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Rings, topology, and the density of tectosilicates
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ABSTRACT

A review of density data for tecto silicates shows that variations in density within a single
framework type are typically an order of magnitude smaller than the twofold variations
among different framework types. To help explain this large range of densities, we have
analyzed the geometric and topologic properties of different frameworks. We used the
geometry and statistics of clusters to construct a predictive model for the framework
density of tectosilicates. Ring statistics and geometries, together with a simple theory of
the effects of ring formation on framework density, lead to the definition of a framework-
specific characteristic ring size. We show that this characteristic ring size increases with
increasing framework density.

INTRODUCTION ometry and topology of framework structures that can
explain this remarkable variation in density.

The fact that local geometries [as measured by (Si,Al)-O
and (Si,AI)-(Si,Al) distances and coordination numbers]
in different framework structures are nearly identical
makes the wide range of observed densities even more
remarkable. This has led several authors to examine the
relationship between density and topological elements of
frameworks such as clusters and rings. For instance, a
correlation between cluster populations and density has
been observed (Brunner, 1979; Akporiaye and Price, 1989)
and a relationship between the smallest ring in a frame-
work and its density has recently been noted (Liebau,
1988; Brunner and Meier, 1989).

Here we combine topologic and geometric measures of
clusters and rings to examine more closely their relation-
ship to density. We first review the concept of framework
density and describe in some detail its wide variability
among tectosilicates. We then describe the notion of a
cluster and present a simple predictive model that relates
the topology and geometry of clusters to framework den-
sity. Finally, we critically examine the definition of a ring
and introduce a theory for the effect of ring formation on
cluster size and, thus, framework density.

Tectosilicates, including the ubiquitous silica poly-
morphs and feldspars as well as feldspathoids, scapolites,
and the technologically important zeolites, are the most
abundant minerals in the Earth's crust (see, e.g., Hurlbut
and Klein, 1977). Although the few hundred distinct spe-
cies vary widely in color, habit, composition, and other
physical properties, we focus here on how variations in
density are controlled by differences in the underlying
framework structure, the continuous three-dimensional
network of comer-sharing Si04 and AI04 tetrahedra com-
mon to all tectosilicates. In addition to its fundamental
crystallographic significance, the relationship between
density and framework structure is central to the design
and synthesis of new low-density zeolites important to
industry (Smith and Dytrych, 1984; Davis et aI., 1988;
Brunner and Meier, 1989) and may also elucidate the
relation between the highly variable framework struc-
tures and compression of silicate liquids (Stixrude and
Bukowinski, 1989).

Although the total number of tecto silicate species is
large, many have topologically identical frameworks, and
only about 80 distinct underlying framework structures
have been observed in naturally occurring and synthetic
specimens (Meier and Olson, 1988; Smith, 1977, 1978, FRAMEWORKS AND FRAMEWORK DENSITY

1979; Smith and Bennett, 1981, 1984). The variation in Framework density (FD), used by many previous au-
density among different types of frameworks is much thors in studies of tecto silicates (e.g., Brunner and Meier,
larger than variations within a single framework type. For 1989), is defined as the number of tetrahedrally coordi-
example, the differences in molar volume among the nated atoms, or T atoms (usually Si or AI), per unit vol-
myriad feldspar species are more than an order of mag- ume. This is a convenient measure, since it allows us to
nitude smaller than the difference between the molar vol- directly compare tecto silicates with different chemical
ume of the densest known framework, coesite, and that compositions. The wide range of FD for the framework
of the sparsest, faujasite, which differ in density by a factor types considered in this study is shown in Table 1. AI-
of two, whereas other theoretically proposed structures though many species may share a single framework type,
are less dense by a factor of three than coesite (Meier, the variability of FD within a single framework type is
1986). The goal of this paper is a description of the ge- much less than the total variability in FD. For example,
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TABLE1. Tectosilicate framework densities

Framework FD L FD* Reference

ZSM-18 14.27 3.090 14.13 Lawton and Rohrbaugh
(1990)

Linde-A 12.88 3.201 14.17 Gramlich and Meier (1970)
Rho 14.17 3.101 14.19 Robson et al. (1973)
Gmelinite 14.59 3.131 15.04 Fischer (1966)
Chabazite 14.47 3.141 15.06 Calligaris et al. (1982)
ZK-5 14.68 3.128 15.09 Meier and Kokotailo (1965)
Offretite 15.52 3.131 16.00 Gard and Tait (1972)
Erionite 15.64 3.136 16.19 Staples and Gard (1959)
Levyne 15.23 3.177 16.39 Merlino et al. (1975)
Linde-L 16.37 3.104 16.43 Barrer and Villiger (1969)
Phillipsite 15.82 3.144 16.50 Rinaldi et al. (1974)
Stilbite 16.29 3.125 16.68 Galli (1971)
Gismondine 15.29 3.197 16.77 Fischer (1963)
Heulandite 17.12 3.115 17.36 Alberti and Vezzalini

(1983)
Laumontite 17.78 3.084 17.51 Bartl and Fischer (1967)
Mordenite 17.03 3.130 17.53 Meier (1961)
Losod 15.78 3.221 17.70 Sieber and Meier (1974)
Sodalite 17.20 3.136 17.81 Lans and Schulz (1967)
Cancrinite 16.58 3.179 17.87 Jarchow (1965)
Natrolite 17.73 3.111 17.92 Pechar et al. (1983)
Dachiardite 17.34 3.148 18.16 Gottardi and Meier (1963)
Epistilbite 17.65 3.133 18.22 Perotta (1967)
Dodecasil 18.47 3.111 18.68 Gerke and Gies (1984)
Melanophlogite 18.96 3.124 19.41 Gies (1983)
ZSM-22 19.73 3.092 19.57 Kokotailo et al. (1985)
ZSM-23 20.00 3.081 19.64 Rohrman et al. (1985)
ZSM-48 19.92 3.091 19.75 Schlenker et al. (1985)
Bikitaite 20.29 3.100 20.29 Kocman et al. (1974)
Paracelsian 21.45 3.090 21.24 Wyckoff (1982)
Tridymite 22.21 3.081 21.81 Wyckoff (1982)
Feldspar 22.25 3.096 22.16 Colville and Ribbe (1968)
CaGa204 21.49 3.131 22.14 Deiseroth and Muller-

Buschbaum (1973)
Cristobalite 23.28 3.074 22.70 Peacor (1973)
CaAI2Si2Os 23.36 3.075 22.80 Takeuchi et al. (1973)
Marialite 21.75 3.141 22.63 Levien and Papike (1976)
Banalsite 22.52 3.128 23.14 Haga (1973)
Cordierite 23.15 3.146 24.20 Cohen et al. (1977)
Quartz 26.52 3.057 25.43 Levien et al. (1980)
Coesite 29.28 3.086 28.87 Geisinger et al. (1987)

Note: The mineral chosen to represent each framework type is listed
along with the reference to its structure. For alternative species see com-
pilations by Meier and Olson (1988), Smith (1977, 1978, 1979), and Smith
and Bennett (1981,1984). L is the average T-T distance. Units of FD and
FD* are nm-3 and L is in angstroms. FD* is defined by FD* .= FD(UI,)3,
where the standard T-T distance 1, is chosen to be 3.1 A.
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it has long been recognized that the FD of feldspars varies
inversely with the ionic radius of the interstitial cation
(see the review by Smith and Brown, 1988). However,
Figure 1 shows that this variation, along with changes in
FD due to differences in AI-Si ordering and relative con-
centration, is less than 12% compared with the twofold
total variability among different framework types. Thus,
a description of the geometric and topological variations
among different framework types on which FD depends
most strongly is central to an understanding of the den-
sities of tectosilicates.

The measure of framework density suggests a simpli-
fied conceptual picture of tecto silicate structure that will
be useful in characterizing different framework types (see
also Smith, 1982, p. 161fI). Since framework density de-
pends only on the number of T atoms, we form the sim-
plified structure by removing all 0 atoms and interstitial
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Fig. 1. Summary of density data for the feldspar framework
type, plotted as the volume per Tatom vs. the average radius
cubed of the interstitial cations, taken from Shannon (1976). The
alkali feldspar series is plotted as circles and the alkaline-earth
series as squares. End-member compositions are indicated by
enlarged symbols. The data from the Ca-Sr-Ba series are from
Bambauer and Nager (1981), the Na-K series from Kroll et al.
(1986), and the K-Rb series from McMillan et al. (1980). The
difference between high (AI-Si disordered) and low (AI-Si or-
dered) structural states (not shown) is comparable to the size of
the larger symbols. The total variation in framework volume (or
framework density) shown is less than 120/0, small compared
with the variation among different framework types (Fig. 3).

5

cations from the structure. Then, since in the actual struc-
ture each T atom is bonded to four 0 atoms, each of
which in turn is bonded to one other T atom, we think
of T atoms that share a common 0 as being linked to
one another in the simplified structure. The relationship
between simplified and actual structures is illustrated
schematically in Figure 2. Since all of the properties con-
sidered here, including framework density and measures
of cluster and ring size, are identical in both the simplified
and actual structures, the two structural representations
are completely equivalent for the purposes of this paper.

This conceptual picture of tecto silicate structure can be
used to examine the relationship between framework
density and measures of local geometry, such as bond
length and coordination number. In many crystal struc-
tures, variations in these quantities can be related directly
to variations in density. For example, the densities of
many materials with simple structures, such as metals,
can be characterized entirely by a packing fraction of at-
oms that depends mostly on interatomic distance and
coordination number (e.g., Kittel, 1976). These concepts
can sometimes be fruitfully applied to silicates: the dif-
ference in density between quartz and stishovite can be
attributed to the increase from tetrahedral to octahedral
coordination (Stishov and Popova, 1961) and the in-
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Fig. 2. Relationship between actual tecto silicate structure and
the simplified conceptual structure used in this paper. On the
left is the bitetrahedron, the largest structural unit shared by all
tectosilicates, consisting of two T atoms (solid circles) surround-
ed by their coordinating 0 atoms (open circles). A portion of the
sodalite structure, together with its simplified version (far right),
derived by eliminating 0 atoms and interstitial cations and draw-
ing links between T atoms that share a common O.

crease with pressure in the density of quartz can be at-
tributed to a decrease in T-T distance (Stixrude and Bu-
kowinski, 1988, 1989). However, the variability of local
geometries among different framework types is insuffi-
cient to explain the observed variability of FD among
tectosilicates. Applying our simplified conceptual picture
of tecto silicate structure, we see that eachT atom is al-
ways linked to four other T atoms, and thus all frame-
work structures are fourfold coordinated. Further, the
variations in T -T distance, although inversely related to
FD, are insufficient to explain the total variability of FD.
This is illustrated in Figure 3, which shows that the vari-
ability of FD* (FD scaled to a standard T-T distance) is
90% of the variability of FD itself. The inability of local
geometries to explain framework densities provides the
primary motivation for the examination of larger scale
framework elements such as clusters and rings.

CLUSTERS

Clusters in tecto silicate framework structures are the
physical expression of the coordination sequences first
applied extensively to tecto silicates by Meier and Moeck
(1979) and Brunner (1979). A cluster consists of a cen-
tral T atom, the four T atoms linked to it, all the T
atoms linked to these four and so on. The four T atoms
linked to the central T atom are referred to as the first
linked neighbors. All the T atoms linked to the first linked
neighbors (except of course for the central T atom) are
referred to as second linked neighbors. All the T atoms
linked to the second linked neigh bors (except the first
linked neighbors) are referred to as third linked neighbors
and so on. More specifically, for a cluster of size Q with
numbers of first through Qth linked neighbors Ni, N2, N3,
. . . , NQ, the total number of T atoms in the cluster MQ
is given by:

Q

MQ = 1 + ~ Ni.
i=1
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Fig. 3. The framework density of all the frameworks listed
in Table 1 plotted against their framework density scaled to a
standard T -T distance (Ls = 3.1 A). This shows the wide vari-
ability of framework density among tecto silicates and the in-
ability of variations in T -T distance (L) to account for this
varia bili ty .

As an illustrative example, the number of Qth linked
neighbors for a cluster in a Bethe lattice (Bethe, 1935;
Domb, 1960) with a coordination number of four (Fig.
4) is given by

NQ = 4 X 3Q-1 (2)

and the total number of T atoms in such a cluster of size
Q is given by:

Q-l
MQ = 1 + 4 x ~ 3i = 2 X

3Q - 1. (3)
i=O

(1)

This particularly simple framework, sometimes referred
to as a tree, will prove useful when we discuss rings be-
low. In addition to NQ and MQ we have computed DQ,
the average distance to the Qth linked neighbor shell for
each of the framework structures considered in this study
up to Q = 6. Some of the results of these computations,
discussed in detail in Appendix 1, are listed in Tables 2
and 3.

In order to relate clusters to tecto silicate density, we
construct a simple model that allows the calculation of
framework density from the number ofT atoms in a clus-
ter (NQ and MQ) and the spatial dimensions of the cluster
(DQ). In this model, we consider a framework to be com-
posed of many clusters of a given size Q. Although one
may divide the framework into clusters in such a way
that the overlap among clusters is minimized, in general,
adjacent clusters will share some number ofT atoms. We
assume that only the outermost T atoms, those in the
Qth linked neighbor shell, are shared and that each of



TABLE 2. Cluster statistics

Framework N1 N2 N3 N4 Ns Na

ZSM-18 4.000 9.529 17.294 29.294 45.176 65.412
Linde-A 4.000 9.000 17.000 28.000 42.000 60.000
Rho 4.000 9.000 17.000 28.000 42.000 60.000
Gmelinite 4.000 9.000 17.000 29.000 45.000 65.000
Chabazite 4.000 9.000 17.000 29.000 45.000 64.000
ZK-5 4.000 9.000 17.000 29.000 45.000 64.000
Offretite 4.000 9.333 18.000 30.667 48.667 72.000
Erionite 4.000 9.333 18.000 30.667 48.667 71.333
Levyne 4.000 9.333 18.000 30.667 48.000 68.667
Linde-L 4.000 9.333 18.333 31.000 47.000 68.000
Phillipsite 4.000 9.000 18.000 32.000 49.000 69.500
Stilbite 4.000 10.222 19.111 34.667 57.111 80.000
Gismondine 4.000 9.000 18.000 32.000 48.000 67.000
Heulandite 4.000 10.667 20.444 36.000 59.333 85.333
Laumontite 4.000 10.000 19.333 32.667 52.000 74.000
Mordenite 4.000 11.667 22.000 38.000 60.333 88.000
Losod 4.000 10.000 20.000 34.000 53.000 76.000
Sodalite 4.000 10.000 20.000 34.000 52.000 74.000
Cancrinite 4.000 10.000 20.000 34.000 54.000 78.000
Natrolite 4.000 8.800 18.800 35.200 52.800 75.600
Dachiardite 4.000 11.667 22.000 38.667 63.000 93.000
Epistilbite 4.000 11.667 22.000 39.333 64.333 92.333
Dodecasil 4.000 11.647 23.824 40.588 64.000 92.353
Melano-

phlogite 4.000 12.000 24.783 42.261 67.652 98.000
ZSM-22 4.000 12.000 23.000 41 .000 64.667 94.333
ZSM-23 4.000 12.000 23.000 41 .167 65.000 95.167
ZSM-48 4.000 11.667 23.833 40.667 64.333 93.667
Bikitaite 4.000 12.000 24.000 42.667 69.333 98.667
Paracelsian 4.000 10.000 21.000 37.000 57.000 81.000
Tridymite 4.000 12.000 25.000 44.000 67.000 96.000
Feldspar 4.000 10.000 21.000 38.000 57.000 81.000
CaGa204 4.000 11.000 24.000 41.000 63.000 91 .000
Cristobalite 4.000 12.000 24.000 42.000 64.000 92.000
CaAI2Si2Oa 4.000 11.000 24.000 41.000 62.000 90.000
Marialite 4.000 11.000 22.000 41.000 64.667 92.000
Banalsite 4.000 11.000 23.000 42.000 66.000 97.000
Cordierite 4.000 10.667 23.333 44.667 66.000 102.000
Quartz 4.000 12.000 30.000 52.000 80.000 116.000
Coesite 4.000 10.000 22.500 47.000 83.000 126.000

Note: No is the mean number of neighbors in the Oth linked neighbor
shell of a single T atom averaged over all T atoms in the structure.
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Fig. 4. Bethe lattice complete through the third linked neigh-
bor shell.

these N Qatoms is shared on average between two clusters.
If we also approximate the shape of each cluster as a
sphere, the calculated framework density for our model is

where

In order to assess the validity of this simple model, we
compare FD calculated from Equation 4, using Q = 6, to
the actual FD for all the framework structures listed in
Table 1. Figure 5 shows the excellent agreement between
Equation 4 and actual framework densities: the root-
mean-square deviation between model and data is 3%.
We chose Q = 6 since this is the smallest cluster size that
contains all the fundamental rings of the framework
structures examined here (see Table 4 and discussion of
rings below). For much larger Q, the approximation that
only atoms in the Qth shell are shared will become less
accurate, whereas for a much smaller Q, different frame-
works become indistinct: in the limit of Q = 1, all frame-
works have NQ = 4. Nevertheless, the calculated FD val-
ues are insensitive to small changes in Q: for Q = 5, the
root-mean-square deviation between calculated and ac-
tual FD is 4%. Thus, although the assumptions upon
which the model is based can only be approximately cor-
rect, the model is remarkably accurate in predicting ac-
tual framework densities from the properties of micro-
scopic clusters of T atoms, suggesting a close association
between the structure of clusters and that of the entire
framework.

Further examination of the properties of clusters shows
that the variability of topological measures (M Q,NQ)'rather
than geometric measures (DQ), of cluster size are primar-

(4)

(5)

ily responsible for the observed variation in framework
density. There is, for example, a good correlation between
cluster population (M6) and framework density (Fig. 6).
Similar correlations between NQ and FD have been ob-
served by several previous authors using slightly different
data sets (Brunner, 1979; Akporiaye and Price, 1989). In
contrast, Figure 7 shows that the geometry of clusters, as
measured by DQ, is nearly independent offramework type.
The standard deviation of D6 for all framework structures
is only 10%. An explanation of variations in the topolog-
ical size of clusters, and thus framework density, is there-
fore of primary importance. In the next section we show
that variations in ring statistics provide this explanation.

RINGS

Although a lucid discussion of the possibility for wide
structural variation in tetrahedral frameworks appeared
as early as 1932 in Zachariasen's pioneering work on
glasses, the systematic description of the topology of dif-
ferent framework types is more recent, apparently origi-
nating with Bernal's (1964) suggestion that rings, rather
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TABLE3. Cluster geometry

Framework D1 D2 D3 D4 Ds De 28 CLUSTER MODEL
ZSM-18 3.090 5.082 7.210 9.350 11.398 13.470 FOR FDLinde-A 3.201 5.307 7.504 9.504 11.524 13.609
Rho 3.101 5.215 7.286 9.217 11.216 13.179
Gmelinite 3.131 5.210 7.251 9.231 11.222 13.228

24
Chabazite 3.141 5.243 7.332 9.310 11.267 13.223
ZK-5 3.128 5.195 7.229 9.235 11.195 13.114 ,.-...
Offretite 3.131 5.176 7.173 9.187 11.240 13.254 ",I
Erionite 3.136 5.176 7.168 9.163 11.200 13.187 E .
Levyne 3.177 5.269 7.274 9.231 11.221 13.223

520
.

Linde-L 3.104 5.089 6.936 8.810 10.893 13.024
Phillipsite 3.144 5.237 7.279 9.121 11.062 13.173 u ....J

Stilbite 3.125 5.059 7.236 9.359 11 .332 13.388 ~u
Gismondine 3.197 5.330 7.377 9.238 11.213 13.373 0

Heulandite 3.115 5.058 7.231 9.324 11 .272 13.399 u..

Laumontite 3.084 5.096 6.993 9.010 10.946 12.860 16 .Mordenite 3.130 5.067 7.325 9.403 11.507 13.682
Losod 3.221 5.350 7.355 9.356 11.420 13.508 .
Sodalite 3.136 5.232 7.132 9.084 11.050 13.089
Cancrinite 3.179 5.240 7.222 9.209 11.285 13.306
Natrolite 3.111 5.169 7.109 8.726 10.828 12.996
Dachiardite 3.148 5.095 7.353 9.441 11.506 13.685 16 20 24 28
Epistilbite 3.133 5.071 7.322 9.396 11.419 13.646 FD (nm -3)

Dodecasil 3.111 5.087 7.192 9.248 11.390 13.549
Melanophlogite 3.124 5.090 7.222 9.284 11.382 13.623 Fig. 5. Illustration of the excellent agreement between ob-
ZSM-22 3.092 4.999 7.040 9.097 11.225 13.335 served framework density and that predicted by the simple mod-
ZSM-23 3.081 4.978 7.007 9.061 11.184 13.274

el relating cluster density to macroscopic density, which is de-
ZSM-48 3.091 5.026 6.950 9.098 11.151 13.301
Bikitaite 3.100 5.028 7.091 9.126 11.188 13.423 scribed in the text (Eq. 4).
Paracelsian 3.090 5.031 6.834 8.594 10.496 12.503
Tridymite 3.081 5.031 6.845 8.908 10.921 13.027
Feldspar 3.096 5.030 6.841 8.595 10.504 12.577 the set of six smallest rings, one through each of the six
CaGa204 3.131 5.110 6.893 8.844 10.889 12.922
Cristobalite 3.074 4.978 6.732 8.740 10.666 12.728 pairs of T -T links emanating from a T atom, as funda-
CaAI2Si2Oa 3.075 4.984 6.723 8.593 10.569 12.557 mental. This definition, however, leads to ambiguities in
Marialite 3.141 5.043 7.003 8.748 10.776 12.926 ring counting (Smith, 1978) and ignores the common oc-Banalsite 3.128 5.100 6.926 8.829 10.807 12.980
Cordierite 3.146 5.061 6.805 8.585 10.810 12.770 currence of more than one ring of the same size passing
Quartz 3.057 4.953 6.710 8.689 10.867 12.931 through a single pair ofT- T links (Belch and Rice, 1987).
Coesite 3.086 5.037 6.822 8.402 10.176 12.405

On a practical level, many different framework structures
Note: Do is the mean distance from a single T atom to neighbors in its

Oth linked neighbor shell averaged over all T atoms in the structure.

250 . . .
",. . .

CD .~.
. . ..200 .. .,

....
... .

150
12 16 20 24 28

FD (nm -3)

than the coordination numbers so profitably employed in
describing ionic and metallic materials, should be the pri-
mary topological measure of covalently bonded struc-
tures. Thus, the characterization of physical models of
silica glass built shortly thereafter (Evans and King, 1966;
Bell and Dean, 1966) included the first complete mea-
surements of the ring statistics of a tecto silicate structure
(King, 1967). However, the definition of a ring used in
these early papers, very similar to that used by Smith
(1977, 1978, 1979) and Smith and Bennett (1981, 1984)
in their more recent work on the derivation of crystalline
tecto silicate structures, differs from the one used in the
present study; a detailed discussion of the definition of a
ring is therefore required.

In the most general sense, a ring may be taken as any
returning path in the framework. However, this is not a
very useful definition since there is an infinite number of
such rings, and the number of rings of a given size in-
creases without limit with the size of the ring. Thus for
practical and aesthetic reasons, identification of a small
set of rings as being somehow fundamental is desirable.
The older definition, first given by King (1967), counted

300
TECTOSILICATES .

CLUSTER TOPOLOGY
.

Fig. 6. Plot showing the good correlation (r = 0.88) between
the cluster population (M6) and framework density, indicating
that most of the variation in cluster density is accounted for by
changes in the number of T atoms in a cluster rather than by
changes in geometric size.
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CLUSTER GEOMETRY t

12

Fig. 7. Summary of cluster geometry in tectosilicates, show-
ing the average distance to each of the first six linked neighbor
shells for all frameworks listed in Table 1. The horizontal width
of the symbols shown for each DQ (pairs of Gaussiancurves
drawn out to :t twice the standard deviation) is proportional to
the probability of finding a framework with a particular value of
DQ. The observed DQ values are compared with two limiting
cases: (1) DQ expected if every atom in the Qth linked neighbor
shell closed a planar ring of size 2Q, and (2) DQexpected if every
atom in the Qth shell lay at the end of a chain of length Q with
T-T -Tangles equal to the ideal tetrahedral angle of 109.47°. The
total variation in DQ values is small compared with variations
in cluster density (Fig. 6) and compared with the two limiting
cases shown, indicating that cluster geometry is approximately
independent of framework type.

have identical ring statistics by this definition (Smith,
1977), suggesting that a new definition would be useful.
We find the simplest and most appealing definition of a
fundamental ring, introduced by Marians and Hobbs
(1989b), to be any ring that cannot be divided into two
smaller ones. It is free of the ambiguities of the older
definition and results in a much greater variability of ring
statistics among different framework structures. Some of
the differences between this and the older definition of
fundamental rings are illustrated schematically in Fig-
ure 8.

We used this new definition of a fundamental ring and
an algorithm described in Appendix 1 to determine the
ring statistics for all the framework structures examined
in this study (see Table 4). These are the first measure-
ments of ring statistics of tectosilicates, other than the
silica polymorphs (Marians and Hobbs, 1989b), that are
based on the new definition.

_To analyze the ring statistics of tecto silicates, we intro-
duce a simple theory of the effects of ring formation on
framework density. We shall argue that, in general, ring
formation tends to decrease framework density, and that
forming a small ring affects the density much more than

Fig. 8. On the left is a schematic representation of a portion
of the cristobalite structure showing the 12 fundamental six-
membered rings that pass through each T atom (after Marians
and Hobbs, 1989a). The older definition of a fundamental ring
(see text) allows only six rings to pass through any T atom. On
the right is a schematic representation of a portion of a hypo-
thetical framework. The older definition of fundamental rings
would consider as fundamental the two four-membered rings
and the six-membered ring. The definition used in this paper
also counts the two four-membered rings but counts the seven-
membered ring instead of the six-membered ring, since the latter
can be divided into two smaller rings (see also Smith, 1978).
Note that each structure shown is complete through the second
linked neighbor shell of the enlarged central atom and, for clar-
ity, includes only those third linked neighbors that close rings;
in the case of cristobalite, this is half of the 24 total third linked
neighbors.

forming a larger one. To illustrate this we will consider
only clusters, rather than entire frameworks, and assume
that ring formation affects only cluster topology (M Q,NQ)
and not geometry (DQ). These limitations are justified,
since we have shown that cluster topology is closely re-
lated to framework density (Fig. 5) and that cluster ge-
ometries of frameworks with widely varying ring statis-
tics are very similar (Fig. 7). Further, we make the
simplifying assumption that the relative effect of different
sizes of rings is the same for all frameworks. This allows
us to base our discussion on a simple framework, the
Bethe lattice described earlier, which will yield an ana-
lytic expression for the effect of ring formation on frame-
work density.

Figure 9 shows the effect of ring formation for different
sizes of rings on the cluster topology of the Bethe lattice.
For example, the formation of a three-membered ring
belonging to the central T atom means that two first
neighbors of the central T atom become linked to each
other. However, because of the restriction that every T
atom can be linked to only four others, these two first
neighbors must now break their links with T atoms in
the second neighbor shell of the central T atom, thus
pruning from the tree two branches radiating outward
from two T atoms in the second neighbor shell. Similarly,
forming a four-membered ring belonging to the central T
atom means that two T atoms in the second neighbor
shell must coalesce into one. Again, the restriction offour-
coordination then requires that four branches be pruned
beginning in the third neighbor shell. More generally, for
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TABLE4. Ring statistics

f(1<)for K =

Framework 3 4 5 6 7 8 9 10 11 12 K*

ZSM-18 0.18 2.12 1.76 0.71 1.24 0.00 0.00 0.00 0.00 0.71 4.48
Linde-A 0.00 3.00 0.00 5.00 0.00 1.00 0.00 0.00 0.00 8.00 4.94
Rho 0.00 3.00 0.00 1.00 0.00 2.00 0.00 10.00 0.00 0.00 4.96
Gmelinite 0.00 3.00 0.00 1.00 0.00 6.00 0.00 0.00 0.00 7.00 4.98
Chabazite 0.00 3.00 0.00 1.00 0.00 6.00 0.00 0.00 0.00 1.00 4.86
ZK-5 0.00 3.00 0.00 1.00 0.00 6.00 0.00 0.00 0.00 0.00 4.83
Offretite 0.00 2.67 0.00 2.00 0.00 4.00 0.00 3.33 0.00 9.33 5.19
Erionite 0.00 2.67 0.00 2.00 0.00 4.00 0.00 3.33 0.00 5.33 5.10
Levyne 0.00 2.67 0.00 2.00 0.00 4.00 0.00 0.00 0.00 1.33 4.85
Linde-L 0.00 2.67 0.00 1.67 0.00 6.67 0.00 6.67 0.00 0.33 5.33
Phillipsite 0.00 3.00 0.00 0.00 0.00 4.00 0.00 5.00 0.00 0.00 4.80
Stilbite 0.00 1.78 2.22 4.00 0.00 2.22 0.00 1.11 0.00 0.00 5.11
Gismondine 0.00 3.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 4.52
Heulandite 0.00 1.33 3.33 1.33 0.00 1.33 0.00 1.11 0.00 2.00 4.98
Laumontite 0.00 2.00 0.00 6.00 0.00 2.67 0.00 3.33 0.00 20.00 5.69
Mordenite 0.00 0.33 5.00 0.00 0.00 2.00 0.00 3.33 0.00 1.00 5.33
Losod 0.00 2.00 0.00 4.00 0.00 0.00 0.00 5.00 0.00 14.00 5.40
Sodalite 0.00 2.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 32.00 5.56
Cancrinite 0.00 2.00 0.00 4.00 0.00 0.00 0.00 10.00 0.00 20.00 5.74
Natrolite 0.00 4.00 0.00 0.00 0.00 12.80 7.20 0.00 0.00 0.00 5.32
Dachiardite 0.00 0.33 5.00 0.00 0.00 1.33 0.00 6.67 0.00 3.67 5.51
Epistilbite 0.00 0.33 5.00 0.00 0.00 1.33 0.00 3.33 0.00 0.00 5.23
Dodecasil 0.00 0.35 4.41 1.24 0.00 0.00 0.00 5.29 0.00 0.00 5.33
Melanophlogite 0.00 0.00 5.22 0.78 0.00 0.00 0.00 2.61 0.00 0.00 5.25
ZSM-22 0.00 0.00 3.33 5.00 0.00 0.00 0.00 1.67 0.00 0.00 5.58
ZSM-23 0.00 0.00 3.33 5.00 0.00 0.00 0.00 1.67 0.00 0.00 5.58
ZSM-48 0.00 0.33 1.67 7.50 0.00 1.33 0.00 0.83 0.00 0.00 5.72
Bikitaite 0.00 0.00 3.33 4.00 0.00 2.67 0.00 0.00 0.00 0.00 5.67
Paracelsian 0.00 2.00 0.00 3.00 0.00 8.00 0.00 0.00 0.00 0.00 5.43
Tridymite 0.00 0.00 0.00 12.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00
Feldspar 0.00 2.00 0.00 4.50 0.00 5.00 0.00 22.50 0.00 0.00 6.09
CaGa204 0.00 1.00 0.00 6.00 0.00 16.00 0.00 0.00 0.00 0.00 6.33
Cristobalite 0.00 0.00 0.00 12.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00
CaAI2Si2Oa 0.00 1.00 0.00 6.00 0.00 20.00 0.00 0.00 0.00 0.00 6.47
Marialite 0.00 1.00 3.33 2.00 0.00 5.33 0.00 3.33 0.00 0.00 5.51
Banalsite 0.00 1.00 0.00 10.50 0.00 2.00 0.00 10.00 0.00 0.00 5.99
Cordierite 0.00 1.33 0.00 4.67 0.00 0.00 40.00 6.67 0.00 0.00 6.93
Quartz 0.00 0.00 0.00 6.00 0.00 40.00 0.00 0.00 0.00 0.00 7.38
Coesite 0.00 2.00 0.00 1.50 0.00 2.00 9.00 2.50 11.00 9.00 6.00

Note: The average number of rings of size K passing through a single T atom averaged over all T atoms in the structure is given by f(l<).

*
Characteristic ring size defined by Equation 11.

a tree of size Q, the number of T atoms pruned from the P*(K) = 2/3Ih(K-2). (10)
tree, P(Q,K) by the formation of a ring of size K is:

A plot of P*(K) (Fig. 9) shows it to be rapidly decreasingQ-S-l
P(Q,K) = 2 x ~3i = 3

Q-S
- 1 (6) function of ring size, emphasizing the greater effect of

i=O small rings on framework density.

for odd-membered rings and Our theory predicts that a measure of ring size that
takes into account the greater role played by small rings

Q-S-l will increase with increasing framework density. Thus, weP(Q,K) = 1 + 4 x ~3i= 2 X 3Q-s - 1 (7)
define a characteristic ring size:

i=O

for even-membered rings, where S is the linked neighbor K* = 2; Kf(K)W(K)/~ f(K)W(K), (11)
shell in which a ring closes: S is 1/2(K - 1) for odd rings
and 1/2K for even rings. We define the relative pruning where the sum are over K, f(K) is the number of Krings
efficiency, P*(K) as the large Q limit of P(Q,K) normal- in a structure (Table 4) and W(K) is a weighting function
ized to P(Q,3): which is a decreasing function of K. If, as the theory sug-

P*(K) = lim P(Q,K)/P(Q,3). (8)
gests, we identify W(K) with P*(K), we find a significant

Q->oo positive correlation between K* and framework density
(Fig. 10). We attribute this result to the greater pruning

Thus, for odd-membered rings: efficiency of small rings compared with large ones. Thus,

P*(K) = 1/31h(K-3) (9) despite the simplifications built into our theory, it serves
to elucidate the close relationship between ring .statistics

and for even-membered rings: and framework density.
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Fig. 9. The effect of ring formation on framework density.
The inset shows a cluster of size 3 from the Bethe lattice, with
T atoms indicated by symbols and T-T links indicated by light
lines. The bold lines indicate the effect of ring formation. In the
upper right portion of the cluster, a three-membered ring is
formed by linking two T atoms in the first linked neighbor shell,
as shown by the solid bold line. The dashed bold line indicates
the pruning required by the constraint of four-coordination.
Similarly, in the bottom left portion of the cluster, a four-mem-
bered ring is formed by equating two T atoms in the second
linked neighbor shell, indicated by the bold line encircling the
two T atoms. Again, the bold dashed line indicates the portions
of the cluster that must be pruned to maintain four-coordina-
tion. The large circles plotted are the relative pruning efficiencies
for different-sized rings from Equations 9 and 10. The line is an
exponential fit to guide the eye. The plot shows that small rings
have a much greater effect on framework density than large ones.

Our observation that characteristic ring size increases
with framework density is fully consistent with previous
observations, including the recent work of Liebau (1988)
and Brunner and Meier (1989), noting a systematic trend
toward lower observed framework density with decreas-
ing size of the smallest ring in the framework. Connec-
tions between the existence of small rings in a network
and small values of NQ have also been noted (Brunner,
1979; Akporiaye and Price, 1989), again fully consistent
with our results.

The perhaps counterintuitive relationship between ring
size and framework density is topological in nature, via
the pruning mechanism, and is not attributable to any
greater propensity for large rings to crumple or fold up
compared with small rings, as has been suggested (Mar-
ians and Hobbs, 1989b). In fact, rings with larger topo-
logical size (K) are also geometrically larger. By measur-
ing the geometry of rings in tectosilicates, we show that
plausible measures of the effective density of a ring de-
crease with increasing ring size K. We define an effective

4
12

Fig. 10. Plot showing the positive correlation (r = 0.83) be-
tween characteristic ring size, K* (Eq. 11), and framework den-
sity (FD) as predicted by the theory of the effects of ring for-
mation on framework density described in the text and
summarized in Figure 9.

6

TECTOSILICATES
RING GEOMETRY

PLANAR
RINGS

Io

8 o

2
3 4 5 6 7 8 9 10 11 12

RING SIZE: K
Fig. 11. Geometry of rings in tectosilicates as measured by

the radius of gyration (Eq. 13) and illustrated schematically in
the upper left portion of the figure. Each symbol represents the
average radius of gyration for all rings of size K in one structure.
The single example of three-membered rings (in ZSM-18; Ro =
1.7419) is not shown for convenience. Observed values are com-
pared with two limiting cases: (1) planar rings, for which Ro is
a maximum and (2) the value of RG expected if the effective
density of rings (Eq. 12) remained constant with increasing ring
size starting at K = 3. The two lower curves correspond to effective
ring dimensionalities of 3 (lowermost curve) and 2 (see Eq. 15).
All RG values are scaled to a standard T -T distance of 3.1 A to
facilitate comparison.
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densi ty of a ring:

p(K) ex K/ R~,

where RG is the radius of gyration (root-mean-square dis-
tance from the center of mass):

Rb = (1/2K2) ~ rt,
i,j

where rij is the distance between T atoms i and j and d is
the effective dimensionality of a ring, which may be
thought of as lying between two and three, since rings are
nearly planar structures. We have determined RG for all
the rings of this study and compared these values to the
value of RG for planar rings:

RG (Planar) = 1/2Lcsc(7r/ K),

where L is the T -T distance, and to variations in RG for
constant effective ring density:

Figure 11 shows that, although rings deviate systemati-
cally from planarity with increasing ring size, the fact that
RG increases much more rapidly than Equation 15 for d
= 2 or d = 3 means that any plausible measure of effective
ring density will decrease with increasing ring size. Thus,
rings crumple only slightly, and one should not think of
increasing characteristic ring size with increasing density
as being accommodated by the crumpling of rings. This
indicates that the density of rings, which are two-coor-
dinated, nearly two dimensional structures, cannot be
simply related to the density of three-dimensional four-
coordinated frameworks.

SUMMARY

We have examined in detail the density of tectosili-
cates, minerals based on frameworks with identical co-
ordination numbers and nearly identical bond lengths yet
vastly different densities. We have shown how topologi-
cal elements of frameworks, such as clusters, can be used
to form predictive models of framework density. We de-
scribed the advantages of a new definition of rings and
presented the first measurements of ring statistics of tec-
tosilicates, other than the silica polymorphs, based on
this definition. Finally, we have described a simple theory
that relates ring formation to framework density and used
this to define a characteristic ring size that shows a strong
positive correlation with framework density. The coun-
terintuitive increase in ring size with increasing density
is attributed to a topological pruning mechanism and is
not related to deformation of rings.

Although the picture relating ring statistics to frame-
work density presented here is simple and can be refined,
it provides a basis for rationalizing the densities of tec-
tosilicates. It provides further support for the importance
of structures containing four- and three-membered rings
in the search for new low-density zeolites. Finally, it is
sufficiently general to provide a first-order description of
the complex changes in silicate-liquid framework struc-
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ture caused by increasing pressure (Stixrude and Bukow-
inski, 1990).

ACKNOWLEDGMENTS

(13)

We thank F. Liebau and J.V. Smith for their thorough reviews and C.
Lithgow, D. Snyder, and H.-R. Wenk for helpful comments that im-
proved the manuscript. L.S. also thanks C.S. Marians for many enjoyable
discussions. This work was supported by NSF grant EAR-8816819 and
the Institute of Geophysics and Planetary Physics at the Lawrence Liv-
ermore National Laboratory. Figure 9 is reprinted from Science, 250,
541ff. with the kind permission of AAAS.

REFERENCES CITED

(14)

Akporiaye, D.E., and Price, G.D. (1989) Relative stability of zeolite
frameworks from calculated energetics of known and theoretical struc-
tures. Zeolites, 9, 321-328.

Alberti, A., and Vezzalini, G. (1983) Thermal behavior ofheulandites: A
structural study of the dehydration of Nadap heulandite. Tschermaks'
Mineralogische und Petrologische Mitteilungen, 31, 259-270.

Bambauer, H.U., and Nager, H.E. (1981) Gitterkonstanten und displazive
Transformation synthetischer Erdalkalifeldspate I. System Ca[Al2Si20s]-
Sr[Al2Si20s]-Ba[Al2Si20s]. Neues Jahrbuch fUr Mineralogie Abhan-
dlungen, 141, 225-239.

Barrer, R. M., and Villiger, H. (1969) The crystal structure of the synthetic
zeolite L. Zeitschrift fur Kristallographie, 128, 253-370.

Bartl, H., and Fischer, K. (1967) Untersuchung der Kristallstruktur des
Zeolithes Laumontit. Neues Jahrbuch fUr Mineralogie Monatshefte,
1967, 33-42.

Belch, A.C., and Rice, S.A. (1987) The distribution of rings of hydrogen-
bonded molecules in a model of liquid water. Journal of Chemical
Physics, 86, 5676-5682.

Bell, R.J., and Dean, P. (1966) Properties of vitreous silica: Analysis of
random network models. Nature, 212, 1354-1355.

Bernal, J.D. (1964) The structure of liquids. Proceedings of the Royal
Society of London, Series A, 280, 299-322.

Bethe, H.A. (1935) Statistical theory of superlattices. Proceedings of the
Royal Society of London, Series A, 150,552-575.

Brunner, G.O. (1979) The properties of coordination sequences and con-
clusions regarding the lowest possible density of zeolites. Journal of
Solid State Chemistry, 29, 41-45.

Brunner, G.O., and Meier, W.M. (1989) Framework density distribution
of zeolite-type tetrahedral nets. Nature, 337, 146--147.

Calligaris, M., Nardin, G., and Randaccio, L. (1982) Cation-site location
in a natural chabazite. Acta Crystallographica, B38, 602-605.

Cohen, J.P., Ross, F.K., and Gibbs, G.V. (1977) An X-ray and neutron
diffraction study of hydrous low cordierite. American Mineralogist, 62,
67-78.

Colville, A.A., and Ribbe, P.H. (1968) The crystal structure of an adularia
and a refinement of the structure of orthoclase. American Mineralogist,
53, 25-37.

Davis, M.E., Saldarriaga, C., Montes, C., Garces, J., and Crowder, C.
(1988) A molecular sieve with eighteen-membered rings. Nature, 331,

698-699.
Deiseroth, H.J., and Miiller-Buschbaum, H.K. (1973) Die Kristallstruktur

von monoklinem CaGa204. Zeitschrift fUr Anorganische und Allge-
meine Chemie, 402, 201-205.

Domb, C. (1960) On the theory of cooperative phenomena in crystals.
Advances in Physics, 9, 245-295.

Evans, D.L., and King, S.V. (1966) Random network model of vitreous
silica. Nature, 212, 1353-1354.

Fischer, K. (1963) The crystal structure determination of the zeolite gis-
mondite CaAl2Si20s.4H20. American Mineralogist, 48, 664-672.

-(1966) Untersuchung der Kristallstruktur von Gmelinit. Neues
Jahrbuch fur Mineralogie Monatshefte, 1966, 1-13.

Galli, E. (1971) Refinement of the crystal structure of stilbite. Acta Crys-
tallographica, B27, 833-841.

Gard, J.A., and Tait, J.M. (1972) The crystal structure of the zeolite
offretite, KI.lCaI.lM&.7 (Si12.sAls.2036).15. 2H20. Acta Crystallographi-
ca, B28, 825-834.

Geisinger, K., Spackman, M.A., and Gibbs, G.V. (1987) Exploration of

(15)



1168 STIXRUDE AND BUKOWINSKI: TECTOSILICATES

structure, electron density distribution and bonding in coesite with

Fourier and pseudoatom refinement methods using single-crystal x-ray
diffraction data. Journal of Physical Chemistry, 91, 3237-3244.

Gerke, H., and Gies, H. (1984) Studies on clathrasils. IV. Crystal structure
of dodecasil 1H, a synthetic clathrate compound of silica. Zeitschrift
fUr Kristallographie, 166, 11-22.

Gies, H. (1983) Studies on clathrasils. III. Crystal structure of melano-
phlogite, a natural clathrate compound of silica. Zeitschrift fUr Kris-
tallographie, 164, 247-257.

Gottardi, G., and Meier, W.M. (1963) The crystal structure of dachiardite.
Zeitschrift fur Kristallographie, 119, 53-64.

Gramlich, V., and Meier, W.M. (1970) The crystal structure of hydrated
NaA: A detailed refinement of a pseudosymmetric zeolite structure.
Zeitschrift fUr Kristallographie, 133, 134-149.

Haga, N. (1973) The crystal structure of banalsite, BaNa2Al4Si4012, and
its relation to the feldspar structure. Mineralogical Journal, 7, 262-
281.

Hurlbut, C.S., and Klein, C. (1977) Manual of mineralogy (19th edition),
532 p. Wiley, New York.

Jarchow, O. (1965) Atomanordnung und Strukturverfeinerung von Can-
crinit. Zeitschrift fUr Kristallographie, 122, 407-422.

King, S.V. (1967) Ring configurations in a random network model of
vitreous silica. Nature, 213, 1112-1113.

Kittel, C. (1976) Introduction to solid state physics, 608 p. Wiley, New
York.

Kocman, V., Gait, R.I., and Rucklidge, J. (1974) The crystal structure of
bikitaite, Li(AISi206)H20. American Mineralogist, 59, 71-78.

Kokotailo, G.T., Schlenker, J.L., Dwyer, F.G., and Valyocsik, E.W. (1985)
The framework topology of ZSM-22: A high silica zeolite. Zeolites, 5,
349-351.

Kroll, H., Schmiemann, I., and von ColIn, G. (1986) Feldspar solid so-
lutions. American Mineralogist, 71, 1-16.

Lawton, S.L., and Rohrbaugh, W.J. (1990) The framework topology of
ZSM-18, a novel zeolite containing rings of three (Si,Al)-O species.
Science, 247, 1319-1322.

Levien, L., and Papike, J.J. (1976) Scapolite crystal chemistry: Alumi-
num-silicon distributions, carbonate group disorder, and thermal ex-
pansion. American Mineralogist, 61, 864-877.

Levien, L., Prewitt, C.T., and Weidner, D.J. (1980) Structure and elastic
properties of quartz at pressure. American Mineralogist, 65, 920-930.

Liebau, F. (1988) Structural similarities and dissimilarities between Si02
and H20. In R.A.B. Devine, Ed., The physics and technology of amor-
phous Si02, p. 15-35. Plenum Press, New York.

LOns, J., and Schulz, H. (1967) Strukturverfeinerung von Sodalith,
NagSi6Al6024C12.Acta Crystallographica, 23, 434-436.

Marians, C.S., and Hobbs, L.W. (1989a) The phase structure of aperiodic
Si02 as a function of network topology. Journal of Non-crystalline Sol-
ids, 106, 309-312.

-(1989b) Network properties of crystalline polymorphs of silica.
Journal of Non-crystalline Solids, in press.

McMillan, P.F., Brown, W.L., and Openshaw, R.E. (1980) The unit-cell
parameters of an ordered K-Rb alkali feldspar series. American Min-
eralogist, 65, 458-464.

Meier, W.M. (1961) The crystal structure of mordenite (ptilolite). Zeit-
schrift fur Kristallographie, 115, 439-450.

- (1986) Zeolites and zeolite-like materials. In Y. Murakami, A.
Iijima, and J.W. Ward, Eds., New developments in zeolite science and
technology: Proceedings of the 7th International Zeolite Conference, p.
13-22. Elsevier, Amsterdam.

Meier, W.M., and Kokotailo, G.T. (1965) The crystal structure of syn-
thetic zeolite ZK-5. Zeitschrift ftir Kristallographie, 121,211-219.

Meier, W.M., and Moeck, H.J. (1979) The topology of three-dimensional
4-connected nets: Oassification of zeolite framework types using co-
ordination sequences. Journal of Solid State Chemistry, 27, 349-355.

Meier, W.M., and Olson, D.H. (1988) Atlas of zeolite structure types, 166
p. Butterworths, Kent, England.

Merlino, S., Galli, E., and Alberti, A. (1975) The crystal structure of
levyne. Tschermaks' Mineralogische und Petrologische Mitteilungen,
22, 117-129.

Peacor, D.R. (1973) High-temperature single-crystal study of the cristo-
balite inversion. Zeitschrift ftir Kristallographie, 138, 274-298.

Pechar, F., Schaefer, W., and Will, G. (1983) A neutron diffraction re-

finement of the crystal structure of natural natrolite, Na2AhSi30I02H20.
Zeitschrift fur Kristallographie, 164, 19-24.

Perrotta, A.J. (1967) The crystal structure of epistilbite. Mineralogical
Magazine, 36, 480-490.

Rinaldi, R., Pluth, J.J., and Smith, J.V. (1974) Zeolites of the phillipsite
family. Refinements of the crystal structures of phillipsite and harmo-
tome. Acta Crystallographica, B30, 2426-2433.

Robson, H.E., Shoemaker, D.P., Ogilvie, R.A., and Manor, P.C. (1973)
Synthesis and crystal structure of zeolite rho-A new zeolite related to
Linde type A. Advances in Chemistry Series, 121, 106-115.

Rohrman, A.C., Jr., LaPierre, R.B., Schlenker, J.L., Wood, J.D., Valyoc-
sik, E.W., Rubin, M.K., Higgins, J.B., and Rohrbaugh, W.J. (1985) The
framework topology of ZSM-23: A high silica zeolite. Zeolites, 5, 352-
354.

Schlenker, J.L., Rohrbaugh, W.J., Chu, P., Valyocsik, E.W., and Koko-
tailo, G.T. (1985) The framework topology of ZSM-48: A high silica
zeolite. Zeolites, 5, 355-358.

Shannon, R.D. (1976) Revised effective ionic radii and systematic studies
of interatomic distances in halides and chalcogenides. Acta Crystallo-
graphica, A32, 751-767.

Sieber, W., and Meier, W.M. (1974) Formation and properties of Losod,
a new sodium zeolite. Helvetica Chimica Acta, 57, 1533-1549.

Smith, J. V. (1977) Enumeration of 4-connected 3-dimensional nets and
classification offramework silicates. I. Perpendicular linkage from sim-
ple hexagonal net. American Mineralogist, 62, 703-709.

- (1978) Enumeration of 4-connected 3-dimensional nets and clas-
sification of framework silicates, II. Perpendicular and near-perpendic-
ular linkages from 4.82,3.122, and 4.6.12 nets. American Mineralogist,
63, 960-969.

- (1979) Enumeration of 4-connected 3-dimensional nets and clas-
sification of framework silicates, III. Combination of helix, and zigzag,
crankshaft and saw chains with simple 2D nets. American Mineralo-
gist, 64, 551-562.

-(1982) Geometrical and structural crystallography, 450 p. Wiley,
New York.

Smith, J.V., and Bennett, J.M. (1981) Enumeration of 4-connected
3-dimensional nets and classification offramework silicates: The infinite
set of ABC-6 nets; the Archimedean and u-related nets. American Min-
eralogist, 66, 777-788.

- (1984) Enumeration of 4-connected 3-dimensional nets and clas-
sification offramework silicates: Linkages from the two (52.8)2(5.82)12D
nets. American Mineralogist, 69, 104-111.

Smith, J.V., and Brown, W.L. (1988) Feldspar minerals (vol. 1, 2nd edi-
tion), 828 p. Springer- Verlag, Berlin.

Smith, J.V., and Dytrych, W.J. (1984) Nets with channels of unlimited
diameter. Nature, 309, 607-608.

Staples, L.W., and Gard, J.A. (1959) The fibrous zeolite erionite; its oc-
currence, unit cell, and structure. Mineralogical Magazine, 32, 261-
281.

Stishov, S.M., and Popova, S.V. (1961) New dense polymorphic modifi-
cation of silica. Geokhimiya, 10, 837-839.

Stixrude, L., and Bukowinski, M.S.T. (1988) Simple covalent potential
models of tetrahedral Si02: Applications to a-quartz and coesite at
pressure. Physics and Chemistry of Minerals, 16, 199-206.

- (1989) Compression of tetrahedrally bonded Si02 liquid and sili-

cate liquid-crystal density inversion. Geophysical Research Letters, 16,
1403-1406.

- (1990) A novel topological compression mechanism in a covalent
liquid. Science, 250, 541ff.

Takeuchi, Y., Haga, N., and Ito, J. (1973) The crystal structure of mon-
oclinic CaA12Si20g: A case of monoclinic structure closely simulating
orthorhombic symmetry. Zeitschrift fUr Kristallographie, 137, 380-398.

Wyckoff, R. W.G. (1982) Crystal structures, (2nd edition). Krieger Pub-
lishing Co., Malabar, Florida.

Zachariasen, W.H. (1932) The atomic arrangement in glass. Journal of
the American Chemical Society, 54, 3841-3851.

MANUSCRIPT RECEIVED DECEMBER 18, 1989

MANUSCRIPT ACCEPTED AUGUST 10, 1990



STIXRUDE AND BUKOWINSKI: TECTOSILICATES

ApPENDIX 1. MEASUREMENT OF CLUSTER AND
RING STATISTICS

The description of the algorithm for finding cluster parame-
ters, N Qand M Q, and ring statistics, f(K), is presented in a way
that allows the results to be easily reproduced by hand, at least
for a small Q. For Q larger than three or four, the logical oper-
ations are too numerous. We used a computer program to gen-
erate all the results of this paper. Throughout, the quartz struc-
ture is used as an example, since it contains the smallest number
of T atoms per unit cell.

The first step is to identify each atom in the structure with a
four-part label: (i,j,k,l), where i uniquely identifies all the atoms
in the unit cell andj,k,1 define a lattice translation vector in the
basis defined by the lattice vectors a,b,c (i.e., t = ia + Jb + kc,
where t is a translation vector). T -T links are then identified by
searching for all T atoms that lie within a certain distance of
each T atom in the unit cell (3.5 A. is an appropriate cutoff for
all the structures in this study). The result is a linkage table that
contains all linkage information for the entire structure. That is,
if we know that (il,O,O,O) is linked to (i2,1,0,1), then (il,O + j',O
+ k',O + I') is linked to (i2,1 + j',O + k',1 + I') for all jl,kl,I'.
As an example, if we identify the atoms in the unit cell of quartz
in the following way:

Tatom Atomic coordinates (u = 0.4697)

(u,O,O)
(O,u,2/3)
(-u, -u, 1/3),

(1,0,0,0)
(2,0,0,0)
(3,0,0,0)

then the resulting linkage table is

Tatom Linked to

(1,0,0,0)
(2,0,0,0)
(3,0,0,0)

(2,0,-1,-1), (2,1,0,-1), (3,0,-1,0), (3,0,0,0)
(1, -1 ,0, 1), (1,0,1,1), (3, -1 ,0,0), (3,0,0,0)
(1,0,0,0), (1,0,1,0), (2,0,0,0), (2,1,0,0).

Because the linkage table establishes the linkage for the entire
structure, all subsequent operations involved in finding cluster
and ring statistics involve only the linkage table, and no further
reference to atomic coordinates is made.

The cluster up to Q = 3 of atom (1,0,0,0) in quartz is shown
in Figure lA. The first neighbor shell is obtained directly from
the linkage table, whereas the second neighbor shell is construct-
ed by finding the linked neighbors of the atoms in the first linked
neighbor shell and so on for larger Q. For instance, the linkage
table tells us that the first linked neighbors of atom (2,0,0-1,0-
1) are (1,-1,0-1,1-1), (1,0,1-1,1-1), (3,-1,0-1,0-1), and (3,0,0-
1,0-1). Once the cluster is constructed, the number of distinct
neighbors in each neighbor shell are counted to give NQ and MQ.

The fact that several atoms appear more than once in the Q

= 3 shell indicates that six-membered rings exist (although they
are not necessarily fundamental). Similarly, if two atoms in the
Q = 3 shell were linked to each other (this does not occur in our
example), this would indicate five-membered rings (again not
necessarily fundamental). To determine whether a ring is fun-
damental, we compare minimal path distances to path distances
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Fig. lA. The cluster of atom (1,0,0,0) in quartz up to Q = 3.
The bold lines indicate a fundamental six-membered ring.

along the ring (Marians and Hobbs, 1989b). The path distance
between two T atoms is simply the number of T-T links tra-
versed along any framework path connecting the two. Although
there are an infinite number of such paths in an infinite frame-
work, we are primarily interested in the minimal path distance,
which can be found directly from the clusters. The minimal path
distance between one T atom and a T atom in its Qth neighbor
shell is equal to Q. Thus, the minimal path distances between
all pairs of T atoms in the entire structure are found from the
clusters of the T atoms in the unit cell. Marians and Hobbs
(1989b) have shown that a ring is fundamental if the shortest
distance between any pair of T atoms along the ring is equal to
its minimal path distance. Thus, the steps involved in determin-
ing a fundamental ring are (1) construct a potential ring by in-
spection of the cluster; (2) determine the shortest path distances
along the ring, again by inspection of the ring; and (3) compare
these path distances with minimal path distances. For the ring
outlined in the cluster above:

(1,0,0,0) - (2,0,-1,-1) - (1,-1,-1,0)

I I
(3,0,-1,0) - (2,0,-1,0) - (3,-1,-1,0),

we see that the shortest path distance along the ring between, for
example, (2,0, -1, -1) and (2,0, -1,0) is three. From the cluster
of atom (2,0,0,0), we see that the minimal path distance between
(2,0;0,0) and (2,0,0,1) is three, and thus the minimal path dis-
tance between (2,0, -1, -1) and (2,0, -1 ,0) is also three, the same
as the shortest path distance along the ring. By checking all T
atom pairs in the ring in this way, we would find that this par-
ticular six-membered ring is fundamental.


