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COMPRESSION OF TETRAHEDRALLY BONDED SIO2 LIQUID AND 
SILICATE LIQUID-CRYSTAL DENSITY INVERSION 

Lars Stixrude and Mark S. T. Bukowinski 
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Abstract. We have investigated the response to pressure of 
liquid SiO2 by performing a quantitatively realistic Monte 
Carlo simulation. The model liquid was restricted to at most 
four-fold Si-O coordination by the effective imposition of an 
infinite potential barrier to a fifth bond. We thus obtained an 
unambiguous comparison of the compression mechanisms of 
solid and liquid tetrahedral networks. In spite of this restric- 
tion, the density of the simulated liquid exceeds that of the cor- 
responding models of quartz, coesite and cristobalite at high 
pressure. The efficient compression of the liquid results from 
a continuous restructuring of the network that leaves the mean 
Si-Si distance virtually unchanged and does not require an in- 
crease in the coordination number. The restructuring is ef- 
fected by local breaking and reconnecting of bonds, a mecha- 
nism that is not available to a perfect crystal. 

Introduction 

The evolution of the terrestrial planets depends to a large ex- 
tent on the thermodynamic properties of silicate liquids, which 
mediate chemical differentiation processes. In particular, the 
recent suggestion that the density of silicate liquids may sur- 
pass that of coexisting crystals at pressures of 5-20 GPa has 
important consequences for terrestrial chemical evolution 
(Rigden et al., 1984). For instance, magma formed below a 
few hundred km in the Earth would never reach the surface, 
and chemical differentiation would proceed by the sinking of 
magma to greater depths. 

It is a common assumption that the mechanism responsible 
for the density inversions is a pressure-induced increase in the 
A1-O and Si-O coordination (e.g., Rigden et al., 1984). There 
is now good evidence that such coordination changes do occur 
(Xue et al., 1989). However, the flexibility of liquids' struc- 
tures suggests that liquids containing tetrahedral networks can 
respond to pressure far more effectively than crystals by sim- 
ply rearranging the connectivity of the networks, even when 
no coordination changes occur. The r. ole of this network re- 
structuring in liquid-crystal density inversions has not yet been 
examined. 

We report here the results of a Monte Carlo simulation of 
liquid silica based on an accurate covalent potential model of 
tetrahedrally coordinated SiO2 phases (Stixrude and Bukowin- 
ski, 1988). We find that the liquid's density overtakes that of 
all the crystals by 50 GPa. Although the comparison is not 
with thermodyn-amically coexisting crystals, it nevertheless 
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demonstrates that, at high pressures, liquids can adopt in- 
herently denser network structures than crystals of the same 
Si-O coordination. 

The Model 

Monte Carlo (and molecular dynamics) simulations of con- 
densed matter are generally based on a model of interatomic 
forces. How faithfully the model describs real interatomic 
forces determines how faithfully the simulations reproduce 
known properties of the real material. Previous simulations of 
silicate liquids have mostly used simple ionic models (Kubicki 
and Lasaga, 1988; Erikson and Hostetler, 1987, and 
references therein). Despite the demonstrated utility of these 
simulations, the potentials used are not suitable for our pur- 
poses since they have not been shown to reproduce available 
data on the corresponding crystals. The bulk moduli of SiO2 
crystals predicted by ionic models are too large by as much as 
an order of magnitude (Efikson and Hostetler, 1987). 

We based the simulations on a recently developed covalent 
model of tetrahedral Si-O bonding (Stixrude and Bukowinski, 
1988). The model incorporates essential physics, including 
the short range and directional dependence of the covalent Si-O 
bond, the dichotomy between strong intra- and weak inter-te- 
trahedral forces, and a form of the inter-tetrahedral force sug- 
gested by molecular orbital calculations. Furthermore, the 
model is quantitatively accurate: these are the farst simulations 
of a liquid silicate to use a potential model which reproduces 
the equation of state, structure, compression mechanisms and 
phase stability of the corresponding tetrahedral crystalline 
phases (Stixrude and Bukowinskiii•:•'O88). 

The model potential energy is •i':(/en by: 
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fc = {1 + exp[y(rij - rc)]} -1 

(1) 

(2) 

where Nsi and NO are the number of silicon and oxygen atoms 
respectively, rij is the distance between atoms i and j, ctijk is 
the intra-tetrahedral O-Si-O angle, and the multiple summa- 
tions of the first three terms indicate that at most the four near- 

est oxygens about a silicon and the two nearest silicons about 
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an oxygen are included. The model is identical to the ORM 
model of Stixrude and Bukowinski (1988) except for the 
function fc(rij), which introduces a smooth cutoff of the three 
covalent forces as a function of Si-O distance. The values of 

rc and T (2.5)• and 20 A-l, respectively) are chosen so that 
fc(r) does not affect the properties of crystalline phases. The 
other parameters in the model were constrained by molecular 
orbital calculations on silicate molecules and the equation of 
state of (x-quartz. For a complete discussion of the model's 
construction see Stixrude and Bukowinski (1988). 

The model is intentionally restricted to describe only tetrahe- 
dral S i-O bonding. This restriction manifests itself not only in 
the requirement that at most four oxygens be bonded to a sili- 
con but also in the functional form and parameters of the po- 
tential: the O-Si-O angle bending term, for instance, favors the 
ideal tetrahedral angle (it0 = 109.47ø). X-ray diffraction 
(Spackman et al., 1987) and molecular orbital studies (Newton 
and Gibbs, 1980) show that tetrahedral bonding (controlled by 
highly directional sp 3 hybrids) is substantially different from 
octahedral bonding (controlled by more spherically symmetric 
sp3d 2 hybrids) which occurs in high pressure silicate poly- 
morphs such as stishovite. While a complete description of 
Si-O bonding must also include octahedral bonding, we con- 
centrate here on our simpler model, which is a qualitatively 
and quantitatively realistic description of tetrahedral bonding. 
Although we cannot realistically simulate octahedrally coordi- 
nated phases or four- to six-fold coordination changes, our 
model allows us to examine compression mechanisms in a 
simplified silicate liquid which retains four-fold bonded coor- 
dination at all pressures and to address the central question of 
this paper: whether mechanisms other than coordination 
changes contribute significantly to liquid-crystal density in- 
versions. 

Computations 

Monte Carlo simulations were performed in the constant 
pressure, temperature and particle number (NPT) ensemble 
(Adams and McDonald, 1974). The simulated liquid consisted 
of 192 atoms repeated with periodic boundary conditions to 
minimize finite size effects. Although larger systems were not 
tested, the primary cell was large enough (15)• on a side at 
zero pressure) so that the radial distribution function fluctuated 
less than 2% about its long range limiting value (unity) at half 
the cell size. Although Si-O bonds were allowed to break and 
new bonds to form, Si-O coordinations greater than four were 
prohibited. The maximum allowable volume fluctuation and 
particle displacement were chosen so that approximately 50% 
of the configurations were accepted. The volume was allowed 
to change with every configuration. Typical run lengths were 
from 8 to 12 million configurations. 

The simulations were started by melting ideal [5-cristobalite 
at 10,000 K and 10 GPa. The liquid was then cooled to dif- 
ferent pressures on the 6,000 K isotherm (0-50 GPa). Each 
6,000 K point was then isobarically cooled to 4,000 K. At 
2,000 K, liquids cooled isobarically from 4,000 K differed 
somewhat from those cooled directly from 6,000 K (volumes 
differed by 7% at 0 GPa, but less than 2% at all other pres- 
sures). Since the simulations were initialized with higher tem- 
perature (larger volume) configurations, and since the volumes 
decreased steadily towards their final stable values during the 

simulations, we expect any effects of metastability to produce 
volumes that exceed those of the equilibrium liquid. There- 
fore, we took the results of the simulation which produced the 
smaller 2,000 K volume as the best estimate of the equilibrium 
liquid volume. We assume the uncertainty in the 2,000 K vol- 
umes if half the difference between the two cooling histories. 
Statistical uncertainties (Adams and McDonald, 1974) in the 
calculated volumes were much smaller, not exceeding 0.2%. 

Crystal computations are described fully in Stixrude and 
Bukowinski (1988). Briefly, WMIN (Busing, 1981) is used 
to calculate static crystal properties. Debye model thermal cor- 
rections are added to account for the effects of temperature. 

Results and Discussions 

The calculated 2,000 K equation of state of liquid SiO2 
agrees well with available experimental data, including the zero 
pressure volume: 27.81+ 0.6 cc/mol vs 26.9-28.2 cc/mol ex- 
perimental (Lange and Carmichael, 1987) and zero pressure 
bulk modulus: 11.2 + 3 GPa vs. 13 GPa experimental (Krol 
et al., 1986). Figure 1 shows that the simulated structure of 
the liquid at 2,000 K, as measured by the radial distribution 
function, is in good agreement with experiment. The calcu- 
lated room temperature equations of state of a-quartz, coesite 
and tt-cristobalite agree well with experiment as shown in 
Figure 2. Our model also accurately predicts the structure and 
compression mechanisms of (x-quartz and coesite and the 
quartz to coesite phase transition (Stixrude and Bukowinski, 
1988). 
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Fig. 1. The radial distribution functions go(r) (Si-O, O-O, Si- 
Si) computed from Monte Carlo simulations of our tetrahe- 
drally bonded SiO2 liquid at 0 GPa and 2,000 K. Also plotted 
is the cumulative Si-O coordination number (Nsi-o(r), propor- 
tional to the area under gsi-o(r)) as a function of Si-O distance 
at 0 GPa (bold line) and 50 GPa (thin line). The positions of 
the first six peaks (Si-O, O-O, Si-Si, 2 nd Si-O, 2 nd O-O, 2 nd 
Si-Si) are consistent with experiment (Waseda and Toguri, 
1977) except the first Si-Si peak which occurs at a distance 
0.15 A smaller than the observed value. The Si-O, O-O and 
Si-Si coordination numbers and also consistent with experi- 
ment (Waseda and Toguri, 1977). The plateaus in 
Nsi-o(r) at around 2 )• show that the Si-O coordination num- 
ber is well defined and does not exceed four up to 50 GPa. 
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Fig. 2. Room temperature experimental data (symbols) for a- 
quartz (Levien et al., 1980; Hemlcy et al., 1988), coesite 
(Levien and Prewitt, 1981; Hemley et al., 1988) and a-cristo- 
balite (Peacor, 1973) compared with theoretical equations of 
state (solid lines) based on the same potential model that was 
used in the liquid simulations. The size of the symbols is 
comparable to uncertainties in the high pressure data. The ex- 
perimental stishovite curve (dashed line) (Bass et al., 1982) is 
shown for comparison. 

The density of the model liquid surpasses that of the tetrahe- 
dral crystalline phases by 50 GPa (Figure 3). These liquid- 
crystal density inversions occur without an increase in Si-O 
coordination number in the liquid: the model guarantees that 
the bonded coordination of the liquid remains four-fold, and 
Figure 1 shows that the effective coordination of the liquid 
also remains four-fold, at least up to 50 GPa. Even the room 
temperature densities of the tetrahedral crystals (Figure 2) are 
surpassed by the 2,000 K liquid at 24, 30 and 60 GPa for 
coesite, a-quartz and a-cristobalite, respectively. Further, the 
reported liquid densities, if they differ from true equilibrium 
values, are likely to err towards lower density, as discussed 
above, thus leading us to overestimate the pressures of liquid- 
crystal density inversion. Thus, uncertainties in the calcula- 
tions due to thermal corrections of the crystalline equations of 
state (due to inadequacies of the Debye model at high tempera- 
ture) and possible metastability in the liquid simulations, do 
not affect our conclusion that, for our model, the liquid is the 
densest four coordinated phase at high pressure. 

Although these density inversions do not involve coexisting 
liquids and crystals (experimentally, octahedral stishovite is 
the thermodynamically stable crystal phase above 12 GPa), 
they do illustrate the efficient densification of the tetrahedral 
liquid and suggest liquid compression mechanisms very dif- 
ferent from those in the crystals. The structures of liquid and 
crystalline phases consist of a continuous network of nearly 
rigid, comer-sharing SiO4 tetrahedra. While compression of a 
crystal is accomplished without breaking bonds by simply re- 
ducing the distance between tetrahedra, we find that the model 
liquid compresses by breaking and reforming bonds, thus re- 
arranging the connectivity of the tetrahedral network without 
substantial changes in the inter-tetrahedral distance (L) 
(Stixrude and Bukowinski, to be published). The contrast 

Fig. 3. Results of 2,000 K Monte Carlo simulations of liquid 
SiO2 (circles and bold lines) compared with 2,000 K equations 
of state of crystals (thin lines). The bold line is a Birch-Mur- 
naghan fit to the simulated liquid volumes, denoted by the cir- 
cles; the size of the circles is comparable to volume uncertain- 
ties (see text). The crystal equations of state am labelled at the 
pressure where the liquid surpasses their density. For clarity, 
only the high pressure portion of the cristobalite equation of 
state is shown. Because of the unusual shape of the cristo- 
balite equation of state (negative curvature at low pressures, 
see Figure 2) it crosses the liquid equation of state twice: at 12 
and 50 GPa. The experimental sfishovite curve (the same as in 
Figure 2) is shown for comparison. 

between liquid and crystal compression mechanisms is illus- 
trated in Figure 4. The large differences between volume (V) 
and scaled volume (V*) for the crystals at high pressure reflect 
large pressure-induced decreases in L. In contrast, the near 
identity of the scaled and standard equations of state of the 
liquid reflect small changes in L (V and V* for the liquid differ 
by only 9% at 50 GPa compared with 40% for a-quartz). 

The compression of the model liquid is analogous to pres- 
sure-induced phase transitions in crystals. For instance, the 
transition from a-quartz to coesite at 2 GPa, like compression 
in the liquid, changes the way the tetrahedra are connected 
rather than the distance between them: both model and data 

(Levien et al., 1980; Levien and Prewitt, 1981) show that the 
transition causes only a 1% change in L (coesite actually has a 
slightly larger L than a-quartz) but an 8% increase in density. 
The liquid is ultimately the densest phase because, unlike the 
crystals, it is not limited to structural change at phase transi- 
tions but is free to continuously adopt inherently denser ar- 
rangements of its tewahedral network with increasing pressure. 

Summary 

We have compared densities of crystals and liquid at pres- 
sure in a simple silicate system based on a realistic model of 
tetrahedral Si-O bonding. Even though the model liquid re- 
mains four-fold coordinated, it becomes denser than tetrahe- 
dral crystals at high pressure. We attribute the more efficient 
compaction of the liquid to its ability, unlike a crystal, to easily 
rearrange its structure in response to pressure. 
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Fig. 4. 300 K crystal equations of state and 2,000 K liquid 
equation of state scaled to the zero-pressure inter-tetrahedral 
distance (L0). The plot exhibits two interesting end-members: 
the first, approximating the crystals, is homogeneous com- 
pression (V scales with L 3) which would appear as a vertical 
line; the second, approximating the liquid, is inherent com- 
pression (involving no change in L) which would appear iden- 
tical to the standard equation of state (P vs. V). Values of L are 
structural averages. For the liquid, L was taken as the position 
of the Si-Si peak in g(r) (see Figure 1). Also shown is a 
schematic drawing of the Si207 bitetrahedron (filled circles = 
Si atoms, open circles = O atoms), the largest unit that all the 
tetrahedral structures share, indicating the inter-tetrahedral 
distance, L. 

It is likely that silicate liquids undergo pressure-induced co- 
ordination increases (Xue et al., 1989), and that these will tend 
to increase the density of liquids relative to coexisting solids. 
However, although our simplified model does not allow us to 
draw finn conclusions about complex natural magmatic sys- 
tems, we suggest that the efficient, purely tetrahedral liquid 
compression mechanism illustrated here may be equally impor- 
tant in determining liquid-crystal density inversions in the 
Earth. 
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