9 First Principles Theory of Mantle and Core Phases

Lars Stixrude

Department of Geological Sciences
425 E. University Avenue
University of Michigan
Ann Arbor, Michigan, 48109-1063, U.S.A.

INTRODUCTION

The Earth’s interior is an extreme environment where the pressure and temperature
(up to 3.6 Mbar or 360 GPa, and approximately 6000 K, respectively at Earth’s center)
are sufficiently high to affect the structure, physics, and chemistry of minerals in often
surprising ways that may confound our intuition based on studies at near-ambient
conditions. Though the Earth’s interior deeper than 12 km has not been subject to in siru
observation, observational evidence from seismology, combined with experimental and
theoretical studies of Earth materials under extreme conditions, has allowed us to
construct a picture of this remote region of the planet (Fig. 1). Although the mineralogy
of the uppermost mantle is familiar from studies of xenoliths, the deepest portion of the
silicate mantle (2890 km depth, or 136 GPa) is more than twice as dense as average
continental crust (Dziewonski and Anderson 1981), and is thought to be composed
primarily of a phase not yet seen at the Earth’s surface: an Mg-rich meta-silicate with the
perovskite structure. The Earth’s core is thought to be composed primarily of iron and is
subdivided into a liquid outer part and a solid inner part. The inner core is 65% denser
than iron at ambient conditions, partly due to the effects of compression, and partly to the
stabilization, at high pressure, of a close-packed, paramagnetic phase of iron.

Over the regime of the Earth’s interior, pressure has a larger effect than temperature
on the density and many other physical properties. It is in part for this reason that most
high pressure studies of minerals have been performed at ambient or zero temperature.
One can show on general grounds that the pressure in the Earth is sufficiently large that
one must expect substantial changes in the electronic structure of minerals within the
Earth’s interior. In addition to structural solid-solid phase transformations, one expects
changes in the nature and character of bonding, from ionic, towards increasing covalency,
or from insulating to metallic behavior. The richness of the microscopic physics of the
deep interior places tremendous demands on theoretical methods. First principles
methods, and in particular density functional theory, the focus of this review, are uniquely
suited to the study of minerals at extreme conditions because they are equally applicable
to all types of structures and bonding, and to all elements in the periodic table. A review
of first principles methods as they have been applied in the context of high pressure
mineral physics and geophysics is given in Stixrude et al. (1998).

Although the influence of temperature is secondary to that of pressure, it is central to
our understanding of geodynamics. In the broadest terms, the thermal evolution of the
Earth is manifested in the dynamic processes of plate tectonics, volcanism, and others,
through the influence of temperature on the physical and chemical properties of minerals.
A fundamental concern is an understanding of how temperature affects thermodynamic
properties and phase equilibria, including solid-solid phase transitions, melting, and
devolatilization. In the lithosphere, where the geothermal gradient is large and highly
variable, temperature has a strong influence on physical properties, and through igneous
processes, is ultimately responsible for the presence of the crust. Below the lithosphere,
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Figure 1. Properties of the Earth's interior: the density (bold line) as determined seismologically and the
pressure (light line) calculated from the density distribution (Dziewonski and Anderson 1981). The density
profile reflects the divisions of the Earth's interior into mantle and core and the further subdivision into
upper mantle, transition zone, and lower mantle, liquid outer core, and solid inner core. The temperature
distribution cannot be directly observed below the uppermost crust and must be inferred. The bold dashed
line is due to Stacey (1992). Fixed points along the geotherm (symbols) are depths at which the average
temperature may be estimated by comparing seismological observations with experimental or theoretical
determinations of the properties of Earth materials. For example, the two points within the mantle derive
from determinations of the Clapeyron slope of solid-solid phase transformations that account for the sudden
change in seismic properties at the boundaries between upper mantle, transition zone and lower mantle. The
point at the inner core boundary is based on experimental determination of the iron melting curve and
estimates of the effects of freezing point depression due to light alloying constituents in the core. The point
within the inner core is from a new constraint on deep Earth temperatures discussed in this review (Steinle-
Neumann et al. 2000). The discrepancy between this determination of inner core temperatures and that
based on the iron melting curve is illustrative of the uncertainties that likely remain in our knowledge of the
geotherm. In some parts of the earth, temperature may also vary laterally (not shown). In the mantle, lateral
temperature variations drive mantle convection and may exceed 1000 K; see e.g., Davies (1999) for an
introduction to mantle dynamics. In the outer core, temperature varies little laterally (Stevenson 1987), and
the inner core is probably isothermal to within a few hundred degrees (Stixrude et al. 1997).
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the geothermal gradient is greatly reduced, approximating an adiabat, and lateral
variations in temperature are smaller. Although the resultant lateral variations in physical
properties are comparatively subtle, they are directly responsible for the largest scale
dynamic processes in the planet; lateral density variations (buoyancy) being the driving
force for mantle convection. In the Earth’s core, isolated from the Earth’s surface and
from direct observation, an understanding of the effects of pressure and temperature on
the properties of materials is an essential component of our knowledge of the composition
of this region.

The theoretical treatment of the behavior of materials in the Earth’s interior requires
two major ingredients. First is the calculation of the total energy of a fixed arrangement of
nuclei and their complementary electrons. This calculation requires powerful quantum
mechanical methods because the range of elements, structures, and bonding environments
encountered within the Earth is large. Second is the sampling of configuration space; that
is the efficient enumeration of energetically important states of the crystal as its
constituent atoms undergo thermal vibration or other types of motion (e.g., diffusion).
The most commonly used approach is molecular dynamics, which makes use of
additional physical quantities such as the force acting on the atoms. While first principles
methods for computing the total energy and molecular dynamics have both been in use

for decades, their combination is quite recent, dating from the work of Car and Parrinello
(1985).

We begin with an outline of the nature of the problem, emphasizing the unique
aspects of temperature and its physical effects from a theoretical point of view. A brief
overview of some essential aspects of statistical mechanics follows which serves as a
foundation from which all practical methods follow. This overview will emphasize the
total energy as a fundamental concept and object of calculation and the efficient sampling
of configuration space as a primary concern. First principles methods for computing the
total energy, as well as forces and stresses are described. Methods for sampling
configuration space are compared, including Monte Carlo, molecular dynamics, and the
cell model, a simplified physical mode! that serves to illuminate the physics. Some
applications follow, to the major materials of the Earth’s mantle and core, and some
future prospects are discussed.

-

THEORY
Overview

The nature of the problem. Consider a monatomic one-dimensional crystal (Fig. 2).
Imagine the state of the crystal under static conditions, in which the temperature is zero
and zero-point motion is absent. Note that this state is inaccessible in the laboratory;
whereas temperatures close to absolute zero may be achieved, zero-point motion cannot
be eliminated. In this idealized situation, the atoms are stationary and occupy ideal
crystallographic sites. The resulting structure possesses high symmetry and a small unit
cell. From a theoretical point of view, these are desirable properties. We are able to apply
periodic boundary conditions, and the period is small. These properties are unique to the
static crystal and account for the importance of this idealization in theoretical studies.

Now consider the same crystal at finite temperature. Recall that the temperature is
defined as the average kinetic energy of the atoms. Temperature therefore implies motion:
at any instant, it will be highly unlikely to find any atom occupying an ideal
crystallographic site. Consider a snapshot of our crystal in which a single atom is
displaced. Because the ideal crystallographic site is defined as a state of lowest energy,
the potential energy in the displaced position must be greater. This energy of
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Figure 2. The nature of the statistical mechanical problem in the case of a crystalline solid. Uppermost
is a representation of a perfect one-dimensional monatomic lattice as would exist under static
conditions. Immediately beneath is an illustration of the effect of temperature; atoms no longer occupy
their ideal lattice sites and the symmetry of the structure at any instant is completely broken. The
lowermost graph shows how the energy of the structure depends on the displacement of an atom; the
dependence is quadratic to first order, but higher order (anharmonic) terms may be important at
conditions typical of the Earth's interior.

displacement leads to thermodynamic properties including, for example, thermal
expansivity and heat capacity. The dependence of the energy on the magnitude of the
displacement gives rise to a force acting on the atom, in this case a restoring force that
tends to return the atom to its ideal site. At high temperature, we have a formidable
theoretical problem. The symmetry of any snapshot of the structure is completely broken
and the unit cell is infinitely large.

Statistical mechanics. Statistical mechanics provides the tools required to deal with
the physics of materials at high temperature. There are many excellent introductory texts
for the interested reader (Hill 1956; Landau and Lifshitz 1980; McQuarrie 1976; Reif
1965). We focus on equilibrium thermodynamic properties because these play such an
important role in our understanding of the Earth’s interior. For the purposes of this
discussion, we require a single result of statistical mechanics: the partition function of a
system of N atoms

1
NIAY

is a 3N-dimensional integral over the coordinates of the atomic nuclei, located at R;. The
thermal de Broglie wavelength A=h/N(2nmkT) where h is the Planck constant, k the
Boltzmann constant, and m the nuclear mass. The integrand depends on the total energy E
and the temperature 7. The total energy is a unique function of the coordinates of the
atomic nuclei. This formulation of the problem is exact at temperatures sufficiently high
that classical statistics are applicable to the atomic motions. A criterion for the
applicability of our classical treatment is the value of A, which can be thought of roughly
as the spatial extent of the wavefunction of the atomic nucleus. Classical statistics are
applicable as long as A is much less than the average interatomic spacing. Another test of
classical behavior is that the temperature must exceed the Debye temperature, a measure
of the typical vibrational frequency of a material (Dove 1993; Kieffer 1979). This
condition is met throughout most of the Earth’s interior where typical temperatures in the
mantle and core (~3000 K and ~6000 K respectively) are substantially greater than the

0= [exp[-E(R,.R,,...R,)/kT] dR,dR,..dR, )
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Debye temperatures of their most abundant constituents (~1000 K and ~300 K,
respectively).

Once we have evaluated the partition function, all thermodynamic properties follow.
The Helmholtz free energy for example is

F=—kTnQ )

Other thermodynamic properties are simply related to volume and temperature derivatives
of F (Callen 1960). For example, the pressure (negative of the volume derivative) can be
calculated by computing the Helmholtz free energy at two different values of the volume.

In order to explore material properties at lower temperatures, first order quantum
corrections may be computed. Lattice dynamics is a complementary approach, valid in the
limit of low temperature (see Parker et al., this volume). The periodicity of the lattice is
used to elegant advantage, leading to the concept of phonon dispersion. In this method,
the total energy is expanded to second order in the atomic displacements, and the
energetics of vibrational excitation are explored with the proper quantum statistics. The
critical limitation of the lattice dynamics method is the quasiharmonic approximation;
higher order terms in the expansion of the total energy are neglected. The method may
fail at high temperatures where atomic displacements can be large and anharmonic
contributions to thermodynamic properties correspondingly important.

In metals and semi-conductors, the thermal excitation of electrons must also be
considered. We may write the Helmholtz free energy

F=EWV,1)-TS,(V,T)+ F,,(V,T) 3)

where the total energy, E, is now a function of temperature, S,; is the entropy arising from
the thermal excitation of electrons and F, is the vibrational portion of the free energy. In
the special case of an insulator, S,~0 and F.5=F-E(V,0). The total energy at finite
temperature must be determined self-consistently with the charge density. This is because
the thermal excitation of electrons alters the charge density, and in turn the potential to
which the electronic states respond. The thermal excitation of electrons must be treated
with the proper quantum statistics since the relevant energy scale, the Fermi temperature
(130,000 K in the case of iron) is much higher than the Debye temperature. The Fermi
temperature is the energy of the highest energy electronic state divided by k (Kittel 1996).
The partition function of a metal or semi-conductor is computed using Equation (1), but
with the total energy replaced by the electronic free energy

1
0= fexp[-F, (Ri.R,,..R;T)/kT ] dR,dR,..dR, )

F,(R.Ry,..Ry;T) = E(R,R,,...R,;T) =TS, (R,,R,,...R;T) (5)

where the dependence of the electronic free energy on temperature is made explicit. This
expression reduces to (Eqn. 1) in the limit of large band gaps. In the analysis that follows,
we will assume that we are dealing with insulators and that the special case (Eqn. 1)
applies, while recognizing that the generalization to metals is straightforward.

For the statistical mechanical problem to be well posed, a choice of ensemble is
essential. To this point, we have assumed the canonical or NVT ensemble, that is one in
which the number of particles, N, the volume, V, and the temperature 7 are held constant,
while the conjugate variables: chemical potential, pressure, and energy are allowed to
fluctuate. The magnitude of these fluctuations can be related to thermodynamic
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properties. For example, energy fluctuations are related to the heat capacity (McQuarrie
1976). Other ensembles are also possible. As we will see, the NVE or micro-canonical is
the natural ensemble of molecular dynamics. The NPT ensemble, where P is the pressure,
is perhaps the most convenient for comparison with experiment because these are the
variables that are generally controlled in the laboratory. In this ensemble, the volume, or
more generally, the cell-shape fluctuates. The development of variable cell-shape
methods in statistical mechanics has been a major advance in the study of the large
number of Earth materials that have less than cubic symmetry (Wentzcovitch 1991,
Wentzcovitch et al. 1993). In this ensemble, the partition function differs from (Eqn. 1) in
that an integral over all possible volumes is also included.

Regardless of the ensemble chosen, we are faced with evaluating the integral of
Equation (1) or one of similar dimensionality. We must generate, in principle, all possible
atomic arrangements (snapshots) of the system and evaluate the total energy (or electronic
free energy in the case of metals) for each. Because the integral contains so many
dimensions, O(10%), this brute force approach is impossible. More efficient methods for
solving the statistical mechanical problem, including the particle in a cell method, the
Monte Carlo method, and the molecular dynamics method are discussed below. First we
focus on the computation of the total energy for a given arrangement of nuclei, which is
essential for all these methods, and the computation of forces and stresses, which is the
basis of molecular dynamics.

Total energy, forces, and stresses

A wide range of theoretical methods for computing the total energy have appeared in
the Earth sciences literature, and many have been applied to understanding the behavior
of deep Earth materials. These methods differ greatly in the level of physics included and
as a result in the quality and security of their predictions. First principles methods lie at
one extreme of the theoretical spectrum and are distinguished by containing i) the
smallest possible number of approximations and ii) no free parameters. Because they are
most closely tied to the fundamental physics, first principles methods have the greatest
predictive power. This is particularly important in the study of the earth’s deep interior
where conditions of pressure ‘and temperature exceed those that can be routinely
reproduced in the laboratory. Two classes of first principles methods have been important
in the study of deep earth materials. The Hartree-Fock method is discussed elsewhere in
this volume. Our focus will be on density functional theory which has the advantage of
being equally applicable to all elements of the periodic table and to all types of bonding.
Other theoretical methods, which are computationally more efficient, but whose
predictive power is less than first principles methods, exist. The term ab initio is applied
to those methods that, while parameter free and independent of experiment, construct an
approximate model of some aspect of the relevant physics. An example is the electron gas
method of Gordon and Kim (1972) and its successors, in which the charge density is
modeled by overlapping spherically symmetric atomic or ionic charge densities. Semi-
empirical methods rely on experimental measurement for the values of free parameters.
One example is the Born-Mayer rigid ion model (see Born and Huang 1954 for an
extended discussion), in which the potential energy is represented as a sum of pair-wise
inter-atomic interactions. See Stixrude et al. (1998) for a more complete comparison of
first principles with other methods.

From the point of view of any first principles theory, solids are composed of nuclei
and electrons; atoms and ions are constructs that play no primary role. This departure
from our usual way of thinking about minerals is essential and has the following
important consequences. We may expect our theory to be equally applicable to the entire
range of conditions encountered in planets, the entire range of bonding environments
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entailed by this enormous range of pressures and temperatures, and to all elements of the
periodic table. Because there are no free parameters, first principles calculations have no
input from experiment and are therefore ideally complementary to the laboratory effort.

Density functional theory is a powerful and in principle exact method of solving the
quantum mechanical problem that has revolutionized the theoretical study of condensed
matter (Hohenberg and Kohn 1964; Kohn and Sham 1965), see Jones and Gunnarsson
(1989) for a review. The essence is the proof that the ground state properties of a material
are a unique functional of the charge density p(r). This is important theoretically because
the charge density, a scalar function of position, is a much simpler object than the total
many-body wavefunction of the system. The total energy

E[p(0)] =T[p(r)]

s 22, Zpm) ,  cp®p) .,
+NW_,._?|_-,_+M%||&_F;1 r+ o] drdr (6)
+E,.[p()]

The first term T is the kinetic energy of a system of non-interacting electrons with the
same charge density as the interacting system. The next three terms are the electrostatic
(Coulomb) energy of interaction: i) among the nuclei; with charge Z; and location R,, ii)
between nuclei and electrons and iii) among the electrons, the so-called Hartree term. The
last term E,. is the exchange-correlation energy which accounts for physics not included
in the Hartree contribution, including the tendency of electrons to avoid each other
because of their like charges and the Pauli exclusion principle. The power of density
functional theory is that it allows one to calculate, in principle, the exact charge density
and many-body total energy from a set of single-particle equations: the so-called Kohn-
Sham equations

AIQN +Vg _Hb?vu_w v, =&y, - O]

where y; is the wave function of a single electronic state, & the corresponding eigenvalue
and Vg is the effective potential that includes ;Coulomb terms and an exchange-
correlation contribution, V... Because the potential is itself a functional of the charge
density, the equations must be solved self-consistently, usually by iteration.

The Kohn-Sham equations are exact. They cannot be solved exactly however,
because we do not yet know the exact, universal form of the exchange-correlation
functional. Fortunately, simple approximations have been very successful. The Local
Density Approximation (LDA) is based on the precisely known case of the uniform
electron gas. The LDA takes into account nonuniformity of the charge density in real
materials to lowest order by setting V.. at every point in the crystal to that of the uniform
electron gas with a density equal to the local charge density (Lundqvist and March 1987).
The LDA has been shown to yield excellent agreement with experiment for a wide variety
of materials and properties, but also shows some important flaws; for example, it fails to
predict the correct ground state of iron. The shortcomings of the LDA may be due to its
local character, that is, its inability to distinguish between electrons of different angular
momenta or energy. Generalized gradient approximations (GGA) partially remedy this by
including a dependence on local charge density gradients in addition to the density itself
(Perdew et al. 1996).

In addition to the essential approximation to the exchange-correlation functional,
some first principles calculations make additional assumptions that are asymptotically
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valid. These include the frozen core approximation, and the pseudopotential
approximation. There are a number of excellent reviews of the pseudopotential concept
and its applications (Cohen and Heine 1970; Heine 1970; Pickett 1989). The physical
motivation for the frozen core approximation is the observation that only the valence
electrons participate in bonding and in the response of the crystal to most perturbations of
interest. We then need solve only for the valence electrons in Equation (7), often a
considerable computational advantage. The pseudopotential approximation goes one step
further by replacing the nucleus and the frozen core electrons with a simpler object, the
pseudopotential, that has the same scattering properties. The advantages of the
pseudopotential method are 1) spatial variations in the pseudopotential are much less
rapid than the bare Coulomb potential of the nucleus and 2) one need solve only for the
(pseudo-) wavefunctions of the valence electrons which show much less rapid spatial
variation than the core electrons, or the valence electrons in the core region. This means
that in the solution of the Kohn-Sham equations, potential and charge density can be
represented by a particularly simple, complete and orthogonal set of basis functions
(plane-waves) of manageable size. The construction of the pseudopotential is non-unique.
Care must be taken to demonstrate the transferability of the pseudopotentials generated by
a particular method and to compare with all electron calculations where these are
available. When these conditions are met, the error due to the pseudopotential is generally
small (few percent in volume for Earth materials) (Stixrude et al. 1998).

First principles methods yield the total energy, the charge density, and the quasi-
particle eigenvalue spectrum (band structure) for a given (static) arrangement of nuclei.
The total energy is not only an important ingredient in our central problem (Eqn. 1), but is
also a quantity of interest in itself. By examining changes in the total energy with respect
to perturbations of the crystal structure, we make contact with experimental
measurements. For example, the change in the total energy with respect to volume yields
the equation of state. Calculations of the total energy in strained configurations can be
used to determine the elastic constants. These properties are of course for the static
lattice, which is not observable experimentally. However, it is a useful idealization for
comparison with laboratory measurements at ambient conditions where thermal effects
are small for many materials and properties.

In addition to the total energy, it is possible directly to calculate first derivatives of
the total energy using the Hellman-Feynmann theorem (Feynman 1939; Hellman 1937).
The application of this theorem allows one to determine the forces acting on the nuclei
and the stresses acting on the lattice (Nielsen and Martin 1985). This is important for
several reasons. The most important in the context of high temperature behavior is that
knowledge of the forces and stresses allow us to perform first principles molecular
dynamics, a powerful way of solving the statistical mechanical problem. Molecular
dynamics is discussed in more detail below. See Payne et al. (1992) for a review of the
application of density functional theory to molecular dynamics.

Statistical mechanics

Any of the methods described in the previous section permit the evaluation of the
energy that appears in our central problem (Eqn. 1). Recognizing that a naive attempt to
evaluate the partition function directly will fail, we must develop methods that sample
configuration space efficiently. An important observation is that of all possible
configurations of the nuclei (R;, R,, ..., Ry), only a small fraction will contribute
significantly to the integral. For any condensed phase, the vast majority of configurations
will consist of very high energy states in which pairs of atoms are nearly coincident. Since
these states will occur with only vanishingly small probability in nature, our sampling of
configuration space must be directed towards the small subset of structures in which

First Principles Theory of Mantle & Core Phases 327

inter-atomic distances are not extremely unfavorable energetically. In the particle-in-a-
cell method, a particularly simple and illustrative solution arises from the intentional
restriction of our sampling of configuration space to the motion of a single atom. The
Monte Carlo method provides an efficient means of sampling configuration space more
generally and for the computation of certain thermodynamic quantities. The method of
molecular dynamics takes a different approach that allows us to explore not only bulk
thermodynamic properties, but also microscopic mechanisms of change.

Particle in a cell method. This method was originally developed as an
approximation to the liquid state. However, it was soon realized, in part because the
method neglects an explicit treatment of the configurational entropy, that the method was
better suited to solids (Cowley et al. 1990; Holt et al. 1970). There are two central
approximations. The first recognizes that motion of the atoms in a crystal consists
primarily of vibration about ideal crystallographic sites. While diffusion and the
formation of defects are important for understanding deformation and transport
properties, their contribution to thermodynamic properties is secondary. Space is divided
into non-overlapping sub-volumes centered on the nuclei (Wigner-Seitz cells) and the
coordinates of each atom restricted to its cell.

The second approximation in the particle in a cell method is that the motion of the
atoms are uncorrelated. This is expected to be a good approximation at high temperature
where the kinetic energy of vibration is large. If the change in total energy upon moving
one atom be independent of the location of the others, then the partition function
simplifies tremendously: the 3N-dimensional integral reduces to the product of N
identica! 3-dimensional integrals

N

0= fexp) - £ | ©

where R; is the location of the so-called wanderer atom, and A is the Wigner-Seitz cell.
This type of simplification, an example of the factorization of the partition function, also
plays a central role in the analysis of the ideal gas where the particle energies are mutually
independent. Note that in the case of our crystal, the factor M no longer appears because
we have assumed that the nuclei can be &mazmcmm_mma by the lattice site about which they
vibrate.

The particle in a cell method is a classical mean field approximation in which the
wanderer moves in the crystal potential of the otherwise ideal lattice. Because large
displacements of the wanderer atom are included in the integral - up to the boundary of
the Wigner-Seitz cell, or approximately half the nearest-neighbor distance - the particle in
a cell method accounts explicitly for anharmonicity (Fig. 3). The method is very efficient
and is much more rapid than Monte Carlo or molecular dynamics. This is a tremendous
practical advantage especially when using first principles methods for computing the tota]
energy. The speed of the calculation depends on the number of total energy calculations.
These can be reduced considerably, compared with a naive evaluation of the integral, by
using the point symmetry of the wanderer site (Wasserman et al. 1996b).

Practical issues in the implementation of the particle in a cell model include
convergence of the total energy of wanderer displacement. There are two distinct
convergence issues. One is common to any total energy calculation. The total energy must
be converged with respect to the size of the basis set that is used to represent charge
density and potential and the number of points in reciprocal space (k-points) at which the
Kohn-Sham equations are evaluated (Brillouin zone sampling) (see Stixrude et al. 1998
for an extended discussion). The other convergence issue has to do with the size of the
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Figure 3. The energy of displacement of one atom in hcp iron at a density of 13 Mg m> (Steinle-
Neumann et al. 2000) (symbols). The atom is displaced along the a-axis directly towards one of the
nearest neighbors; magnitude of displacement is measured in units of the a lattice parameter. The solid
line is a quartic fit. A quadratic fit (dashed line) illustrates the magnitude of anharmonicity.

supercell. Because we retain periodic boundary conditions, we must ensure that the
supercell be sufficiently large that the wanderer does not interact with its periodic images.
Convergence is demonstrated by computing the change in the total energy for one
particular displacement of the wanderer atom as a function of supercell size. Convergence
may be achieved for a supercell of ~50 atoms. The two convergence issues are not
independent. As the size of the supercell grows, the size of the Brillouin zone shrinks.
This means that convergence of the total energy will require evaluation at fewer
reciprocal space points (k-points) than would be required of a primitive cell. Indeed,
experience shows that calculations with 1-4 k-points are often sufficient even for those
cases, such as iron, where hundreds of k-points are required for convergence of the total
energy using a primitive unit cell.

As an example of the application of this method, we show results from a study of
close-packed iron at high pressure and temperature (Wasserman et al. 1996b) (Fig. 4).
The vibrational partition function is calculated with the particle in a cell method
combined with an ab initio tight-binding model to compute the total energy of wanderer
displacement (Cohen et al. 1994). First principles all electron calculations, using the
linearized augmented plane wave (LAPW) method, were used to compute the static total
energy and the contribution due to the thermal excitations of electrons. In this study, the
vibrational partition function was written in the form (Eqn. 1), that is, the total energy
rather than the electronic free energy appears in the integrand. Since iron is a metal this is
an approximation and corresponds to the neglect of the coupling between electronic and
phonon excitations. Subsequent calculations show that this approximation is not a setious
source of error for iron (Steinle-Neumann et al. 2000). The supercell contains 108 atoms
and the Brillouin zone is sampled at a single k-point (the I"-point at the zone center).

Monte Carlo method. This method was the first to be applied to the study of many-
atom condensed matter systems (Metropolis et al. 1953) (see also chapters by Cygan and
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Figure 4. Results of a study of close-packed iron based on the particle in a cell method (Wasserman et
al. 1996b). Theoretical and experimental (Brown and McQueen 1986) Hugoniots are in excellent
agreement. The temperature along the Hugoniot increases with increasing pressure (not shown). The
theoretical results predict a temperature of 5600 K at 243 GPa in excellent agreement with some
experimental determinations (Brown and McQueen 1986) and approximately 1000 K lower than the
results of Yoo et al. (1993).

Kalinichev, this volume). The Monte Carlo method does not suffer the approximations of
the particle in a cell method; atoms are not restricted to be near their ideal lattice sites
and correlation between atomic motion is taken into account. This means that the zoam
Carlo method is equally applicable to all states of matter: solid, liquid, or gas. On the
oﬁm.n hand, the Monte Carlo method (and molecular dynamics), as it is most commonly
mvv:.aau has the disadvantage of not computing the partition function directly, although
special techniques for this have been ao<m_ovn@m In most typical applications, one
om_oc_wam instead ensemble averages of those thermodynamic properties that are defined
.mon individual configurations (snapshots) of the system. These properties include the
internal energy and the pressure, for example, but not the entropy or free energy. For any

thermodynamic property that is defined for each configuration of the system X, the
ensemble average is

()= ?AP,ze...winéﬁ-m?_,we...zi;i%_%e..%z
z

éwoa Z =0ON!A" is the configuration integral. For the calculation to be efficient, we
v_mm our sampling of configuration space towards those regions that contribute most to the
integral, 5.& is towards configurations that have relatively low energy. We must then
remove this bias when computing the ensemble average. If the probability of the
existence of a certain configuration m in our sample be W(m), then, replacing integrals by

) 2. X (m)exp[ —E(m)/ kT /W (m)

(X) == S exp[ —E(m) /KT |1 (m)

m

(10)
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vhere the specification of the configuration is denoted symbolically by m. A natural
‘hoice for W(m) is the Boltzmann distribution, W(m)=exp[-E(m)/kT]. In this case, the
:alculation of the ensemble average reduces to a simple, unweighted average over
onfigurations

M
(x)~ M_MMié (12)
m=1

vhere M is the total number of configurations. The generation of a biased sampling of
sonfiguration space is an example of importance sampling. Methods for producing a
sample drawn from the Boltzmann distribution include the construction of a Markov
shain in which the next configuration is generated from the previous one by moving one
itom a small random amount (Wood and Parker 1957). The new configuration is
accepted always if it lowers the total energy, and conditionally if the energy is increased:
if a random number chosen on (0,1) is less than exp(-AE/kT) where AE is the change in
energy. Sampling is discussed in more detail in a number of references (Allen and
Tildesley 1989; Frenkel and Smit 1996; Hansen and McDonald 1986).

A practical concern in any method of computational statistical mechanics is the
choice of boundary conditions. In principle, in order to reproduce a macroscopic crystal,
we would need to include a large number atoms in our simulation: O(10'?) for a volume
of ~1 um’. Even with the efficiency gained by importance sampling, this would be an
impossible task for a simulation in which the energy is calculated from first principles.
However, such large systems are unnecessary. As in the case of the particle in a cell
method, periodic boundary conditions based on a supercell are generally used. The effect
on thermodynamic properties of correlation of atomic motions decays rapidly with
increasing distance; convergence tests demonstrate that supercells containing of oaﬂ 100
atoms accurately reproduce infinite system behavior. Another practical concern is the
number of configurations that must be generated in order to mmmmc&o_% sample
configuration space. This depends on the system; whereas fewer than 10° configurations
may be sufficient for low density fluid systems (Wood and Parker 1957), as many as 2
million are required to obtain precise averages for silica glass (Stixrude and Bukowinski
1991). Depending on how many configurations are required, the Monte Carlo method
may be more efficient for the computation of thermodynamic properties than the
molecular dynamics method to be discussed next. The reason is that only the internal
energy need be computed for each configuration. In contrast, molecular dynamics requires
the computation of interatomic forces which may be substantially more costly. Howevér,
this disadvantage of molecular dynamics is often outweighed by the additional insight
gained by computing the dynamics of the system directly.

Molecular dynamics. The methods described so far rely on ensemble averages to
compute thermodynamic properties, that is averages over large numbers of possible
configurations of the system. In contrast, the molecular dynamics method, first described
for the case of continuous potentials by Rahman (1964), explore the time evolution of a
single realization (see also chapters in this volume by Cygan and Garofalini). The
foundation of the molecular dynamics method is the ergodic hypothesis. For a property X
defined for each configuration (which we now abbreviate as R") and each instant of
time ¢

A\w\v _ ._.kANZmevﬁlmszv;ﬂu_%z i :Bw ‘._.NAQ& )

N ot

That is, given sufficient duration, time averages are equivalent to ensemble averages.

First Principles Theory of Mantle & Core Phases 331

Molecular dynamics closely mimics the experimental situation where measurements of
thermodynamic properties also generally rely on the ergodic hypothesis.

The essence of the molecular dynamics method is a straightforward application of
Newton’s second law. To obtain the time evolution of the system, we integrate the set of
coupled second order differential equations

R, =F(R.,R,,....R,)/m,

R,=F,(R,R,,....R,)/m, (14)

R, =F,(R,R,,....R,)/m,

where dots indicate time derivatives, F; is the force acting on nucleus i, m, is the nuclear
mass, and the dependence of the force on the positions of all other nuclei is made explicit.
The force may be calculated by any of the methods discussed in the section on “Total
energy, forces, and stresses.” It is the calculation of the force that determines the physics,
assuming that all practical issues have been controlled (see below). It is important to
realize that the simulation itself is simply a method for solving efficiently the differential
equations and does not add any physical content. So for example, if the forces are
calculated by density functional theory, the choice of the exchange-correlation potential
(e.g., LDA or GGA) will completely determine the outcome of the simulation in terms of
average thermodynamic or dynamic quantities.

Periodic boundary conditions are generally chosen for the solution of the differential
equations. As for other statistical mechanical methods, a supercell of ~100 atoms is often
sufficient for the computation of equilibrium thermodynamic properties. The choice of
initial conditions is in principle irrelevant. Given a molecular dynamics trajectory of
infinite duration, the system will evolve towards the equilibrium structure regardless of
the initial arrangement. In practice, the trajectory is of finite duration and the system may
not be able to transform to the equilibrium structure within the allotted time. This
situation is also encountered in experiments where kinetics may hinder the formation of
the equilibrium phase over finite time scales. As in experiments, the approach to
equilibrium may be speeded in molecular dynamics simulations by increasing the
temperature of the system. The initial conditions consist of a specification of the positions
and velocities of the nuclei. The velocities are generally drawn pseudo-randomly from a
Gaussian (Maxwell) distribution that corresponds to the temperature of interest. Other
practical issues include the choice of method used to integrate the differential equations
numerically, and the choice of the appropriate time step (Allen and Tildesley 1989).

Because Newton’s equations of motion are conservative, the natural ensemble is
NVE (micro-canonical), that is one in which the internal energy rather than the
temperature is held constant. This is inconvenient if one wishes to compare with
experiment where it is the temperature that is generally controlled. In order to perform
molecular dynamics in the canonical ensemble, a thermostat must be applied to the
system. This is accomplished by constructing a pseudo-Lagrangian. Many forms for
temperature-conserving Lagrangians have been proposed, most of which can be written in
a form that adds a frictional (velocity-dependent) term to the equations of motion (Allen
and Tildesley 1989). Physically, the thermostat can be thought of as a heat bath to which
the system is coupled. In the NPT ensemble, in which the pressure is held constant, the
cell size and shape fluctuates. The choice of dynamical variables is critical. If the lattice
parameters are chosen as in the method of Parrinello and Rahman (1981), the time
evolution may depend on the chosen size or shape of the supercell. This difficulty is
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liminated by a re-formulation in which the components of the strain tensor are cast as the
lynamical variables (Wentzcovitch 1991).

As an example of the application of molecular dynamics, we show a study of liquid
ron using an ab initio tight-binding model (Stixrude et al. 1998; Wasserman et al. 1996a)
Fig. 5). Simulations were run in the NVT ensemble with the thermostat of wmammamo: et
1l. (1984). The supercell contained 108 atoms, and the simulation was run with a timestep
>f 1 fs for approximately 1 ps. Conditions were chosen to be typical of the Earth’s outer
sore. The structure of liquid iron is represented by the radial distribution function, g(r),
which describes the probability of finding pairs of nuclei separated by a distance r; the
function is normalized to unity for a random distribution (McQuarrie 1976). The results
show the excluded volume about each nucleus, due to repulsion at short distances, the
strong first peak due to first nearest neighbors in the liquid, and the weakening of
positional correlation at larger distances. The structure is more pronounced mﬁESﬁ
temperatures, where the potential energy of interaction is larger as compared with the
kinetic energy.

SELECTED APPLICATIONS
Overview

We show two examples of the combination of statistical mechanics with first
principles electronic structure methods. Although first principles Boﬂoo:._m: %:m.zi.om has
been applied for some time to the study of relatively simple systems, its application to
Earth materials is more recent. These examples illustrate the power of modern density
functional theory and the ability that now exists to treat large systems at high temperature.

Phase transformations in silicates

The common minerals of the Earth’s upper mantle are known all to Eam.nmo a mmn.mmm
of phase transformations with increasing pressure. Because these transformations .oEm.: a
change in physical properties, they are manifest in the structure of the earth’s interior,
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Figure 5. Radial distribution function of liquid iron at a density typical of that of the mmh:_w. outer core
(Wasserman et al. 1996a). Results are from molecular dynamics simulations based on an ab initio tight-
binding model (Cohen et al. 1994).
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most notably in discontinuities in seismic wave velocities and density, for example, at
410 and 660 km depth (Jeanloz and Thompson 1983). Of particular interest to geophysics
is the discovery of new phase transitions that may exist at pressure-temperature
conditions beyond the current reach of experimental methods. For example, our picture of
the earth’s interior was profoundly altered by the discovery (Liu 1975) that common
minerals of the upper mantle transform at high pressure to assemblages dominated by an
Mg-rich metasilicate with the perovskite structure. It is now widely accepted that
perovskite is the most abundant mineral in the earth’s lower mantle (Bukowinski and
Wolf 1990; Karki and Stixrude 1999; Knittle and Jeanloz 1987; Stixrude et al. 1992;
Wang et al. 1994),

Over the range of pressure and temperature so far explored in the laboratory, the
observed structure of (Mg,Fe)SiO; perovskite is orthorhombic Pbnm (Horiuchi et al.
1987). However, because experiments have not yet accessed the entire pressure-
temperature range spanned by the lower mantle, there has for some time been speculation
that the structure of this phase at lower mantle conditions may differ from that
experimentally observed. The perovskite structure is remarkably rich and accommodates
a large variety of polymorphs, which are related by rotations of the SiOg octahedra about
the three pseudo-cubic axes (Glazer 1972; Glazer 1975) (Fig. 6). Thus Pbnm may be
classified as (——+). Initial work was based on ab initio models and focused on higher
symmetry polymorphs that result from un-freezing (vanishing) of one or more octahedral
rotations including (00+), (——0), (-00), and the cubic parent structure (000) (Wolf and
Bukowinski 1987). However, subsequent first principles calculations showed that the
enthalpies of these structures were much higher than that of Pbnm and that their
stabilization at temperatures below melting was unlikely (Stixrude and Cohen 1993).

In order to investigate the structure of MgSiOj; perovskite at lower mantle conditions,
Kiefer and Stixrude (2001) performed first principles molecular dynamics simulations.
The calculations are based on density functional theory within the local density
approximation. For these plane-wave pseudopotential calculations we used the Vienna Ab
initio  Simulation Package (VASP) (Kresse and Furthmiiller 1996a; Kresse and
Furthmiiller 1996b; Kresse and Hafner 1993). The simulation supercell contains 80
atoms, or four primitive unit cells of the Pbnm structure. Convergence tests with a rigid
ion pair potential showed that pressures calculatetl with this supercell differed from the
infinite system result by less than 1%. The initial condition was chosen as the equilibrium

Figure 6. Octahedral rotations in the perovskite structure. The left figure shows the structure of the
parent cubic structure viewed along one of the cubic axes. The other figures show structures in which
the octahedra rotate rigidly. In the middle figure, the sense of rotation is identical in all octahedral
planes normal to the rotation axis. This is an example of a (+) type rotation in the notation of Glazer

(1972). The right figure illustrates a (<) type rotation in which alternating planes rotate in opposite
directions.
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bnm structure under static conditions. Simulations were performed in the canonical
nsemble (fixed temperature and cell shape and size); temperature was maintained with a
losé (1984) thermostat. The time step was 1 fs, and the simulations were run for 1.6 ps.

The results of one simulation are shown in Figure 7. The density (5184 kg m™) and
‘mperature (2000 K), correspond to conditions typical of the mid-lower mantle
Jziewonski and Anderson 1981). In the first half of the simulation, the stress is nearly
otropic and fluctuates about a mean value of 82 GPa. This is 9 GPa larger than the
alculated static pressure in excellent agreement with the experimentally determined
termal pressure (Fiquet et al. 2000). The fact that the stress remains isotropic upon
pplication of temperature means that the thermal expansivity of the Pbnm phase is
pproximately isotropic, in agreement with experimental results (Fiquet et al. 2000;
unamori et al. 1996). After 0.7 ps, the character of the stress tensor changes rapidly and
pproaches a new stable configuration. The mean stress (pressure) increases by 6% to 87
iPa, and the stress becomes anisotropic. In order to investigate the origin of this change,
1e simulated structure was examined in detail.

The change in stress state between 0.7 ps and 0.8 ps is caused by a change in the
tructure of the material. The transformation consists of a homogeneous rotation of half
1¢ SiO¢ octahedra that persists for the remainder of the simulation (Fig. 8). The new
tructure has a (-++) pattern of octahedral rotation which corresponds to Pmmn
ymuetry. The change with respect to the Pbnm phase is more subtle than phase
ransformations that had been contemplated in previous theoretical and experimental
vork: none of the three octahedral rotations vanish in the Pmmn structure and the
1agnitude of the octahedral rotations is similar to that in Pbnm. The increase in mean
tress at the transition means that the Pmmn phase has a slightly larger volume than Pbnm
t.the same pressure. The anisotropy of the stress tensor reflects the differences in
quilibrium axial ratios between the two phases.

100 ——

90 -

Figure 7. Results of first principles
molecular dynamics simulation of
MgSiO; perovskite at a density of
5184 kg m™ and a temperature of 2000
K including a) pressure and b) the
longitudinal components of the stress
tensor: (bold) oy, (light) o, (dashed)
©33. The off-diagonal components of
the stress tensor do not differ
significantly from zero.
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(b)

Figure 8. Two snapshots of a portion of the simulation cell taken from first principles molecular
dynamics simulations of MgSiO; perovskite at a) 0 ps and b) 0.79 ps. The view is along [110] of the
Pbnm phase.

that significantly exceeds the typical numerical precision of these calculations
(1 meV/atom). While the magnitude of the difference is likely to be underestimated (see
below) this result is consistent with earlier all electron calculations that found Pbnm to be
the ground state (Stixrude and Cohen 1993). The static energy difference is comparable to
the available thermal energy in our molecular dynamics simulation, supporting the
occurrence of Pmmn as an equilibrium phase at high temperature. Since the Pmmn phase
is stabilized by increasing temperature, it must have a higher entropy than the Pbnm
phase. The new Pmmn phase has a larger volume than Pbnm as evidenced by the increase
in pressure at the transition in our constant volume simulations. Since the volume and
entropy of transition have the same sign, the Clapeyron slope must be positive.

In order to test the robustness of our conclusions, we performed static all-electron
calculations of the total energy of the two phases using the linearized augmented plane
wave (LAPW) method (Singh 1994). The all-electron calculations show that difference in
energy between Pbnm and Pmmn is 0.132 eV/atom, or approximately 50% more than the
pseudopotential result. Because the pseudopotential calculations underestimate the energy
difference, it is likely that our molecular dynamics simulations underestimate the
temperature at which the Pmmn phase becomes stable. We infer that the transition
temperature between Pbnm and Pmmn phases may be somewhat greater than in our
molecular dynamics simulations, and may be as high as 3000 K, based on the magnitude
of the pseudopotential error. A transition temperature significantly higher than 2000 K
would be consistent with experimental results which show that the Pbnm phase is stable
to 2000 K at 30 GPa and 90 GPa (Fiquet et al. 2000; Funamori et al. 1996).

The location of the phase transition is similar to the conditions of pressure and
temperature expected in the Earth’s lower mantle. When one takes into account the likely
magnitude of lateral variations in temperature (several hundred K), we find that a phase
transformation from Pbnm to Pmmn may occur in the hotter portions of the mantle over a
range of depths spanning several hundred km. Although the change in structure at the
predicted Pbnm to Pmmn phase transition is subtle, changes in physical properties may be
geophysically significant. We have calculated the full elastic constant tensor of both
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phases at static conditions. The results show that the Pmmn has a higher bulk sound
velocity that Pbnm, but a lower shear wave velocity. If this transition occurs in the lower
mantle, it would have an unusual seismological signature, one in which the thermally-
induced change in bulk and shear wave velocities are anti-correlated. Such anti-
correlation is seen in some models of seismic tomography, especially beneath the Pacific
in the deep lower mantle (Masters et al. 2000) which is found to be anomalously slow in
S-wave velocity, but fast in bulk sound velocity. The predicted phase transition may
provide an explanation of these seismic observations.

Very recently another group has performed first principles molecular dynamics
simulations of MgSiO; perovskite using methods similar to ours (Oganov et al. 2001).
This group finds that the Pbnm phase is stable throughout the pressure-temperature
regime of their study, which overlaps the conditions at which we find a phase
transformation. The reason for this discrepancy is not clear, but may be related to
differences in pseudopotential construction, run time, initial conditions, or other factors.

High temperature properties of transition metals

Transition metals are particularly challenging because of the localized nature of the
d-electrons. To accurately represent these valence states requires large plane-wave basis
sets. Moreover, reciprocal space must be sampled densely in order to capture the
positions of bands with respect to the Fermi level. These special properties make total
energy calculations of transition metals costly. Geophysically the most important
transition metal is iron, which makes up most of the earth’s core (see Jeanloz 1990 and
references therein for a review). Recently, there have been considerable advances in the
theoretical study of liquid and solid iron and its alloys at the pressure temperature
conditions of the earth’s core. In a pioneering study de Wijs et al. (1998) used first
principles molecular dynamics to predict the viscosity of liquid iron at conditions of the
earth’s core. The properties of the liquid state were further studied by Alfé et al. (2000b).
The thermodynamics of solid iron, in its hexagonal phase, was investigated by Alfé et al.
(1999b) by combining density functional theory with lattice dynamics and an approximate
correction for anharmonic effects. Studies of solid and liquid have been combined to
predict the melting curve of pure iron (Alfé et al. 1999a). More recently, the properties of
iron alloys have also been examined (Alfé et al. 2000a).

Because much of our knowledge of the earth’s interior comes from seismology, an
understanding of the elastic properties of earth materials is particularly important to
geophysics. The elastic constants of solid iron are of special interest because of the
unusual seismic properties of the earth’s inner core. Among these are its high Poisson
ratio (0.44) which is nearly that of a liquid (0.5) and its anisotropy: compressional waves
travel approximately 3% faster along the polar axis than in the equatorial plane (Creager
1992; Tromp 1993). Subsequent studies have shown that the anisotropy may be
heterogeneous on length scales ranging from a few km to a few thousand km (Creager
1997; Tanaka and Hamaguchi 1997; Vidale et al. 2000) and that the anisotropy may
change with time, a result that was interpreted in terms of super-rotation of the inner core
(Song and Richards 1996; Su et al. 1996).

The elastic constants of iron have been studied experimentally and theoretically at
low temperature and high pressure (Mao et al. 1998; Séderlind et al. 1996; Steinle-
Neumann et al. 1999; Stixrude and Cohen 1995), but there has not yet been a first
principles calculation of the full elastic constant tensor at inner core conditions (see Nye
1985 for a review of elastic constants). Laio et al. (2000) developed a clever hybrid
method that combines first principles total energy and force calculations for a limited
number of time steps with a semi-empirical potential fit to the first principles results.
These authors investigated a number of properties with their ab initio method including
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the So.:im curve, and the Poisson ratio of iron at inner core conditions, which they find
to be similar to that seismologically observed.

In order to investigate the full elastic constant tensor of iron at inner core conditions,
mﬁ.oms_n-zgamzn et al. (2001) combined first principles GGA density functional theory
with the particle in a cell method. The crystallographic structure of iron was assumed to
be hexagonal close-packed (hcp). Experiments show that this is the low temperature high
pressure phase of iron from 10 GPa, to at least 300 GPa, the highest pressures so far
explored in static experiments (Mao et al. 1990). Experiments also show that hcp is the
liquidus phase to at least 100 GPa (Shen et al. 1998). There is theoretical evidence that
hep is the stable phase of iron at the conditions of the Earth’s inner core (Vocadlo et al.
1999). Experimental observations of other structures at high pressures and temperatures
(Andrault et al. 1997; Saxena et al. 1995) have been controversial (Bochler 2000); the
proposed structures are closely related to hep.

_ Because the axial ratio c/a of hcp iron is observed experimentally to vary
significantly with pressure and temperature, we were careful to determine the minimum
energy structure of this phase at all conditions. The results (Fig. 9) show that the axial
ratio of hep iron at conditions comparable to those in the inner core (~1.7) is significantly
greater than that found at low temperatures in experiment and theory (~1.6) (Jephcoat et
al. 1986; Mao et al. 1990; Stixrude et al. 1994). Our results are consistent with
experiments at lower pressures (Funamori et al. 1996; Huang et al. 1987), and earlier

theoretical work that also found that c/a increases with temperature (Wasserman et al.
1996b).

The temperature induced increase in the axial ratio has important implications for the
elasticity of iron (Fig. 10). We determined the elastic constants by calculating the change
in the Helmholtz free energy upon application of small amplitude finite strains, chosen to
constrain the five independent components of the elastic constant tensor of this hexagonal
material (Steinle-Neumann et al. 1999). The results show that the relative magnitude of
the two longitudinal moduli, ¢33 and ¢, changes as the temperature increases. Whereas
previous theoretical calculations (Stixrude and Cohen 1995) and experiments (Mao et al.
1998) have found c;; > ¢,; at low temperatures, our results show that ¢33 < ¢;; at high
temperatures. The origin of this effect is the inerease in the axial ratio. As the c-axis
expands, it becomes more compressible, thereby {owering c;; relative to ¢;;. Other elastic
moduli also change in relative magnitude; the off-diagonal modulus ¢;; increases rapidly
with temperature, becoming nearly equal to ¢;; at the highest temperatures investigated.
This behavior also has its origin in the temperature-induced increase of c/a and the
contraction of the basal plane that it entails. The two shear moduli, ¢4 and
cs6=1/2(c11~¢,2) decrease by nearly a factor of four from 0 K to 6000 K. .

The behavior of the elastic moduli has important implications for our understanding
of the shear elasticity of Earth’s inner core. The very high Poisson’s ratio of the inner core
has been interpreted as requiring anomalous dispersion and the presence of partial melt
(Singh et al. 2000). Instead, we find that the high Poisson ratio of the inner core results
from the effects of high pressure and temperature on the elasticity of iron. The predicted
adiabatic bulk and shear moduli of iron agree well with those of the inner core at a
temperature of 5700 K. The calculated Poisson’s ratio at 5700 K (0.44) is in excellent
agreement with previous theoretical estimates (Laio et al. 2000), and with the
seismologically determined value for the inner core.

w»m the 512 core is nearly isothermal (Stixrude et al. 1997), the comparison of the
elastic properties of iron with those of the inner core determined seismologically provides
a way to estimate the temperature in the earth’s deep interior. This approach is
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Figure 9. Predicted structure of hep iron from particle in a cell method with first principles calculations
of the energetics (dark symbols) at densities of (diamonds) 12.52 Mg m™ (squares) 13.04 Mg m>
(circles) 13.62 Mg m™. Results are compared with earlier theoretical predictions based on more
approximate ab initio calculations of the total energy (open squares) (Wasserman et al. 1996b) and
(inset) with a polybaric set of experimental results at lower pressure from (open circles) (Huang et al.
1987) (15-20 GPa) and (squares) (Funamori et al. 1996) (23-35 GPa).

2000

1600

1200

Elastic Moduli (GPa)

0 1000 2000 3000 4000 5000 6000
Temperature (K)

Figure 10. Elastic constants of hcp iron at a density of 13 Mg m”, typical of that in the Earth's inner
core, from first principles particle in a cell method calculations. There are five independent elastic
constants in a hexagonal material. Results for css=1/2(c;,-c;;) are shown for comparison with the other
shear modulus c,,.

First Principles Theory of Mantle & Core Phases 339

complementary to estimates based on the melting temperature of iron which suffer
uncertainty due to the unknown but possibly large influence of light alloying elements
(see Jeanloz 1990 for a review). Assuming a melting point depression of a few hundred
degrees, our value for inner core temperature (5700 K) is consistent with estimates of the
melting point of pure iron at the inner core boundary by Alfé et al. (1999a) (6400 K) and
those based on extrapolation of the melting point on the Hugoniot (~6000 K) (Brown and
McQueen 1986). The theoretical result of Laio et al. (2000) (5400 K) and the extrapolated
melting curve from static experiments (~5000 K) both fall below our estimate.

The ratio of the longitudinal moduli cs3/c); controls the sense of the P-wave
anisotropy of the single crystal. The new results show that the sense of this anisotropy at
high temperature is opposite to what had been found at lower temperatures in experiment
and theory (Mao et al. 1998; Stixrude and Cohen 1995). At high temperature, P-waves
propagate 12.5% faster in the basal plane than along the c-axis. This means that, in order
to explain the anisotropy of the polycrystalline inner core, the basal planes of the
constituent crystals must be preferentially aligned with the Earth’s rotation axis. We have
shown that a simplified textural model, in which the basal planes are all parallel to the
rotation axis, and in which crystals are otherwise randomly oriented, explains well the
pattern of anisotropy in the Earth’s inner core. Further progress in understanding the
origin of inner core anisotropy will require advances in two areas: 1) the origin of the
macroscopic stress field that must be responsible for producing the texture and 2) the
microscopic mechanisms by which this stress field produces the preferred orientation.

CONCLUSIONS AND OUTLOOK

It is now possible to explore the high temperature properties of Earth materials from
first principles. The combination of efficient first principles methods for computing the
total energy, interatomic forces, and stresses, with a variety of statistical mechanical
methods including molecular dynamics, Monte Carlo, and approximate treatments such
as the cell model promises rapid progress. With continued advances in computational
power, and in the development of new theoretical methods, one foresees significant
progress in three areas.

Scale *

N

The equilibrium properties of many pure phases, even those with large unit cells such
as Mg8iOs perovskite can now be explored with supercells of manageable size. What is
not yet possible is the first principles exploration of high temperature phenomena and
materials that possess inherently long length scales. Examples include those systems
involving imperfect crystals. These are important for understanding a host of phenomena
including element partitioning, diffusion, deformation mechanisms, and the interaction
with light. From the theoretical point of view, the size of the system (supercell) that must
be constructed is proportional to the inverse of the abundance of the rarest constituent.
The study of the behavior of impurities or defects in the dilute limit, of interest in a wide
variety of geological applications may require very large supercells. Dislocations are large
imperfections in the lattice that may require systems of thousands of atoms. The study of
their dynamics may require the combination of first principles methods with more
advanced statistical mechanical techniques such as non-equilibrium molecular dynamics
(Hoover 1983), something which has not yet been attempted.

Duration

Many phenomena have inherently long time scales. Examples include the kinetics of
phase transformations, and the deformation of high viscosity materials including many
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ilicate liquids. The study of the deformation of solid silicates in the Earth’s interior may
ncompass the largest range of time scales in any natural system: from that of atomic
ibration to that of mantle convection. The study of these systems by molecular dynamics
s challenging because the time step must be short enough to capture the fastest degrees of
reedom, and the number of time steps great enough to sample the slowest. To overcome
his problem, multi-time step (Swindoll and Haile 1984), generalized Langevin
Romiszowski and Yaris 1991), and other methods (Serensen and Voter 2000) have been
leveloped which may be applicable to Earth systems although these have not yet been
1sed in conjunction with first principles electronic structure methods.

Vaterials

Current approximations to density functional theory are not equally successful for all
naterials. While its formulation is general, there are some materials for which .Em LDA
and GGA do not seem to be adequate. Examples include the qﬂ:w:wom metal oxides, and
presumably transition metal bearing silicates as well. The problem is that the strongly
localized Coulomb repulsion between d electrons does not seem to be adequately
represented. As a consequence, FeO wiistite is predicted to be m.Bnﬁ in Eu> .m:a Q@?
whereas experimental observations find an insulator. Despite this failure, it is interesting
to. note that the structural and elastic properties of FeO are well reproduced by LDA
(Isaak et al. 1993). In any case, the complete understanding of Mott insulators will require
new advances in theory. These will need to go beyond such developments as the C.u>+c
method which has yielded considerable insight but adds the local Coulomb repulsion (U
parameter) in an ad hoc manner (Mazin and Anisimov 1997).
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