transition, or by migra-
tion of domain walls after the formation of the tetragonal
phase.38 The preferred orientation is likely to be reproducible
as temperature is cycled back and forth through the transi-
tion. Nonhydrostatic stress may influence the critical
temperature.39

In order to test this hypothesis we simulate the x-ray dif-
fraction pattern including the effect of preferred orientation
�Fig. 10�. The theoretical structure is specified by the Landau
potential �Eq. �1�� with T /TC=0.25, which corresponds to
T=300 K at the experimental volume �42.4 Å3�. The influ-
ence of temperature is to diminish the distortion as compared
with the static result, yielding q3=0.0229 and c /�2a
=1.00937. Using the March-Dollase equation40,41 along
�001� with a coefficient 0.68, matches the experimental pat-
tern very well �Table III�, with the largest discrepancy in
d-spacings being 0.002 Å and the largest disagreement in
relative intensities being 5%. In particular the relative inten-
sities of the �200�C doublet �tetragonal 004 and 220� are well
reproduced, as is the apparent lack of splitting �within ex-
perimental resolution� of the �110�C doublet �tetragonal 112
and 200�. Since the spontaneous strain decreases linearly
with temperature, finite experimental resolution may also ex-
plain undetected �200�C peak splitting at temperatures as low
as 580 K in the experiments of Ref. 42.

Recent molecular dynamics simulations disagree with this
picture:43,44 Imma is found to be the stable structure at am-
bient temperature, requiring a phase transition at still lower
temperatures to the tetragonal ground state. This is an un-
likely scenario for two reasons. First, while I4/mcm to Imma
transitions are common in perovskites, the higher tempera-
ture phase is invariably tetragonal.45–50 Second, the thermal
energy available to drive the transition appears to be too
small to overcome the I4/mcm-Imma enthalpy difference.
Whereas in Ref. 44 the transition temperature was estimated
as kBTtr=�H�I4/mcm-Imma�, the displacive limit and the
phonon spectrum of CaSiO3 perovskite require the thermal
energy substantially to exceed the enthalpy difference for the
transition to proceed �Eq. �6��.

FIG. 9. �Color� Predicted CaSiO3 phase diagram showing the
tetragonal to cubic phase boundary in LDA �thick blue line� and
GGA �thin blue�. Phase boundaries are dashed within the thermo-
dynamic stability field of nonperovskite structured phases as indi-
cated by the black shading �Ref. 59�. The orthorhombic to tetrago-
nal transition is indicated by the nearly vertical dashed lines.
Location of the transition to the cubic phase from molecular dynam-
ics simulations are shown in yellow: dot-dashed �Ref. 44� and
dashed �Ref. 51�. LAPW results for the tetragonal to cubic transi-
tion �Ref. 14� are shown as crossed squares. Experimental data for
the tetragonal phase in blue and cubic phase in red �diamonds �Ref.
12�, triangles �Ref. 13�, circles �Ref. 42��. Squares are experimental
results for a sample with 5 wt % Al2O3 �Ref. 42�: green: ortho-
rhombic, red: cubic. The red curve is the melting line �Ref. 60�. For
comparison the average temperature in the Earth at 100 GPa
�2270 km depth� is 2300 K �Ref. 61�, with lateral variations of
several hundred degrees expected.
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It seems more likely that the observation of an orthorhom-
bic phase in the molecular dynamics simulations is an arti-
fact of finite reciprocal space sampling. The electronic struc-
ture and forces are computed at the Gamma point only in a
nonequant 80-atom supercell. The Brillouin zone is sampled

anisotropically, which leads to an artificial deviatoric stress.44

A consequence of this anisotropy is that a static structural
relaxation with the same computational parameters produces
orthorhombic Imma as the ground state, in violation of fully
converged calculations. It is clear then that insufficient sam-
pling of the Brillouin zone biases the molecular dynamics
simulations towards orthorhombic symmetry. Moreover, it is
possible that this bias accounts entirely for the appearance of
an orthorhombic phase in the molecular dynamics simula-
tions. These limitations are likely to influence the computa-
tion of elastic constants in molecular dynamics simulations
as well51 and may account for the disagreement with our
predicted high temperature elastic moduli �Fig. 8�.

The properties of the I4/mcm phase have important geo-
physical consequences: �i� The shear and bulk moduli are
very different from those of the Earth �Fig. 8�. This means
that the Ca content of the lower mantle should be detectable
by seismological means, allowing tests of fundamental hy-
potheses concerning the chemical evolution of the Earth. �ii�

FIG. 10. Simulated x-ray diffraction pattern of the predicted 300 K I4/mcm structure calculated with PowderCell �Ref. 62�: �a� without
any preferred orientation �b� with preferred orientation as specified by the March-Dollase equation �Refs. 40 and 41� along �001� with a
coefficient of 0.68 compared with �c� experimental data at the same volume �25.2 GPa� �Ref. 12�. Peaks are identified in the tetragonal frame
in the upper figure and in the cubic frame �subscript C� in the lower figure.

TABLE III. Comparison of experimental x-ray diffraction pat-
tern at P=25.2 GPa, V=42.4 Å, T=300 K �Ref. 12� with that cal-
culated theoretically at the same conditions: space group I4/mcm,
a=4.9145 Å, c=7.0153 Å, �001� March-Dollase coefficient=0.68.

hkl d theory �Å� d exp. �Å� Irel theory Irel exp.

112 2.469 2.468 77 82

200 2.457 — 22 —

202 2.013 2.015 41 40

004 1.754 1.752 100 100

220 1.738 1.740 33 36
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According to our results, the I4/mcm to cubic transition
should occur at pressure-temperature conditions typical of
slightly colder than average lower mantle. The large contrast
in elasticity between these phases, should be observable as
scattering of seismic energy.14 Indeed, there have been per-
sistent reports of lower mantle scatterers at depths where no
other phase transformations are expected and that have never
been satisfyingly explained.52,53 �iii� The phase transition
would produce an unusual signature in the lateral variations
of seismic wavespeeds in the mantle. With an increase in
temperature at constant depth, the shear wave velocity would
increase across the transition, while the bulk sound velocity
would decrease. This type of anticorrelation between shear
and bulk wavespeeds is seen in several seismological Earth
models in the lower mantle.54

V. CONCLUSIONS

Crystallographically subtle distortions at high pressure
can have important geophysical consequences and may
reveal features of Earth’s deep interior. A slight tetragonal
distortion in CaSiO3 perovksite produces a large elastic
anomaly that may be seismically visible in radially averaged

structure, in scattering, and in lateral variations in
wavespeeds. This should provide additional motivation for
the first experimental measurement of the elastic constants of
CaSiO3 perovskite, which is challenging because the phase is
unquenchable.55 Indeed, our predicted shear modulus of
CaSiO3 perovskite is much lower than previous estimates
and demands a reexamination of the signature of this phase
in seismological observations.10 Because the large shear soft-
ening that we find is associated with a phase transformation,
experimental tests of our predicted phase diagram also be-
come very important. We have offered a reinterpretation of
the experimental x-ray diffraction pattern that reconciles
these data with the prediction of density functional theory
that I4/mcm is the low temperature structure.
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