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Abstract. We present a covalent potential model of tetrahed- 
rally coordinated SiO2. The interactions include covalent 
effects in the form of a S i - O  bond-stretching potential, 
O - S i -  O and Si - O - Si angle-bending potentials, and ox- 
ygen-oxygen repulsion. Calculated equations of state of c~- 
quartz and coesite agree well with experiment (calculated 
densities within 1 percent of experiment up to 6 GPa). The 
calculated c~-quartz-coesite transition pressure agrees with 
the experimental value of ~ 2  GPa. Furthermore, the com- 
pression mechanisms predicted by the model (i.e. pressure 
induced changes in S i - O  bond lengths and O -  S i - O  and 
S i - O -  Si angles) are accurate. 

Introduction 

The chemical and thermal state of the Earth through time 
is controlled largely by the properties of silicates which com- 
prise 83 percent of the planet by volume. Thus, an under- 
standing of the nature of silicates, over the wide range of 
pressure, temperature and composition encountered in the 
Earth's interior, is central to geophysics (Bass 1987). The 
structure and thus all physical properties of silicates vary 
widely over the mantle's pressure regime (Jeanloz and 
Thompson 1983). The structural changes, due to compres- 
sion and phase changes, ultimately depend on the properties 
of the S i - O  bond, the most common chemical bond in 
the Earth (Gibbs 1982). In order to describe simply the 
properties of the Si - O bond in silicates and their structural 
variations, we begin with the compositionally simplest sili- 
cate, SiO2. 

SiO2 like other silicates has distinct low and high pres- 
sure structures, the former composed of SiO4 tetrahedra 
and the latter of SiO 6 octahedra (the transition occurs at 
8 GPa for crystalline SiO2, Akimoto et al. 1977; 20 GPa 
for MgSiO3, Liu and Bassett 1986; and may occur gradually 
above 20 GPa in SiO2 glass, Williams and Jeanloz 1988). 
This structural change also involves a change in the elec- 
tronic properties of Si from sp 3 to sp3d 2 hybridization. 
Thus, we do not expect any one model of S i - O  bonding 
to describe both tetrahedral and octahedral phases. Al- 
though a model of S i - O  bonding must ultimately include 
octahedral structures as well, we concentrate initially on 
the tetrahedral structure. Within this framework, we wish 
to make our model as general as possible, capable of de- 
scribing the important structural properties of the many 

crystalline and amorphous forms of tetrahedral S i O  2 a s  a 
function of pressure. 

To be useful in describing the structure and compression 
of crystalline and amorphous silica, we believe a model of 
tetrahedral SiO2 should meet the following criteria: 1)it 
must be independent of structural data and yet, 2) it must 
reproduce the known structure and compressional mecha- 
nisms of tetrahedral phases of SiO2 with reasonable accura- 
cy, 3)it must incorporate the known physics of bonding 
in SiO2 at least qualitatively, and 4)it must be as simple 
as consistency with the available data allows. The first two 
requirements insure that models can be obtained that are 
not biased by the structure of a particular phase. This is 
an important condition, since tetrahedral SiO2 occurs in 
at least 9 crystalline polymorphs as well as amorphous and 
liquid states with large structural differences between them 
(cf. Liu and Bassett 1982). Thus, it is unlikely that a model 
specialized to the structure of a particular polymorph will 
successfully describe the others. The third requirement is 
obvious. We state it explicitly because it is possible to ac- 
count for many structural features of SiOz polymorphs with 
purely ionic pair potential models (e.g., Erikson and Hos- 
tetler 1987). However, the inadequacy of such models be- 
comes apparent when they are used to compute thermody- 
namic properties. For example, the computed bulk moduli 
are invariably much larger than those observed experimen- 
tally, as was pointed out by Erikson and Hostetler (1987). 
The fourth condition allows one to identify which forces 
are most important for the system or process under study 
(in our case structure and compression of silicates) and thus 
which should be included in the model. Adding forces (and 
parameters) to the model inevitably improves agreement 
with observation. However, the reason for the improvement 
may only be the greater flexibility allowed by the additional 
parameters rather than physical significance of the addition- 
al force. 

Previous models of SiO2 do not meet one or more of 
the criteria described above. Simple ionic models of SiO2 
(Woodcock et al. 1976; Lasaga and Gibbs 1987; Soules 
1979; Mitra 1982; Matsui et al. 1982; Hostetler 1982) have 
been shown to predict bulk moduli of e-quartz and coesite 
that are too large by as much as an order of magnitude 
(Erikson and Hostetler 1987; Lasaga and Gibbs 1987). 
Models that include covalent effects have been reported (e.g. 
Sanders et al. 1984; Lasaga and Gibbs 1987). The latter 
authors were able to reproduce the structure of c~-quartz 
at zero pressure but not at higher pressures since their mod- 
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el predicts a negative K;  (pressure derivative of the bulk 
modulus). Although the former authors produced accurate 
structural and elastic properties for e-quartz, they used zero 
pressure structural and elastic properties of c~-quartz as con- 
straints. Furthermore, their model includes shell displace- 
ments, rendering it too complex for our purposes. 

The principal goal of this report is to present a covalent 
potential model of tetrahedral SiO2 which satisfies all the 
above requirements. We first apply the model to e-quartz 
(hereafter referred to as quartz) and coesite. These minerals 
were chosen because they are representative of the wide 
range of structures observed in tetrahedral silica. Quartz 
is typical of the very open, low pressure structures which 
are built of predominantly 6-membered rings of tetrahedra, 
while coesite has the densest crystalline tetrahedral struc- 
ture, composed of predominantly 4-membered rings. Also, 
structural and compressional data exist on these minerals 
which provide an excellent test of our model. 

The covalent potential model of SiO2 is described in 
detail below. We then discuss the procedure used to con- 
strain the potential parameters. Finally, the properties of 
quartz and coesite predicted by the model are compared 
to experimental data: equations of  state (EOS), the quartz- 
coesite transition pressure, and compression mechanisms, 
including changes in S i -  O bond length and O -  S i -  O and 
S i -  O - Si angles. 

The Model 

To guide the construction of the model, we first note an 
important feature of the compression of tetrahedral frame- 
work structures: the sharp contrast in compression mecha- 
nisms between the nearly rigid tetrahedra and the easily 
deformable angle subtended by the silicon ions at the oxy- 
gens bridging linked tetrahedra ( S i -  O - Si angle). To show 
the magnitude of this contrast, we calculate the equation 
of state for quartz with regular tetrahedra (all O - S i - O  
angle equal to 109.47 ~ and for rigid tetrahedra (with the 
additional constraint that the S i - O  bond length remain 
fixed). Grimm and Dorner (1975) give the formulas neces- 
sary to calculate the quartz volume given an S i - O - S i  
angle and an S i - O  bond length. We use the observed vol- 
ume vs. S i - O  bond length dependence of Levien et al. 
(1980) in the calculations. Figure 1 shows the result of the 
rigid and regular tetrahedra cases compared to experiment. 
Within the error of the experiment, the changes in 
O -  S i -  O angles with pressure have no effect on the volume 
of quartz. The rigid tetrahedra case, which differs by no 
more than 1 percent from experiment, shows the relative 
unimportance of changes in the S i - O  bond length. Also 
shown in Figure 1 is an analogous comparison for GeO2 
in the quartz structure. Again, the rigid tetrahedral model 
accounts for the data within the experimental error. Since 
tetrahedral distortion in low pressure GeO2 is significantly 
greater than in high pressure SiO2 (Jorgensen 1978; Levien 
et al. 1980), we conclude that changes in S i - O - S i  angles 
are the dominant compression mechanism in tetrahedral 
phases of S i O  2 throughout their stability field (P < 10 GPa). 

The dichotomy in structural compressibility strongly 
suggests an analogous dichotomy between intra- and inter- 
tetrahedral forces. The intra-tetrahedral forces, which keep 
the tetrahedra rigid, must be strong, while the inter-tetra- 
hedral forces, which accommodate nearly all the compres- 
sion, must be relatively weak. 
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Fig. 1. Volume vs. T - O - T  angle for S i O  2 a n d  G e O  2 in the ct- 
quartz structure for regular and rigid tetrahedral models and exper- 
iment. Data are from Levien et al. (1980) for S i O  2 and Jorgensen 
(1978) for GeO2 

More detailed knowledge of the interatomic forces is 
required to construct the model; for this we turn to the 
bitetrahedral Si20 7 molecule, whose bonding properties 
have been extensively studied by Molecular Orbital (MO) 
calculations (Gibbs 1982). We assume that bonding in the 
Si2Ov bitetrahedron is similar to bonding in SiO2 frame- 
work structures. This assumption is supported by three ob- 
servations: 1)the bitetrahedron is the largest unit which 
they all share; 2)bonding in SiO2 is largely covalent and 
thus short range, suggesting that most of the relevant bond- 
ing properties are contained in the bitetrahedron and 3) MO 
calculations show that the bitetrahedron can account for 
structural systematics in silicates (Gibbs 1982). 

We divide the potentials that make up the model into 
three types: 1)intra-tetrahedral covalent forces, 2)inter-te- 
trahedral covalent forces and 3)other forces, including 
O - O  repulsion and Coulomb forces. 

Intra- Tetrahedral Covalent Forces 

Intra-tetrahedral forces are dominated by the four sp s hy- 
brid orbitals protruding from the central silicon at mutual 
angles of 109.47 ~ Each orbital forms a strong covalent bond 
with an oxygen ion. The bond's strength is attested to by 
the small range of S i - O  distances observed in tetrahedral 
silicates: from about 1.6 to 1.68 A (Hazen and Finger 1978; 
Gibbs 1982). We chose a Morse potential to represent the 
S i - O  covalent bond (Morse 1929): 

V~=D {exp [ - - 2 f i ( r - r o ) ] - 2  exp [ - f i ( r - r 0 ) ] } .  (1) 

Here D is the depth of the potential well, ro is the position 
of the potential minimum, and /? controls the sharpness 
of the well. Following previous workers (e.g. Price and 
Parker 1984) we assume/? = 2. 

We model the directionality of the S i - O  bond by in- 
cluding a potential which depends on the angle between 
two hybrid orbitals (or, in practice, the angle between the 
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Fig. 2. Sec t ions  of  c o n s t a n t  r t h r o u g h  the  r vs. 0 e n e r g y  sur face  

predicted by the ORM for the Si20 v bitetrahedron. A comparison 
of the ORM without O - O  repulsion (3 solid lines) with the com- 
plete ORM (dashed line) (r = 1.62 ~_) shows that the inter-tetrahed- 
ral covalent force (Eq. 3) dominates inter-tetrahedral behavior 

lines connecting two oxygen atoms to the central silicon 
atom): 

2 k~ (a -  "oY- Va=O.5r  e (2) 
Here a0 is the minimum energy O -  S i - O  angle of 109.47 ~ 
k~ is an O - S i - O  angle-bending force constant and r e is 
the equilibrium S i - O  bond length. 

Inter- Tetrahedral Covalent Forces 

While the intra-tetrahedral forces serve primarily to keep 
the tetrahedra rigid, it is the inter-tetrahedral forces which 
control the compressional behavior of the model. Hence 
a careful consideration of the form of the inter-tetrahedral 
forces is crucial to the model's success. Some of the impor- 
tant qualitative features of these forces, as shown by the 
MO-derived S i -  O distance (r) vs. Si - O - Si angle (0) ener- 
gy surface (Gibbs 1982), are: 1)the equilibrium 0 decreases 
as r increases, 2)the angle bending force constant (fo) in- 
creases as 0 decreases and 3)it is much easier to increase 
0 significantly than it is to decrease it. 

While simple quadratic potentials in r and 0 can match 
the surface only near the minimum (Lasaga and Gibbs 
1987), we find that the potential: 

VL=O.5 kL (L-- Lo) 2, (3) 

together with the Morse potential, reproduce these qualita- 
tive features of the r vs. 0 surface quite well. Here, L is 
the separation of Si atoms in corner sharing tetrahedra, 
and kL and Lo are the L stretching force constant (fD and 
the equilibrium value of L, respectively. Sections through 
the r vs. 0 energy surface produced by the present model 
are shown in Figure 2. VL is non-zero only between Si atoms 
of corner sharing tetrahedra, hence it is a three body force. 
It may be regarded as a S i -  O -  Si angle-bending force with 
a dependence on S i - O  distance implicitly included. 

Other Forces 

The inclusion of O - O repulsion in the model is problemat- 
ic, since its effect is difficult to separate from the S i - O - S i  
angle-bending force. That is, adding O - O  repulsion or in- 
creasing the strength of the S i - O - S i  force have similar 
effects on the properties of the SilO7 molecule. Therefore, 
to help identify the simplest model which is consistent with 
the data we first consider a model without O - O  repulsion 
that is constrained solely by the properties of the Si20 7 
molecule. After pointing out its shortcomings, we add O - O 
repulsion by including the zero pressure equation of state 
parameters of quartz as constraints. We assume that the 
O - O  repulsive potential is given by: 

V0 o = A exp (-- r/b) (4) 

where A and b have units of energy and length, respectively. 
We also tested the effects of Coulomb forces. Although 

splitting between longitudinal and transverse optic vibra- 
tions (Striefler and Barsch 1975) provides direct evidence 
for the existence of ionic charge in quartz, the magnitudes 
of the charges are not experimentally constrained. Follow- 
ing Pauling (1980), we have assumed that the charges on 
Si and O are 1 and - 1/2, respectively. 

The program WMIN (Busing 1981) was used to calcu- 
late the structure and density predicted by the model as 
functions of pressure. Given a potential model, WMIN min- 
imizes the enthalpy of a crystal structure by adjusting its 
structural parameters. It is a static simulation technique, 
i.e. it does not account for the effects of temperature or 
zero point vibration. To compare the results of WMIN to 
experimental data, a Debye model thermal correction is 
applied to the static results. 

Thermal Corrections 
The total pressure is given by: 

P(V, T)=P~t(V) + P~(V) + Ptth(V, T) (5) 
where P~t is the static pressure, P~ is the pressure due to 
zero point vibrations and Pth is the thermal pressure. P~ 
and Pth are significant, since their sum is on the order of 
1 GPa for quartz and coesite. Quantitatively accurate values 
require the calculation of the phonon spectrum. Given the 
approximate nature of the potential, it is sufficient for our 
purposes to use the Debye approximation: 

P~(V) = (9/8) nkb ~,(V) O(V)/V (6) 
XD 

Pth(V)=[9nkb T(V)/V] x~ S x3 dx/(1-ex) (7) 
o 

where n is the number of atoms in the unit cell, kb is Boltz- 
mann's constant, ? is the thermal Grfineisen parameter, V 
is the unit cell volume and x .  is the ratio of the temperature 
to the thermal Debye temperature, 0 (cf. Born and Huang 
1954). The volume dependence of ? is approximated by (An- 
derson 1968): 

?(v)=,/o(v/vJ (8) 
where ?o is the value of 7 at V0, and the parameter q was 
varied from 0 to 2, the range appropriate for most crystalline 
materials (Wallace 1972; Anderson 1974; Boehler 1982). 
The volume dependence of 0 is then given by (Born and 
Huang 1954): 
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O(V) = 0o exp [(70 -Y)/q] (9) 

where 0o is the value of 0 at Vo. 
Values of 00 for quartz and coesite were taken from 

Kieffer (1979), which differ by less than 1 percent from the 
high temperature (350 K-700 K) average values calculated 
by Watanabe (1982). This is expected since 0 is not very 
sensitive to temperature at room temperature (Kieffer 1979). 
7o for quartz is reported by Boehler et al. (1979) and Boehler 
(1982). We adopt  the former authors '  value since they used 
a fluid pressure medium rather than the nonhydrostatic so- 
lid pressure medium of the latter author. The adopted value, 
7o(quartz)=0.675, is consistent with the high temperature 
(350 K-700 K) average 7(0.68_+0.07) calculated by Watan- 
abe (1982) since ? is nearly independent of temperature (An- 
derson 1968; Boehler 1982). 7o for coesite was calculated 
from the following identity: 

7 = Ks ~ v/Cp 

where K~ is the adiabatic zero pressure bulk modulus, 
is the thermal expansivity, v is the molar volume and Cp 
is the molar heat capacity at constant pressure. We take 
Ks from the 'preferred model '  of Weidner and Carlton 
(1977), a from Skinner (1962), v from Levien and Prewitt 
(1981), and Cp from Robie et al. (1978). The value thus calcu- 
lated: 

70 (coesite) = 0.37 + 0.04 

is equivalent to the high temperature average (350 K -  
700 K) calculated by Watanabe (1982) (0.352_+0.001). The 
quoted uncertainty in ? is an estimate and is due mostly 
to estimated uncertainties in e. 

No  additional thermal correction is applied for the ef- 
fects that temperature may have on the crystal structure 
independent of volume changes. The implicit assumption 
is that the crystal structure is a unique function of the vol- 
ume from 0 K to 300 K. To test this assumption, Table 1 
compares the low temperature quartz structure observed 
by Lager et al. (1982) with that expected by interpolating 
the data of Levien et al. (1980) to the observed low tempera- 
ture volume. The table shows that our assumption is valid 
for L, but not for r and a. Thus, r and a should be compared 
directly to low temperature data while our predicted L can 
be accurately compared to 300 K data. The last column 
of the table shows that changes in a and L with pressure 
can be accurately compared to 300 K data. The table sug- 
gests that the change in r with pressure cannot be compared 
to 300 K data. However, the maximum change in r over 
the relevant temperature or pressure interval is only 0.2 per- 
cent of its absolute value. It is only this qualitative feature 
of rigidity which is relevant for bulk compression. The table 
also shows that L is the best measure of inter-tetrahedral 
distance for our purposes (rather than 0) since it is affected 
much less by temperature. 

The above analysis cannot be repeated quantitatively 
for coesite since the structural differences between 15 K and 
292 K measured by Smyth et al. (1987) are less than those 
between the two relevant sets of room temperature data 
(Smyth et al. 1987; Levien and Prewitt 1981). In fact, the 
structural differences between 15 K and 292 K were smaller 
than experimental error for r and a and for 3 of the 5 S i -  Si 
distances in the coesite structure. Therefore, for consistency, 
we compare our calculated coesite structures to the 300 K 

Table 1. Temperature effects on the structure of quartz compared 
with temperature effects minus the attendant volume effects (purely 
thermal effects) and with pressure effects (over the experimental 
pressure range). Data are from Lager et al. (1982). High pressure 
data are from Levien et al. (1980) 

T=296 K 13 K obs. 13 K calc? - -  
dT b dTc 

dT+dV dP 

L(A) 3.0577 (1) d 3.0530 (1) 3 .0522 17% 0.8% 
cr (deg) 0.84 0.92 0.88 50% 2% 
r (A) 1.610 (1) 1.613 (1) 1.610 100% 71% 
0 (deg) 143.45 (6) 142.41 (6) 142.91 48% 5% 

" 13 K calc.-X(296 K)+dX/dV[V(13 K ) -  V(296 K)] 
b dT X(13 K calc.)--X(13 K obs.) 

d T X(13 K calc.)-X(13 K obs.) 
~ dP --= X(P=6.14 G P a ) - X ( P = 0  GPa) 
where X is the relevant structural quantity in Quartz: 
L: Si-Si  distance 
er: standard deviation of O - S i -  O angles 
r: average tetrahedral S i -  O distance 
0: S i -  O -  Si angle 
V: is the unit cell volume, and dX/dVis the change in the structural 
quantity w.r.t V as calculated from the 300 K data of Levien et al. 
(1980) 
d Estimated standard deviation of the last digit as reported 

data of Levien and Prewitt (1981) at zero pressure and high- 
er pressures. 

To compare the calculated transition pressure between 
quartz and coesite with experimental results, a thermal cor- 
rection is applied to the calculated free energies of the two 
phases : 

T 

G( T, P ) =  G(O, P ) -  ~ S d T  (10) 
0 

where G( T, P) is the Gibbs free energy as a function of 
temperature and pressure, and S is the entropy calculated 
by integrating the Debye heat capacity over temperature. 
G(0, P) is the zero temperature free energy: 

G(0, P ) =  Est+ Ez + (P~,+ P~) V (11) 

where Est is the static internal energy, Ez is the zero point 
vibration energy, and V is the volume at zero temperature. 

Uncertainties in the thermal correction parameters 
(especially q) lead to uncertainties in calculated 300 K pres- 
sures of ~0.1 GPa and in the free energies of ~0.3 percent. 
The combined uncertainties in pressure and free energy lead 
to uncertainties in calculated transition pressures of 1-  
2 GPa. 

Constraints 

Model parameters and the procedures used to constrain 
them are summarized in Table 2. Although the parameters 
satisfy all the constraints simultaneously, each can be identi- 
fied with an analogous physical quantity which constrains 
it most  strongly. The parameters are uniquely determined 
for each model since their number is equal to the number 
of constraints and each constraint is matched within its 
reported experimental uncertainty. The parameters depend 



Table 2. Values of parameters for the ORM (Oxygen Repulsion 
Model), CM (Charge Model) and SRM (Short Range Model) and 
the physical quantities used to constrain them. Listed with each 
parameter is the physical quantity which constraints it most strong- 
ly 

SRM ORM CM Constraints 

D(E) a 6.71 7.33 7.05 fr = 66E/L z b 
/~(L- 1 ) 2 2 2 assumed 
ro(L) 1.61900 1 .60429  1.62758 re= 1.619L b 
k~(E/L 2 ) 4.74 2.97 1.19 s  4.74E/L z~ 
%(deg) 109.47 109.47 109.47 assumed 
kL(E/L 2) 14.00 8.76 4.48 fL= 14ELL 2b'~ 

Ko = 37.1 GPa d'e 
L o (L) 3.03294 3 .03250  2.89340 L e = 3.03294 L b 
A (E) 0 7.5E6 2.8E4 Po = 2.646 g/cc d 
b(L) 0 0.14 0.22 K•=6.3 a 

a E and L refer to energy and length units respectively: E 
= 10 -12 erg; L =  1 Angstrom 
b H6Si207 MO calculation (O'Keeffe and McMillan 1986) 
~ H4SiO 4 MO calculation (Hess et al. 1986) 
a Zero Pressure EOS parameters for Quartz (Levien et al. 1980) 
~ constrains the SRM while Ko constrains the ORM and CM 

on which forces are included and so are different for the 
three models. 

As ment ioned above, we first constrain and test a model  
which neglects O - O  repulsion. The parameters  of this 
Short Range Model (SRM) are constrained only by the 
structure and force constants of the H6Si207 molecule de- 
termined by M O  calculations (O'Keeffe and McMil lan  
1986). 

Bi rch-Murnaghan EOS parameters  (Birch 1978) for this 
and other models  are summarized in Table 3. The S R M  
predicts a K ;  much smaller than experiment. Also, the zero 
pressure density and the zero pressure bulk modulus  are 
overestimated. 

The large bulk modulus  of the S R M  is due in par t  to 
the inaccuracy of the force constant  fL used as a constraint.  
fL is overest imated by the M O  calculations but  the magni-  
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tude of the error  is not  known (O'Keeffe and McMil lan  
1986). Because of this uncertainty,  we replace fL by the close- 
ly related zero pressure bulk modulus  Ko of quartz  
(O'Keeffe et al. 1980). With  this new constraint,  the SRM 
is still unable to give accurate values of the zero pressure 
density and pressure derivative of the bulk modulus,  K~. 

Inclusion of O -  O repulsion results in a significant im- 
provement  over the S R M  model. To accommodate  the two 
addi t ional  parameters  in Equat ion  4, we add the zero pres- 
sure density and K ;  of quartz  to the constraints.  We call 
this model  the Oxygen Repulsion Model (ORM). Addi t ion  
of Coulomb interactions to the O R M  results in the Charge 
Model (CM), which yields slight improvements  in the pre- 
dicted structures, but  predicts a less accurate equat ion of 
state for coesite. To avoid the use of addi t ional  solid state 
data, no a t tempt  was made to invert for opt imal  ionic 
charges. Instead, we followed Pauling's (1980) recommenda-  
tion of + 1 for Si and - 1 / 2  for O. 

Results 

The S i - O  bond  strengths predicted by the models ( ~ 7  
x 10-12 erg for the SRM and O R M  and ~ 14 x 10-12 erg 

for the CM) span the range of experimental  estimates 
( 7 - 1 3 x 1 0 - 1 2 e r g ;  cf. Erikson and Hostet ler  1987). This 
gives us confidence that  the Morse potent ial  is an appro-  
priate model  for the S i - O  bond  since the D parameter  
(Eq. 1) is found independently of bond  strength data. Fig- 
ure 1 shows that  the exact strength of the S i - O  bond  is 
not  impor tan t  for modeling the compression of crystalline 
phases since rigid te t rahedra  (infinite bond  strength) are 
nearly consistent with the data. However,  accurate predic- 
t ion of the S i - O  bond  strength may be impor tan t  in the 
liquid phase where the breaking of S i - O  bonds could con- 
tr ibute significantly to compression. 

In agreement with the arguments summarized in Fig- 
ure 1, the inter- te trahedral  force is much weaker than the 
in t ra- te t rahedral  forces. The barr ier  to l inearity of the 
S i -  O - S i  angle (0 = 180 ~ at the equil ibrium r, is only 3 per- 
cent of the S i - O  bond  energy (see Figure 2). Because it 
is so weak, and because approximate ly  correct values of 

Table 3. Comparison of experimental Birch-Murnaghan EOS parameters for quartz and coesite with results of the ORM (Oxygen 
Repulsion Model), CM (Charge Model), SRM (Short Range Model) and previous models of SiO 2. Experimental values are from Levien 
et al. (1980) and Levien and Prewitt (1981) 

Quartz Coesite 

0 Po Ko 
(deg) (g/cc) (aPa) 

K~ Po Ko K; 
(g/cc) (GPa) 

Data 143.7 2.646 37.1 
ORM 142.0 2.646* 37.2* 
CM 143.3 2.645* 37.1" 
SRM 140.6 2.682 58.4 
LG a covalent 144.0 2.685 39.4 
LG" fractional ionic 164.6 2.320 11.9 
Mitra b fractional ionic 195 
(Fully ionic) c 200-784 

6.3 2.919 96 8.4 
6.3* 2.898 78 3.2 
6.5* 2.886 84 4.6 
0.7 2.936 95 -- 3.0 

--9.3 

213 
314-860 

* Quantity used as a constraint 

a Lasaga and Gibbs (1987) 
b Mitra (1982) 
c Range of 5 fully ionic models including: Woodcock et al. (1976), Lasaga and Gibbs (1987), Soules (1979), Matsui et al. (1982) and 
Hosteler (1982) from the results of Erikson and Hostetler (1987) 
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Fig. 3. Equations of state for quartz and coesite predicted by the 
ORM compared to the experimental data of Levien et al. (1980) 
and Levien and Prewitt (1981) 
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Fig. 4. The Si--Si distance in quartz as a function of pressure 
for the ORM compared with the data of Levien et al. (1980) 

0 may be obtained with ionic pair potentials (e.g., Erikson 
and Hostetler 1987), we next examine the effect of eliminat- 
ing this force from the model. 

Without the inter-tetrahedral force, the model predicts 
fl-quartz rather than e-quartz as the stable phase at P = 0  
and T =  300 K. fl-quartz is a special high symmetry case 
of e-quartz, stable above 848 K (Mirwald and Massonne 
1980; but see Dolino et al. 1984) which contains the maxi- 
mum value of 0 (0~160  ~ compared with 0 ~ 1 4 4  ~ for c~- 
quartz at zero pressure) allowed by the quartz structure 
(Grimm and Dorner 1975). The same result is obtained if 
we eliminate only its attractive part (VL defined as zero 
for L >  Lo), reducing it to a central repulsive force similar 
to those used in simple ionic models. Results published so 
far for simple ionic models (Lasaga and Gibbs 1987) show 
that these models also predict fl-quartz as the stable zero 
pressure phase. This indicates that the weak angle bending 
covalent potential (Eq. 3) associated with the bridging oxy- 
gen must be included in accurate structural studies of silica. 

Equation of State and Transition Pressure 

The calculated EOS of quartz and coesite for the O R M  
are compared with experiment in Figure 3. Experimental 
data are from Levien et al. (1980) and Levien and Prewitt 
(1981). The calculated density of quartz agrees with experi- 
ment up to 6 GPa. Since Quartz EOS parameters were used 
as constraints, the coesite EOS provides a better test of 
the model. The model underestimates the zero pressure den- 
sity of coesite by 0.8 percent. Also, the calculated coesite 
EOS is a little softer than the experimental one. Neverthe- 
less, the calculated densities are within 1 percent of experi- 
ment up to 6 GPa, even though no coesite data was used 
to constrain the model. 

The calculated quartz-coesite transition pressure is 
1.7 GPa with an error of approximately 1 GPa due to uncer- 
tainties in the thermal corrections. This result agrees with 

the 2 _+ 0.2 GPa transition pressure observed experimentally 
(Liu and Bassett 1986). 

The CM underestimates the zero pressure density of coe- 
site more severely than the O R M  (1.1%). However, Ko 
and K ;  are in slightly better agreement with experiment. 
The quartz-coesite transition pressure is 4.5_+2 GPa for 
the CM. 

Structure and Compression Mechanisms 

Upon compression the S i - O - S i  angle in tetrahedral SiC 2 
decreases while the SiC4 tetrahedra remain nearly rigid. 
For  a model of SiC 2 to be successful it must reproduce 
these most important qualitative features of compression 
in SiC 2. The change in calculated S i - S i  distances with 
pressure is compared with experiment (Levien et al. 1980) 
in Figures 4 (quartz) and 5 (coesite). In quartz, the calculated 
S i -  Si distance agrees with experiment up to 6 GPa. Coesite 
provides a more stringent test of the model, since no coesite 
data were used as constraints and since coesite has a more 
complex, lower symmetry structure than quartz. In coesite, 
the agreement with experiment (Levien and Prewitt 1981) 
is less quantitative than in quartz but the important  trends 
are reproduced. The order of the S i - S i  distances from 
smallest to largest is reproduced within the calculated stabil- 
ity field of coesite. Also reproduced by the model is the 
counter-intuitive result that the smaller S i -  Si distances de- 
crease more with pressure than the larger ones. 

For  quartz and coesite the calculated tetrahedra are rel- 
atively undeformable compared to the S i - O -  Si angle, in 
agreement with experiment (see Table 4). Further, as is ob- 
served, the calculated S i - O  bond length decreases with 
pressure and the deviation of the O - - S i - O  angles from 
the ideal value of 109.47 ~ increases with pressure. However, 
the calculated rigidity of the tetrahedra is somewhat larger 
than that observed. The standard deviation of the O - S i -  O 
angles (~) and the increase in cr with pressure is underesti- 
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Table 4. Tetrahedral geometries and their changes with pressure 
for the ORM and experiment. Zero pressure data for quartz is 
from Lager et al. (1982). Data for changes in r and a with pressure 
is from Levien et al. (1981). Coesite data is from Levien and Prewitt 
(1981) 

r(~) e(deg) a dr (,~) de (deg) b 

Quartz 

Data 1.613 (1) c 0.92 (5) -0.004 (2) 1.4 (2) 
ORM 1.618 0.11 - 0.002 0.7 

Coesite 

Data 1 d 1.6092 (6) 0.90 (6) --0.006 (2) 0.4 (3) 
ORM 1 1.6121 0.25 --0.007 0.9 
Data 2 1.6118 (6) 0.42 (7) --0.007 (3) 0.3 (3) 
ORM 2 1.6158 0.28 --0.004 0.2 

" Low temperature experimental data are shown for r (average te- 
trahedral S i - O  distance) and a (standard deviation of O - S i - O  
angles) 
b 300 K data are shown for dr and da (change in r and e, respective- 
ly over the experimental pressure range) 
c Estimated standard deviation of the last digit reported 
d 1 and 2 following Data and ORM refer to the tetrahedra contain- 
ing Silicon 1 and Silicon 2 in the coesite structure as labelled by 
Levien and Prewitt (1981) 

mated  by the model. Also, the calculated S i -  O bond  length 
is too large and the change in S i - O  bond  length with 
pressure too small. 

While the change in S i - S i  distances with pressure is 
similar for the O R M  and CM, the lat ter  predicts smaller 
and more  deformable te t rahedra  (in quartz:  r = 1 . 6 1 2 ~ ,  
a=0 .41  des  at P = 0 ;  - 0 . 0 0 5  A change in r, 1.2 des  change 
in o- up to 6 GPa), in better agreement with experiment.  
However,  we do not  regard this as a significant advantage 
of the C M  over the O R M  since the compressional  behavior  
of tetrahedra,  as long as they remain nearly rigid, is unim- 
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por tan t  for the compression of SiO2 framework structures 
(see Figure 1). 

Discussion and Conclusions 

We have constructed two covalent potent ial  models  of tetra- 
hedral  phases of SiO2 that  are independent  of solid state 
structural  data. One of the models (CM) includes Coulomb 
interactions, while the other (ORM) does not. By design, 
the models  combine simplicity with essential quali tative fea- 
tures of the physics of SiO2 bonding, including the dicho- 
tomy between strong intra-  and weak inter- te trahedral  
forces, and a form of inter- tetrahedral  forces suggested by 
molecular  orbi tal  calculations. The models reproduce the 
structure, compressibil i ty and compression mechanisms of 
quartz  and coesite, and the transi t ion pressure between 
them, with good accuracy. Therefore, these models should 
prove par t icular ly  suitable for efficient and accurate simula- 
tions of not  only crystalline phases of SiO2 but  also liquids 
and glasses. 

The model  that  includes Coulomb forces (CM) produces 
tetrahedral  geometries and a coesite compressibil i ty that  
are in slightly better agreement with experiment. The pre- 
dicted quartz-coesite transit ion pressure and zero pressure 
density of coesite, are less accurate than those derived from 
the ORM.  However,  given the approximate  nature of the 
thermal corrections, it is not  clear that  the small differences 
in structural  detail  are very significant. Therefore, since the 
Coulomb energy term is not  clearly necessary, the simpler 
O R M  is to be preferred. 

U p o n  compression, it is likely that  the structure of liquid 
SiO2, by analogy with the solid phases of SiOz, undergoes 
a change from larger (5-8 membered) to smaller (3-5 mem- 
bered) rings of te t rahedra  (Hemley et al. 1986). The transfor- 
mat ion  from quartz  (predominant ly  6-membered rings) to 
coesite (predominant ly  4-membered rings) is an example 
of such a transition. The O R M  accurately represents the 
equations of state of both  phases and the transi t ion between 
them. This gives us confidence that  the model  will accurately 
predict  the structure of liquid SiO2 at moderate  pressures 
(i.e., pressures below those where octahedral  coordinat ion  
may become important) .  
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