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ABSTRACT

The elastic constants are important for understanding the response of materials subject
to small- or high- frequency strains, and for understanding the relationship between
crystal structure and bonding. Subtleties arise in the definition of the elastic constants
particularly in the case of nonvanishing prestress. We review some of the definitions
of the elastic constants that have appeared in the literature and discuss the important
distinctions among them including the stress-strain, energy-strain, and wave propaga-
tion coefficients. The Born stability criteria, the Cauchy conditions, and elastic wave
propagation are discussed in this context. The limits of elastic behavior are explored
in the context of attenuation and low-frequency behavior and in the comparison of
the elasticity of fluids and solids. New developments in the theory and computation
of the elastic constants are discussed, focusing on the contributions of density func-
tional theory, and contrasting this first-principles approach with more approximate ab
initio and semi-empirical treatments that have played an important role in the study
of elasticity. The behavior of the elastic constants of a wide range of materials is
illustrated. The transition metals show the effects of the electronic structure on the
elastic constants, including the effects of d-band filling, strain splitting, and the role of
magnetism. The oxides show that sublattice displacements may have a large influence
on the elastic constants and may be responsible for elastic instabilities and phase tran-
sitions, as in the case of the stishovite to CaCl, structure transition in silica. Elastic
anisotropy is illustrated with results from density functional theory, and also with a
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simple central nearest-neighbor force model that accounts for many important features
of the elasticity of elements. The effect of pressure on the elastic constants is examined
as are the consequences for the elastic anisotropy which is seen to depend qualitatively
(in sense as well as magnitude) on pressure.

2.1. INTRODUCTION

The subject of elasticity is important in many fields, including those in which an
understanding of the deformation of materials at high frequency or small magnitude
is important. In the earth sciences, elasticity lies at the heart of our understanding
of the earthquake process and of the structure of the earth’s interior. The otherwise
inaccessible depths are revealed to us through the generation and propagation of elastic
(seismic) waves. The earth is an extraordinary laboratory for the study of elasticity on
length scales ranging from single crystals to our planet itself, and time scales ranging
from earthquakes to the viscoelastic regime probed by mantle convection and the
earth’s self-gravitation.

Elasticity provides fruitful ground for an exploration of the foundations of material
behavior in the relationship between crystal structure and bonding. The fourth-ranked
elastic constant tensor is unusually rich in this regard and reflects the symmetry of
the underlying structure. For example, the contrast between periodic and nonperiodic
condensed matter is immediately apparent in the elastic anisotropy, a distinction that
is not as clear cut in tensorial properties of lower rank such as the dielectric constant,
which is isotropic for cubic and nonperiodic materials alike.

The foundations of the microscopic theory of elasticity were laid some time ago in
work by Born and Huang [1], followed by other excellent treatments [2]. Many details,
however, remain troublesome and continue to cause confusion in the literature. When
dealing with elasticity, details matter in ways that can be surprising. For example,
expanding the free energy in the displacement gradient instead of the strain produces
elastic moduli with different symmetry properties; the elastic constants in a material
subject to prestress have case here, that of hydrostatic prestress. This is the relevant
case in many situations including most laboratory studies and the interior of the earth
below the upper thermal boundary layer (lithosphere). The strain will also be separated
into a large finite deformation associated with the prestress, and an infinitesimal strain
associated with the incremental stress. Our discussion follows that of [11].

Consider a material point that can be located with respect to Cartesian axes. In the
natural or unstressed state, its location is described by the vector a. Its position after
the application of prestress is denoted by X and after the application of the further
infinitesimal stress by x. The relationship between the prestressed and final positions
is given by the displacement

u,-=x,~—X,- (21)

We assume that there exists a unique, linear, one-to-one mapping between natural,
prestressed, and final coordinates that may be described by the displacement gradients,
u, v, and w,

Xi — X,‘ = uinj (22)
Xi—a; = vijaj = Wi X (23)

where the definition of v implies a Lagrangian frame of reference, and the definition
of w an Eulerian frame.

The displacement gradients contain contributions from deformation and from
rotation. For the infinitesimal displacement gradients u, these are identified with,
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respectively, the symmetric and antisymmetric parts
€ij = 3w + ) 2.4)
wij = 5 (uij — uj;) (2.5)

suffered multiple definitions [3]. It is because of this confusion that some care has
been taken here to define stress and strain tensors and the elastic constants that relate
them. Much of this discussion follows the outstanding work of Wallace [4].

Among important recent developments has been the ability to compute the elastic
constants from first-principles band-structure calculations. The development and docu-
mentation of the success of density functional theory [5, 6], the development of the
plane-wave pseudopotential method [7], the ability to efficiently compute forces and
stresses [8] as well as the total energy, and to rapidly determine equilibrium struc-
tures [9, 10] have all contributed to this development. Included here is a brief descrip-
tion of these methods and a comparison with other microscopic methods of computing
elasticity, including the rigid ion-pair potentials that played such an important role
in early work, and the ab initio models that occupy an intermediate position in the
continuum from semi-empirical to first-principles approaches.

After a review of theory, we consider a few examples of the elastic behavior of
materials. Included are those that show the relationship between the electronic struc-
ture and the elastic constants (the transition metals), the influence of crystal structure
(oxides), and the effect of high pressure. Also shown are examples of behavior that
are likely to be found in many materials including the strong dependence of the elastic
anisotropy on pressure, and the importance of sublattice displacements (sometimes still
overlooked) on the elastic constants.

2.2. ELASTICITY

2.2.1. Strain and Stress Tensors

The elastic constants relate applied external forces, described by the stress tensor,
to the resulting deformation, described by the strain tensor. We view a crystal as a
homogeneous anisotropic medium and assume that stress and strain are homogeneous.
One divides the stress into two parts, a prestress and a further infinitesimal stress. We
will focus on a special where ¢;; is the infinitesimal or Cauchy strain tensor and w;;
is the rotation tensor. The strain tensor is defined to be positive for expansion.

The strain associated with prestress will be finite in general. In contrast to the
infinitesimal case, a unique definition of the finite strain tensor is not possible. The
reason is that the displacement gradients v and w are not frame-indifferent. Consider
the change in length of a line element

|dx|* — |da|® = 2e;; dx; dx; = 2n;; da; da; (2.6)

where the Einstein summation convention has been assumed. These relations define
the Eulerian (e) and Lagrangian (n) finite strain tensors. Evaluation of the change in
length leads to the following expressions

eij = 5(wij + wji — wijwjr) 2.7
nij = 5 (ij + vji + vijv) (2.8)

In the limit of small strains, the nonlinear terms vanish and these two measures of strain
are equivalent, both reducing to the Cauchy strain tensor (Eq. 1.4). However, for finite
strains, they differ so that constitutive relations will not be frame-indifferent. This has
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important implications for the representation and description of physical properties at
high pressure including the equation of state [12].

The stress tensor at a point in a body can be defined through the expression relating
the components of the traction,  acting on the surface elements 4§

ti =O’,'dej 2.9)

Some care must be taken in the definition [4]. We take the tractions to be those acting
on the initial state and the surface elements those of the initial, undeformed configura-
tion. In this case, the stress tensor o;; is the second Pirola—Kirchoff stress [13]. This
stress tensor is symmeltric, corresponding to vanishing torques acting on the crystal.
The components with i = j are the normal components of stress (positive for tensile
stresses) and the components with i # j are the shear components.

2.2.2. Elastic Constants

The stress tensor can also be defined in terms of the change upon deformation of
an appropriate thermodynamic potential. This definition, which will also lead to the
expression for the elastic constants, places the elasticity within the same framework
of other thermodynamic properties of the crystal, such as the equation of state and the
entropy. These may all be expressed in terms of the derivatives of the potential with
respect to its natural variables [4]. For example, the stress produced by a deformation
under isothermal conditions is

Oij =P ( oA ) (2.10)

T

ae,»j

while that produced under isentropic conditions is

oE
= — 2.11
gij p<aeij)5 ( )

where A is the Helmholtz free energy, E is the internal energy, p is the density, and the

subscripts on the derivatives indicate that temperature or entropy is to be held constant.
The elastic constants are defined in terms of the Hooke’s law relation between stress

and strain. The isothermal and adiabatic elastic constants are given by, respectively,

ao-. .
T ij
ro—=( =4 2.12
ik < Oey > T *12) ;
a0 §
s ij |
D= | —= 2.13 ;
Ci ( dey >s ( ) |

The adiabatic elastic constants are most relevant to elastic wave propagation where,
in most situations, the time scale of deformation is much shorter than that of thermal
diffusion over relevant length scales. Isothermal elastic constants are relevant, for
example, in the analysis of static compression experiments [14]. In the limit of zero
temperature and in the absence of zero-point motion, conditions corresponding to most
first-principles theoretical calculations, adiabatic, and isothermal elastic constants are
identical and are referred to as athermal elastic constants.

It is worth pointing out that other definitions of the elastic constants are possible [3].
In order to distinguish them, the ¢;;; are called the stress-strain coefficients. We may

alternatively define
’A
cl, = — 2.14
i = P <aeij86k/>r @19
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which is identical to c;;; only in the absence of prestress. In the case of isotropic
prestress — defined by o;; = —P§;; where P is the pressure — the two sets of elastic
constants are related by [3]

Cijit = cijig + P88 + 6ubjx — 8;;6u) (2.15)

The C;ji; do not relate stress to strain in general, and are not directly related to the
velocity of elastic waves. They are however useful in defining the Cauchy relations
(see below).

The wave propagation coefficients are [4]

A = ( rE (2.16)
ijk]—p au,-jaukl s )

They are related to the stress-strain coefficients by

Aijin = cij + P(8y8 5 — 8 6u) 2.17)

Because the deformation gradient u is not symmetric, A does not possess the full Voigt
symmetry of the other elastic constants.

There are 81 independent stiffness coefficients in general; however, this number
is reduced to 21 by the requirement of the Voigt symmetry that c;;y and C,j are
symmetric with respect to the interchanges (i, j), (k,1), and (ij, kl). This allows
replacement of a pair of Cartesian indices ij by single index «, according to the
scheme

ij=112233320r 2331 0r 1321 or 12
a=1 23 4 5 6

The diagonal constants ¢; with / <3 may be referred to as the longitudinal elastic
constants; ¢; with i > 4 may be called the shear elastic constants. Those ¢;; with
i # j <3 are referred to as the off-diagonal constants and finally, ¢;; with i <3 and
J > 3, which measure the shear strain produced by a longitudinal stress, may be called
the mixed elastic constants.

The presence of the crystallographic symmetry further reduces the number of inde-
pendent elastic constants [15]. The highest possible symmetry is that of an isotropic
material such as a glass or a randomly oriented polycrystalline aggregate, which is
fully characterized by two elastic constants. These can be defined as the bulk and
shear modulus, K and G, respectively, or in terms of alternative moduli such as the
Young’s modulus or Lamé parameter, or ratios of moduli, such as the Poisson’s ratio.
Relationships among these measures are given in a number of sources [16]. A cubic
crystal is characterized by three constants, C;;, Ci2, and C4y. Crystals with lower
symmetry will possess a larger number of independent constants, for example, 9 for
orthorhombic crystals (Cy1, Ca3, C33, C12, C13, Ca3, Cas, Css, and Cgg), and 21 for
triclinic crystals (the largest number possible).

Two applications illustrate the relationships among the various definitions of the
elastic constants. The Cauchy relations are valid for a crystal in which each atom is
located at a center of symmetry and whose atoms interact through central forces only.

They are most naturally formulated in terms of the free energy-strain coefficients [2]
Ci2=Cep, C13=Cs5,Co3 = Cua

(2.18)
Cia = Cs6, Co5 = Cyp, C36 = Cys

But when defined in terms of the stress-strain coefficients (c; i), the first three relations
involve a pressure term, e.g., C1; — Cg6 — 2P = 0. The extent to which these conditions
are violated represents the importance of noncentral forces in a crystal.

35




STIXRUDE

The Born stability criteria, which define the mechanical stability of a lattice, are
typically formulated in terms of the C, ;. In this case, they are valid only in the limit
of vanishing prestress. Several studies [17, 53] have demonstrated that the appropriate
stability criteria for a stressed lattice are those which are formulated in terms of the
stress-strain coefficients (c; ;i) and hence are based on enthalpy considerations. Under
hydrostatic pressure, the three stability criteria for a cubic crystal are

C11‘+‘2C12>0, C44>O, C]] —C12>0 (219)

which are referred to as spinodal, shear, and Born criteria, respectively. The spinodal
criterion is equivalent to requiring that the bulk modulus be positive.

2.2.3. Elastic Wave Velocities

The wave propagation coefficients (A; ;) appear in the equations of motion and hence
determine the acoustic velocities [4]. For small vibrations to first order in the displace-
ments u; about the prestressed state, we can write

=Aijk 5o (2.20)

The velocity (V) and polarization of the three waves along a given unit-propagation
direction, n, are determined by the condition

|Aijun jns — pV38ul =0 (2.21)

In the special case of hydrostatic prestress, the wave propagation coefficients may be
replaced by the stress-strain coefficients as follows: because of the sum over j and /
only the symmetric combination

A + Ain; = Cijia + Cinkj (2.22)
appears where the identity follows from Eq. 2.17. The velocities are then given by
leijian jn — pV?8i| = 0 (2.23)

which is known as the Christoffel equation [2]. The equation shows that under a
condition of hydrostatic prestress the stress-strain coefficients govern elastic wave
propagation.

The solutions are of two types: a quasi-longitudinal wave with polarization nearly
parallel to the direction of propagation, and two quasi-shear waves with polarization
nearly perpendicular to #n. In seismology, the quasi-longitudinal wave is usually referred
to as the P-wave (i.e., primary, or first to arrive at the recording station from the
earthquake) and the quasi-shear waves as S-waves (secondary). Pure longitudinal and
shear polarizations are found only in isotropic materials or along special high-symmetry
propagation directions in anisotropic materials. For an isotropic, homogeneous material,
the P- and S-wave velocities are related to the elastic moduli by

K +4G G
Vp = 3. Ve=,/= (2.24)
I 4

from which the bulk sound velocity

K 4
Vg =./— =14/V:i—_V2i. 2.25
=5 = Vi-3% 2.25)

can also be defined.
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Because the elastic constant tensor is fourth-ranked, all crystals are elastically
anisotropic regardless of symmetry. One consequence is that the elastic wave veloc-
ities depend on the direction of propagation. Two types of velocity anisotropy may
be considered. Azimuthal anisotropy refers to the dependence of the elastic wave
velocity on the propagation direction. Polarization anisotropy is relevant only to shear
waves and describes the dependence of velocity on polarization along a single prop-
agation direction. For cubic crystals, azimuthal and maximum polarization anisotropy
are determined by a single anisotropy factor [17]

_2c+Cin - 2(Cas — ¢5)
Ci1 Cll

A

(2.26)

where ¢; = (Cy; — C2)/2.

2.24. Polycrystalline Aggregates

If the length scale of deformation (e.g., the wavelength of the elastic wave) is much
larger than the grain size, then the response of the material is that of an aggregate. The
elastic properties of an aggregate can be uniquely calculated from the single crystal
elastic constants if the texture can be specified, that is, the positions, shapes, and
orientations of the grains. The texture is typically unknown, or difficult to characterize
completely. A special case is an isotropic monophase aggregate in which the grains
are assumed to be randomly oriented but the texture is left otherwise unspecified.
Because the texture is only partially known, determination of the elastic moduli is
inherently nonunique. Nevertheless, it is possible to construct rigorous bounds. The
most commonly used are the Voigt and Ruess bounds which correspond to a condi-
tion of, respectively, strain and stress continuity across grain boundaries [18, 19]. The
Hashin—Shtrikman [20] bounds are tighter. In the case of cubic crystals, the bulk
modulus is uniquely defined by

K = 3(Cyi +2c1p) (2.27)
The isotropic shear modulus in the Hashin—Shtrikman averaging scheme is given by
Gusa = 3(Gps, + Gus-) (2.28)

where the upper and lower bounds (interchangeable) are

5 18(K + 2c44) >
G =Cy+2 2.29
HS+ 44 (C‘Y —Cya 5¢44(BK + 4cyq) ( )
and 5 12(K + 2¢y)
+ 2cg
Gys— =¢;,+3 2.30
s = et <c44 —¢, " 5¢,0K + 4cs)) (230

respectively. Formulas for lower symmetry crystals have been derived; see [21] for a
review.

Bulk anisotropy of monophase aggregates may be caused by lattice-preferred orien-
tation (LPO) of the grains. LPO may develop, for example, under shear deformation
because of crystallographically preferred directions of dislocation glide. The anisotropy
of the aggregate can be no larger than that of the constituent single crystals; often it is
a factor of two to three smaller than that of the single crystal depending on the degree
of alignment and the details of the texture. Polyphase aggregates may exhibit LPO or
a different type of anisotropy due to shape-preferred orientation (SPO). In SPO, the
anisotropy is due to spatial inhomogeneity in the distribution of phases [22] as in a
laminated structure, for example.
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For monophase aggregates, or for polyphase aggregates in which the spatial distri-
bution of the phases is random, the elastic constants of the aggregate, c;;; can be
related to the single crystal elastic constants, c; i by

C;jkl = Zaimajnakoalpf(g)cmnop (2.31)
agg

where the elements of the coordinate transformation matrix a;; are the direction cosines
of the angles that relate crystallographic and laboratory coordinate systems, and f is
the orientation distribution function (ODF) which yields the probability of finding a
crystal with orientation specified by 6 [23].

2.2.5. Microscopic Basis

The microscopic understanding of the elastic constants is based on an analysis of the
total energy (also called the crystal potential). The elastic constants can be calculated
from the crystal potential in one of two ways: the method of homogeneous deformation
and the method of long waves [1].

In the method of homogeneous deformation, the derivatives of the total energy
with respect to a uniform strain are computed. In most calculations of the elastic
constants based on density functional theory or other band structure methods, a small
but finite strain is applied to the crystal and the total energy and its derivatives (e.g., the
stress tensor) are recomputed in the strained configuration. Consider a homogeneous
deformation, u;;, applied to a crystal with one or more atoms in the unit cell. The
resulting displacement of atom « in unit cell L can be written [4]

Ui(L,a) = Si(ot)+uinj(L, o) (2.32)

where R; is the position of the atom, and S; are the sublattice displacements. The
displacement gradients are the independent variables, and the sublattice displacements
must be regarded as being dependent upon them. The presence of sublattice displace-
ments, which has been described as arising from coupling between lattice strain and
optic vibrational modes in crystals, has important consequences for the computation
of the elastic constants by the method of homogeneous deformation; the equilibrium
positions of the atoms must be redetermined in the strained configuration. The effect
of sublattice displacements on the elastic constants may be very large as discussed in
the following paragraphs. In order to illustrate the influence of structural relaxation, it
is possible to calculate separately those contributions to the elastic constants arising
from the homogeneous deformation in the absence of structural relaxation, also called
the partial elastic constants, and those from the sublattice displacements, also called
the inner elastic constants [24].

The method of long waves is based on the equivalence of compressional and
shear elastic waves and long-wavelength longitudinal and transverse acoustic phonons,
respectively. The long-wavelength acoustic phonon velocity, ¢, in direction k is given
by the dispersion relation in the limit of small wavevector

ws (k) = c(k)k| (2.33)

where o is the frequency, s is the branch index that runs over the acoustic phonons,
and k is a unit vector in the direction of k. The velocities are the eigenvalues of

~ 1 A Aa
dix(k) = - > Aijukik (2.34)
jl

where A is similar to A, but defined in terms of the crystal potential rather than
the thermodynamic internal or free energy. In the limit of the static lattice, or more
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generally, when the potential energy of the crystal is much larger than the kinetic
energy, A may be replaced by A and the phonon velocities are identical with the elastic
wave velocities . )

ck)y =Vk) (2.35)

Wallace discusses the relationship between the acoustic phonon velocities in the more
general case of finite temperatures [4].

2.2.6. Anelasticity

The response of materials to stress or strain is not in general perfectly elastic. Strain
is time dependent in an anelastic material and the resulting strain-energy losses are
expressed in terms of the quality factor Q

2 AE

0 E
The quality factor may be a strong function of frequency. Over the range of frequencies
probed in the laboratory (~ GHz for Brillouin scattering and ~ MHz for ultrasonic
measurements), anelasticity does not usually affect measurements of elastic constants of
crystals. At the much lower frequencies probed by seismology, the earth is measurably
anelastic; quality factors for shear waves range from >1000 in the lithosphere to
~300-500 throughout much of the mantle [25]. Liquids commonly show attenuation
at experimental frequencies [26]. Measurements of anelasticity typically show that
attenuation in shear is much greater than that in volume compression. This is consistent
with laboratory measurements of the equation of state of crystals by static compression
(essentially zero frequency) which agree with the bulk modulus measured by high-
frequency techniques. Anelasticity entails dispersion (frequency dependence) of elastic
wave velocities; for a standard linear (Maxwell or viscoelastic) solid the fractional
difference between velocities at zero and infinite frequency is 1/0Q.

(2.36)

2.2.7. Fluids

Except at very high frequencies, liquids cannot support shear deformation, and so the
elasticity is completely specified by the bulk modulus (inverse of the compressibility).
An important result in the study of simple liquids is the relationship between the
structure and the elasticity. For a monatomic liquid [27]

S(0) = pksT /K7 (2.37)

where the static structure factor S(k) is evaluated in the long-wavelength limit, kp is
the Boltzmann constant, and K is the isothermal bulk modulus. This relationship may
also be expressed in terms of the pair correlation function, g(r), which is the probability
of finding a pair of atoms separated by a distance, . The pair correlation function is
normalized so that it approaches unity (the ideal gas value) at large r. Recognizing
that the structure factor is just the Fourier transform of the total correlation function
h(r) = g(r) — 1

pkpT /Ky =1+ p/[g(r) — lldr (2.38)
Finally, defining the direct correlation function through the Ornstein—Zernicke equation
h(r) = c(r) + p/c(|r — ¥Dh(r'dr’) (2.39)

one can show that
p¢(0) =1 — pkpT /Kt (2.40)
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where " denotes Fourier transform. The above relations are easily generalized to multi-
component homogeneous isotropic fluids. Other generalizations have also been widely
studied, including the anisotropic case relevant to liquid crystals [28].

At very high frequencies, fluids are able to support shear deformation, and the shear
modulus as well as the bulk modulus must be specified. The relevant time scale in the
viscoelastic approximation is the Maxwell relaxation time

Ty o= —— (2.41)

where 7 is the shear viscosity and G, is the shear modulus of the fluid in the limit of
infinite frequency. The Maxwell relaxation time of a liquid may become comparable
to the period of typical experimental probes if the viscosity of the liquid is large,
which may occur near the glass transition, for example. Many liquids, even above
the melting point, have viscosities sufficiently large that the Maxwell relaxation time
exceeds the period of typical ultrasonic probes — examples include silicate liquids that
are representative of naturally occuring magmas [26].

It is worth noting that the converse of these arguments also holds. That is, if a
solid is deformed at time scales much longer than its Maxwell relaxation time, it
will flow. The Maxwell relaxation times of typical solids are very long and may
exceed the age of the universe at ambient conditions. However, the viscosity of most
solids is an exponentially decreasing function of temperature. In the earth’s interior,
where temperatures approach 90% of the melting point, the Maxwell relaxtion times of
silicates may be as little as one thousand years. Over geologically significant periods
of time, the earth’s solid mantle behaves to a good approximation as a Newtonian
viscous fluid, as manifested, for example, in mantle convection, postglacial rebound,
and the shape of the earth [29].

2.3. THEORETICAL METHODS

2.3.1. First-Principles Level

Density functional theory [5, 6] has become a powerful tool for examining the elasticity

of materials. Central to the theory is the proof that ground-state properties are a unique

functional of the charge density; it is not necessary to solve for the complete 10%

dimensional total wavefunction. This is appealing because the charge density, a scalar

function of position, is readily observable experimentally, e.g., by x-ray diffraction.
The Schodinger-like Kohn—Sham equations

[—A% + Vis] ¥i = e (2.42)

where the Kohn—Sham potential

N

Vislp® =

i=1

2Z, 20(F)

F-R| J -7

di’ + Vi [p(F)] (2.43)

(where Z; and R; are the nuclear charges and positions, respectively, and V. is the
exchange-correlation potential), are solved self-consistently with the charge density,
0. The Kohn—Sham equations are exact in principle. However, the exact form of the
many-body exchange-correlation functional is not known. In practice, approximations
to this term are adopted, the simplest being the local density approximation (LDA)
which sets the exchange-correlation functional at every point in the crystal to that of
the free-electron gas of the same charge density at that point {30]. The generalized
gradient approximation (GGA) also depends on local charge density gradients [31].
Comparison with experiment has demonstrated that the LDA is a good approximation
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for silicates and oxides, and most representatives of all other classes of materials. There
is some evidence that the GGA may be more accurate in some cases for transition
metals [32] and silicates [33].

It is possible to solve the Kohn—Sham equations without any further essential
approximation beyond that to the exchange-correlation functional. For example, the
linearized augmented plane wave (LAPW) includes all electrons and contains no uncon-
trolled approximations to the shape of the charge density or potential {34, 35]. The
LAPW method has been applied to systems containing as many as 20 atoms in the
unit cell [36]. However, the method is relatively slow and still prohibitive for many
of the large and complex structures important in many fields including geophysics and
materials science.

An alternative method that is much more efficient, though at the cost of addi-
tional approximations, is the plane-wave pseudo-potential method. The development
is based on the observation that over the range of conditions normally encountered
only the valence electrons are altered by changes in state of stress or temperature;
the core electrons are essentially static or frozen. The nucleus and core electrons are
then replaced by a simpler object, the pseudo-potential, which has the same scattering
properties [37]. This is computationally advantageous because the pseudo-potential is
much softer (much more slowly varying in space) than the bare Coulomb potential of
the nucleus. Moreover, one need solve self-consistently only for the valence electrons
which also show much more gentle spatial variations. As a result, the charge density and
potential may be represented by a set of plane waves of manageable size, speeding the
calculation by perhaps an order of magnitude compared with the LAPW method. Calcu-
lations show that as long as the quality of the pseudo-potential is carefully evaluated by
comparison with limited all electron calculations, the pseudo-potential approximation
is generally not serious in the case of silicates and oxides.

2.3.1.1. Static Lattice

Given an arrangement of nuclei, density functional theory allows one to calculate the
resulting electronic charge density and total energy. By examining the variations in
the total energy with respect to displacements of the nuclei or strains applied to the
structure, one makes contact with a number of experimentally observable quantities.
For example, by differentiating the relationship between total energy and volume, one
obtains the static equation of state. The full elastic constant tensor can be calculated by
examining the variation of the total energy with respect to small applied strains [38].

The scope of density functional calculations has been substantially expanded with
the development of first-principles molecular dynamics [9, 10]. This development is
based on the Hellman—Feynman theorem which says that it is possible to calculate
directly the forces acting on the nuclei and the stresses acting on the lattice. This is
important for at least two related reasons. It allows one to determine efficiently and
accurately: (1) equilibrium structures which, at a given volume or pressure, are found
by systematically adjusting the positions of the nuclei and the lattice parameters until
forces and deviatoric stresses vanish (e.g., by steepest descent) making it then possible
to examine the compression of complex crystal structures, and to study structural
compression mechanisms in detail; and (2) elastic constants. Once the equilibrium
structure has been determined, the elastic constants are calculated in a way that mimics
experimental methods. A small deviatoric strain is applied to the lattice and the resulting
stresses calculated. The ratio of stress to strain components yields a subset of the elastic
constants of the material. By applying a small set of strains of different symmetry it is
possible to obtain the full elastic constant tensor. Because elastic constants generally
couple to vibrational modes in complex structures such as those of silicates, it is
important to redetermine the equilibrium arrangement of the nuclei in each strained
configuration.
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2.3.1.2. Finite Temperature

The static lattice is an athermal idealization that is not accessible experimentally:
temperature is absent, and so is zero-point motion. For many materials at room tempera-
ture, the effect of zero-point motion and temperature on material properties and crystal
structures is small, often smaller than the effect of the LDA or GGA approxima-
tions. As a result, comparison of static calculations to room-temperature experimental
measurement can yield considerable insight.

The generalization of the first-principles methods described so far to the calculation
of properties at finite temperature is straightforward but computationally challenging.
We must deal explicitly with the dynamics of the atomic motions to account for high
temperature behavior. This may be accomplished through molecular dynamics simu-
lations, which have been used to compute elastic constants in simple systems that
are represented by pair potentials. High-temperature elastic constants may also be
determined by computing the phonon dispersion curve and its strain derivatives. This
procedure has successfully been carried out at the level of density functional theory
for MgO [39].

2.3.2. AbD Initio Level

Whereas first-principles methods seek to reduce approximations to a bare minimum, ab
initio methods construct an approximate model of some aspects of the relevant physics,
such as the charge density or the interactions between orbitals. The cost of additional
approximation is often outweighed by the increase in computational simplicity and
efficiency. For example, ab initio models have been used to explore transport properties
which are very difficult (costly) to examine with fully first-principles approaches {40].
Moreover, these models often yield insight that is sometimes difficult to extract from
more complex and elaborate first-principles calculations.

Here are two examples of ab initio methods that have been applied to the calculation
of elastic constants. First, are those methods based on the electron gas picture of
Gordon and Kim [41] in which the material is viewed as being composed of spherically
symmetric closed-shell ions. Modern elaborations of this approach that account for the
deformability of the ions, including the potential induced breathing model (PIB) and
the variationally induced breathing (VIB) model have enjoyed wide success, especially
as applied to simple oxides such as MgO [42, 43]. Second, are the parametric total
energy tight binding methods [44]. Here the interactions between atomic-like orbitals
are approximated by simple functional forms that are made to fit accurate first-principles
total energy and band-structure results. One recent method of this type has successfully
been used to examine the elasticity of monatomic transition metals, insulators, and
semiconductors [45, 46].

2.3.3. Semi-Empirical Level

Semi-empirical methods differ from those discussed so far in that they require input
from experiment. These methods often do not view the solid as being composed of
nuclei and electrons, but of larger entities. Interatomic force models view the solid as
being composed of atoms or ions that interact as a unit with their neighbors. Models
of this type have been widely used to study elasticity [1]. They are generally less
predictive than first-principles or ab initio calculations because they ignore much of
the essential physics. For example, a pair-wise central interatomic force model exactly
satisfies the Cauchy relations (Eq. 2.18) in disagreement with observations on many
materials. The primary advantage of interatomic force models is that they are simple
and rapid. They are useful to the extent that they faithfully interpolate or extrapolate
existing experimental or theoretical results or provide additional insight not otherwise
available.

42



ELASTICITY OF OXIDES AND IONICS

2.3.4. Continuum Theories

Another broad class of semi-empirical methods is based on a continuum picture in
which one deals with material behavior at the macroscopic level of thermodynamics.
An important example is the Eulerian finite strain theory of Birch [47] which has been
widely used in the extrapolation of the equation of state to high pressure. In the case
of isotropic properties, this theory has been demonstrated to converge rapidly in most
cases. Here we review the generalization of this approach to anisotropic strains, which
has not been widely studied [11].

The strain corresponding to the hydrostatic prestress will be finite in general. We
will assume that this finite strain is isotropic, recognizing that this will only be valid
for materials of cubic or higher symmetry. Of the infinite number of (reference-frame
dependent) possible choices for the finite isotropic strain tensor, we choose the Eulerian
strain. The trace is

f =31/ v —1] (2.44)

where V is the volume, subscript O indicates the reference state, and we have defined
f positive on compression. The dependence of the internal energy on finite strain may
be described by a Taylor series

E=ay+ jaaf>+1asf’ + -+ (2.45)

where the coefficients g, involve nth and lower-strain derivatives of E evaluated at
the reference state, e.g., the internal, pressure, the bulk modulus.

The finite-strain expansion for the adiabatic elastic constants is found by evaluating
the appropriate derivatives of the internal energy with respect to the deviatoric strains

ci(f Y= A+ 22RO, + R, [+ ARG 2+ ) = PAgjy (2.46)

where
Rz(?izz = cijuo + Poliju (2.47)
Rfi/i/ = 3Ko(c}ji0 + Dijut) — 7R55')131 (2.48)
RE?}Z[ = QKSC;/jklO + 3K€)(Rfjl'111 + 7R,(-_(;/Z/) - 16Rfjl-,z, - 49R;(j),3, (2.49)

where primes indicate pressure derivatives,
Ajjig = =881 — 846 — 6;;0u (2.50)

and §;; is the Kroenecker delta tensor. Because we have defined f as positive on
compression, the coefficients in the Taylor series expansion are related to those of [11]
by R}, = (=1)" pory’y;, where p is the density.

The reference state, in which f =0 and T is the temperature of interest is indi-
cated by subscript 0. Here, we will choose our reference state to be one of constant
pressure, Py = 0. In this case, reference state quantities, including the coefficients of
the expansion, R depend on temperature in general.

The effects of temperature are included within the quasi-harmonic approximation.
The strain dependence of the vibrational frequencies, w,, where the subscript absorbs
the wavevector and branch index, may be described by an expansion in the strain

W = oy (1= gl fis + S fiifu +++) (2.51)

where g}, and h};, are constants that will in general be different for each mode and
so will depend on wavevector and frequency. In what follows, we assume that these
constants can be replaced by appropriate averages over all the modes, g;; and h; ;.
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In this approximation, the elastic moduli at high temperature are given by Eq. 2.46
with

RO = cijuoo + 3 @hiju — 8ij8u)- [Eruo(T) — Ermo(To)l/Vo  (2.52)

and R™ for n > 0 evaluated at the reference strain and reference temperature 7' = T.
Subscript 00 indicates values at the reference strain and temperature T = T, and E7g
is the quasi-harmonic thermal energy. By explicitly accounting for the temperature
dependence of only the first expansion coefficient, we introduce errors of order 8:f
where § is the relative magnitude of the anharmonic contributions to the crystal Hamil-
tonian [11]. The parameters g and k are evaluated by relating them to thermodynamic
quantities. For the special case of a cubic material

8ij = —2¥0dij (2.53)

where y is the Griineisen parameter,

KTO{V
= 2.54
4 c, (2.54)
and
T dcli >
hiji = —2v0 | €080k + ;10 — T + 4¥58:i 18 — 2v0did 1 — 2v08 kit
0
(2.55)
where
dnCv
=1- 2.56
§ ( Anv )T (2.56)
1 (dcly
8Ly =—— | =% 2.57
1K aKr ( o |, (2.57)

where ciTjk, are the isothermal elastic moduli, and Cy is the heat capacity at constant
volume. These expressions have been used to examine the elasticity of MgO at elevated
temperature and pressure [48].

2.4, ELASTICITY OF SOLIDS

24.1. Oxides and Elements
2.4.1.1. Atomistic Origin of Anisotropy

The origin of elastic anisotropy is most easily seen by considering a simplified situation
in which the material is monatomic and the atoms interact through central nearest-
neighbor forces (CNNF). The CNNF model has been widely studied [1] in the context
of elasticity. If the crystal has no sublattice displacements under deformation, and
all nearest-neighbor distances are the same, the elastic constants (energy-strain coeffi-
cients) are

9 nan
Ciju = —(K = P) > R (2.58)

where z is the coordination number, K the bulk modulus, P the pressure, and the
sum runs over the nearest neighbors, «, which are located along the unit directions
#. If sublattice displacements do occur, then this expression yields the partial elastic
constants. For the CNNF model, elastic constants are independent of the form of the
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interatomic force. The stress-strain coefficients contain an additional term involving
the pressure, and so will depend on the form of the potential; however, the dependence
is not strong, being of the order P/C;; [46].

For the fcc structure, CNNF yields elastic constants in the proportions

C111C12:C44=21131 (259)

where the equality of Cy, and Cy44 also follows from the Cauchy condition. Similar
results have been derived for the hep structure; the bee and sc structures are elastically
unstable in the CNNF approximation. The anisotropy factor for the fcc structure A =
1/2, and corresponds to a large P- and S-wave velocity anisotropy. This is an important
result because it shows that elastic anisotropy may arise from geometry alone, that
is, from the anisotropic distribution of neighbors in the crystal structure. The CNNF
model, despite its simplicity, approximates the behavior of a wide range of monatomic
materials at high pressure including fcc and hep structures of Fe, Si, and Xe [46], and
the hcp transition metals, except for Zn and Cd [38].

In many cases, it is possible to rationalize in a simple way the effect of crystal-
lographic structure on the elasticity of materials. An example is the large P-wave
anisotropy in the mineral forsterite (Mg,SiO4) (Fig. 2.1). The orthorhombic structure
is composed of two types of coordination polyhedra: SiO, tetrahedra which are rela-
tively incompressible, and comparatively soft MgO, octahedra. The polyhedral bulk
moduli of tetrahedra and octahedra differ by approximately a factor of three [49]. A
view of the forsterite structure down the b-axis shows that perpendicular to the g-axis
(that of fastest P-wave propagation) strips of SiOy4 tetrahedra alternate with strips of
MgOq octahedra (Fig. 2.2). The anisotropy results from: (1) the inherent anisotropy of
the structure; and (2) the very different compressibilities of its two primary polyhe-
dral elements. Longitudinal waves propagating parallel to these strips (along c), will
be primarily sensitive to the easily deformable MgO, octahedra and therefore slow.
Waves propagating along a, however, will be sensitive to the compressibility of both
tetrahedra and octahedra and are much faster as a result.
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Y sl N E
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X E =
> o 3
3 TE =
o - =
> E E

6F E

= E
= ———
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001 010 100 001 110 011 101 110

Propagation direction

Fig. 2.1.  Anisotropy of forsterite showing the P-wave (upper line) and S-wave (lower lines) veloc-
ities as a function of propagation direction; from the LDA pseudo-potential calculations of [65].
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a

Fig. 2.2. Structure of forsterite looking down the b-axis showing alternating strips of Mg-octahedra
(lighter polyhedra) and Si-tetrahedra (darker).

2.4.1.2. Cauchy Violations

The Cauchy conditions are satisfied closely for some materials (e.g., the alkali halides)
indicating that the atoms in these solids interact dominantly through central forces.
This is not surprising because of the large energetic contribution of the Madelung term.
However, other ionic materials behave differently. For example, MgO and CaO, both
of which have the NaCl structure at low pressure, violate the Cauchy conditions; C2 —
C44 — 2P at ambient pressure is 30% of the bulk modulus. Cubic perovskite-structure
CaSi0; is an example of a silicate that violates the Cauchy conditions. Moreover, the
magnitude of the violation in oxides and silicate increases with increasing pressure
(Fig. 2.3). The strong violation of the Cauchy conditions in these materials requires an
important contribution from noncentral (many-body) forces which increases with pres-
sure. The noncentral forces can neither be due to metallic binding — since all the mate-
rials studied remain wide-gap insulators over the relevant pressure range [50] —nor
to covalent forces in these ionic materials. The potential-induced breathing model
includes the essential physics [51]. The relevant many-body force arises from a spher-
ically symmetric breathing of the oxygen ion in response to strain-induced variations
in the Madelung potential at the oxygen site.

2.4.1.3. Strong Coupling to Vibrational Modes 1

Sublattice displacements can have a large effect on the elastic constants. The effects
of the coupling are particularly large in the presence of soft vibrational modes, as §
shown by the case of silica [S2, 53]. In the stishovite (rutile-structured) phase, a soft
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Fig. 2.3.  Violation of the Cauchy relations in three materials according to density functional theory
calculations (pseudo-potential calculations within LDA). From [60].

Fig. 2.4.  Structure of stishovite looking down the c-axis showing the rotations of the octahedra in
the soft B, Raman mode, and the shear strain in the a = b plane to which they couple.

By, Raman mode couples strongly with a strain of orthorhombic symmetry in the
a = b plane (Fig. 2.4). The Raman mode consists of a rotation of the SiO¢ octahedra
about the c-axis. As a result, the elastic constants C1; — C, is 30% smaller at ambient
pressure than the corresponding partial elastic constant which neglects the sublattice
displacements.
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2.4.2. Transition Metals
2.4.2.1. Effect of D-band Filling

The variation of many physical properties across the transition metal series can
be understood in terms of filling of a rigid d-band. Of the elastic constants, the
bulk modulus is most amenable to this type of analysis, which we illustrate here
following [54]. The bonding energy is assumed to arise from a d-band of rectangular
form (Friedel model)

Er 5 W 26
Epo =2/ (E — €;)—dE = ——N(10—-N) (2.60)
" ed—W /2 w 20
where the band of width W is centered at €4, and EFr is the Fermi energy; the factor
of five is the number of states in the band. The bonding energy is seen to vary
quadratically with the number of d electrons closely mimicking trends observed in the
cohesive energy. In equilibrium, the bonding energy must be balanced by a short-range
repulsive energy, E,.p, among electrons on neighboring atoms, so that the cohesive
energy

Ecoh = Ebona + Erep (261)

The bandwidth will vary with compression as the average d-d hopping integral, and
may be assumed, for fixed coordination number to have the form [55]

W = BNR™ (2.62)

The short-range repulsion, because it involves the repulsive overlap between two d-
orbitals, may be expected to go as the square of the hopping integral

En.p = AN’R™'° (2.63)

The bulk modulus is found by taking the appropriate volume derivatives of the energy

50v/2E

= 2.64

where the cohesive energy in equilibrium is

1 B
Eo= ————[N(10 - N))’ 2.65
0 1600 A[ ( i (2.65)

and the equilibrium interatomic distance
404 '

Ro=|——= 2.66
° (B(lo - N)> 2.69)

and we have assumed an fcc lattice. We have determined the constants of proportion-
ality A and B by fitting to first-principles results of the bandwidth and interatomic
distance of fcc Mo (N =5). We see that the trend of the bulk modulus across the
4d series is described qualitatively by this simple model (Fig. 2.5). It is possible to
obtain better agreement with experiment by constructing a more elaborate form for the
repulsive energy [54].

While the Friedel model succeeds in explaining most of the variation in the bulk
modulus with d-band filling, it fails in the case of the shear elastic constants Cs and
C4. These two moduli are much more sensitive to the details of the electronic band
structure [56]. Two patterns emerge in comparisons of accurate calculations with those
based on the second-moment approximation. First, the second-moment approximation
underestimates the dependence of the shear elastic constants on d-band filling; the actual
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Fig. 2.5. Bulk modulus of the 4d transition metals (symbols) compared with the prediction of the
second-moment Friedel model (line). All 4d transition metals are included regardless of structure because
differences among structures are small compared with the effects of d-band filling.
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Fig. 2.6. Electronic density of states in (light) bce iron and (bold) upon application of a tetragonal
strain with c¢/a = 1.2. Dashed line is the Fermi energy.

elastic constants are 50% larger than the second-moment result near Ru. Second, sharp
minima in the moduli are seen as a function of d-band filling that are absent in the
more approximate calculations. These sharp minima arise from strain-splitting effects
when the Fermi energy lies near narrow peaks or Van Hove singularities in the density
of states.

The case of bec iron illustrates the importance of strain splitting effects (Fig. 2.6).
In the nonmagnetic state, the Fermi energy is coincident with a sharp peak. When the
lattice is stretched along the cubic axis (corresponding to c;), this peak is split and
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Fig. 2.7. Structure of cubic iron showing the Bains path that relates the bece to the fce structures.
Light lines indicate four body-centered unit cells, bold lines the fcc conventional cell. Larger atoms are at
body-centered positions in the bee structure and face-centered positions in the fcc structure.

the band energy is lowered. As a result, nonmagnetic bee iron is elastically unstable,
with a negative value of c;, violating the Born stability criterion. The stretch along the
cubic axis relates the bee structure to the fcc structure (Bains path) (Fig. 2.7). For the
fce structure, the form of the electronic density is such that strain-splitting effects are
absent, and the structure is mechanically stable.

2.4.2.2. Role of Magnetism

Magnetism may have a large influence on the elastic constants. This is particularly
true of materials such as bec iron that are elastically unstable in the nonmagnetic state.
The bec phase of iron is stabilized by magnetism. This can be understood in a Stoner
model: the up and down spin bands are viewed as being rigidly shifted in energy. As a
result, the Fermi energy falls in between the narrow peaks in the density of states for
up and down spin bands. Strain-splitting effects are absent in the magnetic state and
the structure is stable at low pressure (Fig. 2.8).

At high pressure, the picture changes [57] (Fig. 2.8). The bands broaden and magne-
tism becomes increasingly less favorable energetically. The magnetic moment drops
with increasing pressure, vanishing at a volume approximately 60% of the equilibrium
value [58]. At this point, the mechanical instability of the underlying nonmagnetic state
is revealed. The bee phase of iron becomes mechanically unstable at high pressure.
This is important in geophysics because it places some constraints on the crystalline
structure of iron in the earth’s inner core; it is unlikely to be bec, as had frequently
been proposed.

2.4.3. Effect of Pressure
2.4.3.1. Elastic Constants

The effect of pressure is much larger for certain types of elastic constants than for
others: the pressure-induced variations in the longitudinal elastic constants are relatively
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Fig. 2.8. Change in total energy of cubic iron along the Bains path according to spin-polarized
density functional theory calculations (LAPW). Results at two different volumes are indicated corresponding
to near ambient pressure (circles, V = 70Bohr?), and high pressure (squares, V = 50Bohr?, P & 200 GPa).
Bold lines are in GGA, dashed lines in LDA. Axial ratios ¢/a = 1 corresponding to the bee structure and
c/a = /2 to the fcc structure are indicated. From [58].
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Fig. 2.9. Elastic constants of MgO according to LDA pseudo-potential calculations [17] and exper-
iment [63].

large (¢ ;o = 5 to 10), compared to those for the shear and off-diagonal constants (cijo =
0.5 to 4); mixed elastic constants have the smallest pressure derivatives. The elastic
constants of periclase are an example (Fig. 2.9). Finite-strain theory [16, 47] [11] can
be used to understand the range of values of c; jo that are found for longitudinal, oft-
diagonal, and shear elastic constants. Expansions in the Eulerian finite strain are known
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to provide rapidly convergent descriptions of isothermal compression (P-V equation of
state), in some cases to compressions as great as Vo/V = 2. This success can be
understood by recognizing that the coefficients of higher order terms are small [59].
For example, the truncation of the equation of state after second order (i.e., setting
ay = 0in Eq. 2.45) yields K {, = 4, in good agreement with the range of values observed
experimentally (typically 3-6). This implies that the coefficient a3 should be small and
that the third-order Birch—Murnaghan equation should be adequate for most materials.
Truncation at the second order of the anisotropic generalization of the Eulerian finite-
strain expansion (R in Eq. 2.25) leads to the following relation for the pressure
derivatives of the elastic constants:
7 Cii

o =375, ~ B0 (2.67)
This results in three sets of ¢;;y: one for longitudinal moduli, another for off-diagonal
and shear, and a third for mixed elastic constants (Fig. 2.10). The experimental values
of the pressure derivatives of cubic elements fall near the expected trends, which
account for the greater pressure derivatives of the longitudinal moduli and intermediate
values for off-diagonal and shear. Of the patterns apparent in these results, only the
systematically larger values of the off-diagonal pressure derivatives as compared with
the shear are not explained. Similar results have been found in oxides and silicates [60].

2.4.3.2. Elastic Instabilities

Silica provides an excellent example of a pressure-induced elastic instability that can
precisely be linked to a phase transformation [52, 61, 62]. The transformation is from
the stishovite phase to a phase with a CaCl,-type structure which occurs near 47 GPa.
In stishovite, C; increases slowly with pressure up to 40 GPa and then decreases on
further compression whereas C, grows at an increasing rate thereby causing C1 — Cn

10 T

Pressure derivative of Elastic modulus

oboe 111

0.0 0.5 1.0 15 2.0 2.5 3.0
Elastic modulus/Bulk modulus
Fig. 2.10. Elastic properties of several cubic elements (Li, Na, K, Rb, Fe, Ni, Cu, Nb, Pd, Ag, Ta,
Au, Al, C, Si, Ge, Pb) for (filled) longitudinal, (crosses) off-diagonal, and (open) shear elastic constants

compared with the predictions of the second-order truncation of the Eulerian finite strain theory: (bold)
longitudinal constants, (light) shear and off-diagonal constants.
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Fig. 2.11. Shear elastic modulus and Raman frequency of silica in the vicinity of the stishovite
to CaCl, structure phase transition at 47 GPa according to LDA pseudo-potential calculations [60]: (bold
solid) elastic constant Cy; — Cyz; (bold dashed) partial elastic constant Cy; — Cj» (neglecting sublattice
displacements); (light solid) frequency of the Raman B;, mode; (light dashed) continuation of the Raman
mode frequency in the (metastable) stishovite phase. From [60].

to vanish at ~47 GPa, the pressure for stishovite-to-CaCl, phase transition (Fig. 2.11).
The Ci; — Ci, = 0 instability arises from a strong coupling between a shear strain of
orthorhombic symmetry in the a — b plane and the soft B, mode, discussed previously.
The strain provides a deformation path that relates the lattices of the two structures
(tetragonal stishovite and orthorhombic CaCl, phase) whereas the B}, mode involves
a rotation of SiOg octahedra around the c-axis that relates the two structures. The
calculated modulus C;; — Cj, does not soften unless the sublattice displacements are
accounted for (Fig. 2.11). While the frequency of the B, mode is softened considerably
by 47 GPa, it does not vanish until much higher pressures (86 GPa), well beyond the
stability field of stishovite.

2.4.3.3. Qualitative Changes in Anisotropy

The pressure derivatives of the elastic constants may vary widely even for a single
phase. One consequence of this is that the elastic anisotropy may depend strongly
on pressure. The pressure-induced change in anisotropy may be qualitative as well
as quantitative; that is, the directions of fastest and slowest elastic wave propaga-
tion may reverse upon compression. An example is MgO (Fig. 2.12). Its anisotropy
at first decreases with increasing pressure, vanishing near 15 GPa, and then increases
upon further compression [17]. This behavior is consistent with experimental obser-
vations [14, 63]. The change in sign of the anisotropy factor, A, and the exchange
between the fast and slow directions at ~15 GPa are determined by the ratio of the
shear moduli C44 and ¢, (which is greater than one below 15 GPa and less than one
above 15 GPa). The fast S-wave propagation direction is [100] at zero pressure (corre-
sponding to C44) but itis [110] above 15 GPa (corresponding to c;). Similar behavior is
seen in other materials including ringwoodite, a spinel-structure mineral with Mg,SiOy
composition [64].
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Fig. 2.12.  Elastic anisotropy of MgO at high pressure according to LDA pseudo-potential calcula-
tions [17]. Azimuthal anisotropy is defined by (Vx max — Vxmin)/Vx where X refers to P— or S-waves, and
Vx is the velocity averaged over all propagation directions. For cubic materials, polarization and S-wave
azimuthal anisotropy are identical. The inset shows the P-wave velocity as a function of propagation
direction at ambient pressure (lower curve) and at 30 GPa (upper curve). Modified from [17].

2.5. CONCLUSIONS

Density functional theory has opened up new frontiers in the study of the elastic
constants of materials. It is now possible to compute partial and complete elastic
constants of relatively complex materials (tens of atoms in the unit cell) efficiently.
These calculations have illuminated important physics, especially at high pressure,
including the importance of sublattice displacements, and the nature of elastic
anisotropy. The first-principles investigation of elasticity at high temperature remains
in its infancy although ab initio molecular dynamics and linear response methods are
rapidly opening new frontiers. Other future directions in first-principles studies will no
doubt include the elasticity of a-periodic materials, including glasses, liquids, and liquid
crystals, and defective crystals. The interaction of defects with elastic and anelastic
deformation will be important for gaining a better understanding of deformation at
long time scales and over large strains.
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