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Chapter 2.1

Density Functional Theory in Mineral Physics

Lars Stixrude

Density functional theory of the electronic structure of condensed matter is
reviewed with an emphasis on its application to geophysics. The review is placed
within the context of our attempts to understand planetary interiors and the unique
features of these regions that lead us to use band-structure theory. The foundations
of density functional theory are briefly discussed, as are its scope and limitations.
Special attention is paid to commonly used approximations of the theory, including
those of the exchange-correlation potential and the structure of the electronic core.
Some of the important computational methods are reviewed, including the
linearized augmented plane-wave method and the plane-wave pseudopotential
method. Examples of applications of density functional theory to the study of the
equation of state, crystalline structure, phase stability, and elasticity of earth
materials are described. Some critical areas for further development are

identified.

Introduction

Planetary interiors represent a unique environment in the universe in which the behavior
of condensed matter presents a considerable challenge. The nature and the evolution
of planetary interiors, even that of our own Earth, are complex, poorly understood, and
difficult to predict with current theoretical understanding. In contrast, we have a much
better understanding in many ways of the interiors of distant stars. For example, we are
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Figure 2.1.1 Pressure in the interior of Jupiter [3] and Earth [4] as
a function of mass density (top) and charge density (bottom). The
charge density has been calculated from the observed mass density
with the assumption that the number of electrons is one-half the
number of nucleons. Planetary structures are compared with
limiting high-density equation of state (2.1.1) for three values of
the atomic number Z.

able to calculate the structures and evolutionary history of stars with some certainty,
an exercise that is not yet possible for the Earth.

There are sound physical reasons for this apparent anomaly. The stellar interior is
extraordinarily simple from a condensed-matter physicist’s point of view. Because the
pressure is so high, the electrons obey an almost trivial limiting behavior, the uniform
electron gas [1]. The fundamental reason is that the kinetic energy of electrons increases
with the charge density p as p%°, whereas the potential energy binding the electrons
to the nuclei increases only as p'/?; the kinetic energy dominates at high pressure and
the electrons become unbound (see Ref. [2] for an extended discussion).

The contrast with planetary interiors can be illustrated when the pressure is ex-
pressed in terms of atomic units, 1 atomic unit (29.4 TPa) being comparable with
the pressure required for complete ionization and the formation of a degenerate elec-
tron gas. The structures of planets are such that pressures are much less than unity
(Fig. 2.1.1). The behavior of planetary materials will be far from plasmalike and there-
fore much more complex.

A more useful pressure scale in the context of planetary interiors is formed from an
energy typical of the spacing between electronic bands (1 eV) and a volume typically
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occupied by a valence electron in a mineral (25 bohr® ~ 4 AB). This pressure scale
(~100 GPa) is characteristic of the Earth’s interior and the bulk modulus of typical
earth-forming constituents. We must then expect to find in planetary interiors not only
significant compression and phase transitions, but also electronic transitions (e.g.,
insulator to metal) and substantial changes in the mechanisms of bonding, all of which
complicate our picture of planetary structure and evolution.

From the computational point of view, the recognition that planetary interiors are
characterized by complex multiphase behavior places tremendous demands on the
required accuracy of theoretical methods. They must be general, applicable to es-
sentially all classes of elements, and must not make any assumptions regarding the
nature of bonding. Energies and volumes must be accurate to well within typical heats
and volumes of solid—solid transformations. In the case of the Earth, these require-
ments rule out essentially all weak screening approaches that treat condensed matter
in perturbative fashion, beginning with the free-electron gas. Indeed, early calcula-
tions for which one such approach was used [5] incorrectly predicted that iron is
substantially lighter than the Earth’s core [6]. In the case of Jupiter, weak screening
approximations have proved fruitful for investigations of planetary structure but are
unlikely to successfully capture a priori important details such as the structure of the
molecular-to-atomic transition [1, 3].

The following sections review in some detail modern methods of first-principles
theory as they have been applied in the geophysics literature. The fundamental approx-
imations on which current implementations of density functional theory are based are
discussed. I then discuss applications of the theory to the derivation of observable
quantities of geophysical interest. In Section 2.1.3 1 review computational methods
for solving the equations. Finally, I discuss some important unsolved problems in the
behavior of earth materials and possible future directions.

212 Theory

From the point of view of any first-principles theory, solids are composed of nuclei
and electrons; atoms and ions are constructs that play no primary role. This departure
from our usual way of thinking about minerals and solids is essential and has the
following important consequences. We may expect our theory to be equally applica-
ble to the entire range of conditions encountered in planets (and even stars), the entire
range of bonding environments encompassed by this enormous range of pressures and
temperatures, and all elements of the periodic table.

To illustrate this way of thinking about solids and to introduce some important
concepts, consider first the properties of the simplest system, the uniform electron
gas with embedded nuclei. The total energy consists of the kinetic energy of the elec-
trons and three distinct contributions to the potential energy: (1) Coulomb interactions
among nuclei and electrons, (2) electron exchange, and (3) electron correlation. The
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first contribution is straightforward and involves only sums over point charges and/or
integrals over the (uniform) electronic charge density.

Exchange and correlation account for local deviations from uniform charge that
arise from the tendency of electrons to avoid each other. Correlation accounts for the
mutual Coulomb repulsion, whereas exchange embodies the Pauli exclusion principle
and the resulting tendency of electrons of the same spin to avoid each other. The net
effect is that each electron can be thought of as digging a hole of reduced charge density
about itself. Certain properties of the exchange-correlation hole are well understood;
it is known for instance that its integrated charge must exactly balance that of the
electron. Exchange and correlation reduce the total energy by reducing the Coulomb
repulsion between electrons,

The total energy of our simple system is readily evaluated as a function of charge
density; the equation of state then follows from differentiation. With the assumption
that the nuclei are in a close-packed arrangement and with only the leading-order

high-density contributions to exchange and correlation included, the equation of state
is [7]

P =0.176r°[1 — (0.407Z%> + 0.207)r,], (2.1.1)

where P is the static (athermal) pressure, Z is the nuclear charge, and the Wigner-Seitz

radius,
3 \13
e = (m) ) 2.1.2)

is a measure of the average spacing between electrons. The first term in Eq. 2.1.1) is
the kinetic contribution, the second is due to the Coulomb attraction of the nuclei for
the electrons and mutual repulsion of the electrons, and the third is due to exchange.
Correlation, which is smaller than exchange at high density, has been neglected, as
has the mutual Coulomb repulsion of the nuclei.

Comparisons with the structure of planetary interiors reveal some fundamentally
important aspects of planetary matter (Fig. 2.1.1). First, the net Coulomb attraction
provided by the nuclei plays an essential role at planetary densities - different mean
nuclear charges account to first order for the difference in mean charge (and mass)
density between Jupiter and Earth. Second, screening also has a first-order effect on
the equation of state, accounting for the much lower densities of planets at a given
pressure than those predicted by Eq. (2.1.1). In planetary matter, the charge density is
substantially enhanced in the vicinity of the nucleus, reducing the ability of the point
charges to attract the remaining (valence) electrons. Screening is weaker in the case of
Jupiter because it contains dominantly lighter elements and because the pressures are
much greater. Nevertheless, for all the planets screening is so strong that it must be
accounted for. In the case of the terrestrial planets, the charge density near the nuclej
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is so much higher than in the interstitial region that this difference plays a central role
in the design of modern computational methods.

2.12.1 Density Functional Theory

We turn now from simple to real systems and at the same time from analytically express-
ible results to necessarily elaborate computations. Although the electronic structure
will be nontrivial, we retain the charge density as a central concept. This is appealing
because this quantity is experimentally observable; it is precisely what is measured by
an x-ray-diffraction experiment.

The general problem we are faced with in a nonuniform, nondegenerate electron
system is formidable. Given a periodic potential set by the positions of the nuclei, we
must solve the Schrodinger equation for the total wave function W(ry, 2, ..., ry) of
a system of N interacting electrons, where N is of the order of Avogadro’s number.
Density functional theory [8, 9] is a powerful and, in principle, exact method of dealing
with this problem in a tractable way (see Ref. [10] for reviews).

The essence of this theory is the proof that the ground-state properties of a material
are a unique functional of the charge density o(r). Among these properties are the
ground-state total energy,

E=T+U/[p)]+ Exlp)], (2.1.3)

and its derivatives (pressure, elastic constants, etc.), where T is the kinetic energy
of a system of noninteracting electrons with the same charge density as that of the
interacting system, U is the electrostatic (Coulomb) energy, including the electro-
static interaction between the nuclei, and E,. is the exchange-correlation energy. A
variational principle leads to a set of single-particle, Schrodinger-like, Kohn—Sham
equations,

[—V2 + Vksl¥: = e, (2.1.4)

where v; is now the wave function of a single electron, ¢; is the corresponding eigen-
value, and the effective potential is

N

Vs [pm] =

i=l1

2Z;
Ir — R

+ / 2000 4 4 Ve )], 2.15)
r—r|

where the first two terms are Coulomb potentials that are due to the nuclei and the other
electrons, respectively, the last is the exchange-correlation potential, and the units are
Rydberg atomic units: #2/2m = 1, e? = 2, energy in Ry and length is in bohrs.

The power of density functional theory is that it allows us to calculate, in principle,
the exact many-body total energy of a system from a set of single-particle equations.
The solution to the Kohn—Sham equations is that of the set of coupled generalized
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eigenvalue equations:

Hi;(K)y;(r, k) = €;(K) 0y;(K)y(r, k),

(2.1.6)
H;;j(k) = / Y, K)(—V? + Vks)¥; (r, k) dr, 2.1.7

0ij(k) = /W,-*(r, Ky ;(r, k) dr, (2.1.8)

where H and O are the Hamiltonian and the overlap matrices, respectively, and k
is a vector in reciprocal space. Because the Kohn—Sham potential is a functional of
the charge density, the equations must be solved self-consistently together with the
definition of the charge density in terms of the wave functions:

p(r) = / 3" nlEF — eI, K)Yi(r, k) dk, (2.1.9)

where # is the occupation number and Er is the Fermi energy.

2.1.22 Approximations

Exchange-Correlation Potential

The Kohn-Sham equations are exact. That only approximate solutions have been
possible to date is a limitation imposed only by our current ignorance of the exact
exchange-correlation functional. If the exact exchange-correlation functional were
known, we would be able to obtain exact solutions. All other terms in the Kohn—Sham
equations are straightforward and readily evaluated.

The exchange-correlation functional is known precisely only for simple systems
such as the uniform electron gas (Fig. 2.1.2). The exchange portion is known an-
alytically, as are the leading-order contributions to correlation in the limit of high
density [12]:

a
Vie = — (pExc) ,
ap

3 (on\"?
Exc=_a<7”) r= + Alnr, + B,

(2.1.10)

where the first contribution to Ey. is exchange and the constants A = (1 — In2)/7
and B = —0.046644 [13]. At other densities, accurate values of the exchange-cor-
relation potential are known from quantum Monte Carlo calculations [14], which have
been represented in a parametric form that obeys the high-density limiting behavior
[Egs. (2.1.10)] [15].

The precision of modern condensed-matter computations has made the accurate
representation of the exchange-correlation potential of the uniform electron gas an
important issue. In this context, it is important to be aware that approximate repre-
sentations of Vy, have appeared frequently in the geophysical literature and are still
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Figure 2.1.2 Difference between the exchange-correlation potential and
its high-density limit [Egs. (2.1.10)] in (bold curve) the local-density
approximation and (other curves) three commonly used approximations
to the local-density approximation. For the Slater [11] result, I have used
o = 2/3, which yields the pure exchange potential.

in use. Of these, the Hedin—Lundqvist {16] expression is most similar to the accurate
Perdew—Zunger parameterization, that of Wigner [17] the least. The Wigner approx-
imation shows a much stronger dependence on density than the accurate potential
and leads to significant errors in density functional computations for solids. None of
the commonly used approximate expressions satisfy the correct high-density limiting
behavior [Egs. (2.1.10)].

The charge density in real materials is highly nonuniform, and the exchange-
correlation potential cannot be evaluated. Fortunately, simple approximations of the
exchange-correlation potential have been very successful. The local-density approxi-
mation (LDA) is based on the uniform electron gas, taking into account nonuniformity
to lowest order by setting V. at every point in the crystal to that of the uniform electron
gas with a density equal to the local charge density [10].

The success of the LDA can be understood at a fundamental level in terms of the
satisfaction of exact sum rules for the exchange-correlation hole [18]. For example,
the LDA correctly predicts an exchange-correlation hole of unit charge. Ultimately,
the appropriateness of the LDA can be judged only by comparison of its predictions
with observation. Here the LDA has been remarkably successful. The LDA has been
shown to yield excellent agreement with experiment for a wide variety of insulators,
metals, and semiconductors and for bulk, surface, and defect properties. The LDA
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shows some general failures, such as a tendency to underpredict bandgaps, and, from
a geophysical point of view, more serious failures for certain materials. For example,
LDA fails to predict the correct ground state of iron.

These failures have prompted the development of new exchange-correlation func-
tionals. One shortcoming of the LDA may be its local character, that is, its inability
to distinguish among electrons of different angular momenta or energy. Generalized
gradient approximations (GGAs) partially remedy this by including a dependence on
local charge-density gradients in addition to the density itself. Some care must be taken
in constructing gradient approximations; a straightforward Taylor series expansion in
the charge-density gradient about the LDA result fails completely because it violates
the sum rule for the exchange-correlation hole. The most widely used GGA satisfies
the sum rules exactly [13]. This approximation and its forerunners have been shown to
yield agreement with experimental data that is usually as good as the LDA and often
substantially better [19]. For example, GGAs correctly predict the bce phase as the
ground state of iron [20]. The relationship of the GGA to the LDA can be expressed
in terms of the enhancement factor,

V3G, 5)
Vi(rs)
where V, is the exchange potential and F is a function of the charge density and the

nondimensional charge-density gradient, s = (2472)713|Vp/0*?| (Fig. 2.1.3).

F(rg,s) = , (2.1.11)

Frozen-Core Approximation

The physical motivation for this approximation is the observation that only the valence
electrons participate in bonding and in the response of the crystal to most perturba-
tions of interest. Unless the perturbation is of very high energy (comparable with the
binding energy of the core states), the tightly bound core states remain essentially
unchanged. The frozen-core approximation is satisfied to a high degree of accuracy
for many applications, for example in the case of finite strains of magnitudes typically
encountered in the Earth’s interior.

Within this approximation, the charge density of the core electrons is just that of
the free atom, which can be found readily. We then need solve for only the valence
electrons in Eq. (2.1.4), often a considerable computational advantage. An important
technical point is that, although in many cases the choice is obvious, there is no
fundamentally sound way to decide a priori which electrons are core and which are
valence. Some care is required; for example, the 3 p electrons in iron must be treated
as valence electrons as they are found to deform substantially at pressures comparable
with those in the Earth’s core [21].

Pseudopotential Approximation

This approximation goes one step beyond the frozen-core approximation. It replaces
the nucleus and the core electrons with a simpler object, the pseudopotential, which
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Figure 2.1.3 Effect of charge-density gradients on the
exchange-correlation potential according to the GGA. The
enhancement factor for zero gradient (s = 0) reflects the
contribution of correlation to V..

has the same scattering properties [22]. The pseudopotential is chosen such that the
valence wave function in the free atom is the same as the all-electron solution be-
yond some cutoff radius, but nodeless within this radius. The advantages of the pseu-
dopotential method are that (1) spatial variations in the pseudopotential are much
less rapid than the bare Coulomb potential of the nucleus and (2) we need solve for
only the (pseudo-) wave functions of the valence electrons, which show much less
rapid spatial variation than the core electrons or the valence electrons in the core
region. This means that in the solution of the Kohn—Sham equations, potential and
charge density can be represented by a particularly simple, complete, and orthog-
onal set of basis functions (plane waves) of manageable size; with this basis set,
evaluation of total energies, stresses, and forces acting on the atoms is particularly
efficient.

The pseudopotential is an approximation to the potential that the valence electrons
“see” and its construction is nonunique; different pseudopotentials may yield signifi-
cantly different predictions of bulk properties. Several different methods for construct-
ing pseudopotentials have been developed [23-25]. Care must be taken to demonstrate
the transferability of the pseudopotentials generated by a particular method and to com-
pare with all-electron calculations where these are available. When these conditions
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are met, the error that is due to the pseudopotential is generally small (a few percent
in volume for earth materials).

2.123 Derivation of Observables
Total Energy and Band Structure

For a given arrangement of nuclei (crystal structure) we may solve the equations
of density functional theory under one or more of the above approximations to de-
termine the total energy, charge density, and the quasiparticle eigenvalue spectrum
(electronic band structure). By examining the dependence of the total energy on
perturbations to the volume V or shape of the crystal (described by the deviatoric
strain tensor €;;) or to the positions of the atoms, we can, in principle, deduce the
Helmholtz free energy F as a function of V, €] ;» and T. For example, the pressure
and the equation of state are simply given by the variation of the total energy with
volume.

We may determine the elastic constants from total-energy calculations. For small
deviatoric strains under hydrostatic stress [26],

1
| F(V, €5, T) = Fo(V) + FrndV, T) 4 (V. ey, (2.1.12)

where Iy is the static (zero-temperature) contribution, Fry is due to the thermal exci-
tation of electrons and phonons, and ¢;, is the elastic-constant tensor. This equation
shows that combinations of elastic constants are related to the difference in total energy
between a strained and an unstrained lattice.

It is possible in principle to calculate thermal contributions to the thermodynamic
and thermoelastic properties of crystals. Calculating thermal properties is much more
difficult than calculating static properties, however. The reason is simple: The atomic
vibrations induced by finite temperature break the symmetry of the crystal so that it is
now periodic in only a time-averaged sense. In the context of total-energy calculations,
our task is then to evaluate the partition function, an integral over all atomic configu-
rations realized by a crystal at high temperature. This is essentially impossible. More
efficient ways of evaluating thermal free energies from first principles are required.
Some future directions are indicated in Section 2.1.5.

Forces, Stresses, and Structures

The Hellman—Feynman theorem allows us to calculate first derivatives of the total
energy directly in terms of the ground-state wave functions. The application of this
theorem allows us to determine the forces acting on every atom and the stresses acting
on the lattice.

This is important for two related reasons. First, it allows us to determine ground-
state crystal structures very effectively. This has become possible only recently for
relatively complex structures such as MgSiO; perovskite [27]. The key innovation
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has been the development of a structural optimization strategy based on a pseudo-
Lagrangian that treats the components of the strain tensor and the atomic positions
as dynamical variables [28]. The optimization is performed at constant pressure. At
each step of the dynamical trajectory, the Hellman—Feynman forces and stresses [29]
acting on the nuclei and the lattice parameters, respectively, are evaluated and used
to generate the next configuration. The optimization is complete when the forces
on the nuclei vanish and the stress is hydrostatic and balances the applied pres-
sure.

Second, once the equilibrium structure at a given pressure is determined, we can
calculate the elastic constants. We do this in a straightforward way by applying a
deviatoric strain to the lattice and calculating the resulting stress tensor. The elastic
constant ¢;j; is then given by the ratio of stress o;; to strain €;;:

Oij = Cijki€kl- (2.1.13)

Care must be taken to reoptimize the positions of the atoms in each strained con-
figuration, as vibrational modes typically couple with lattice strains in silicate struc-
tures.

213 Computation

2.1.3.1 Methods

First-principles methods solve Eqgs. (2.1.6)—(2.1.8) by expanding the wave functions
in a basis

N
Yir, k) = e, (r. k), (2.1.14)
j=1
where N is the number of basis functions ¢; and ¢;; are the coefficients to be determined
by solution of the Kohn—Sham equations.

The linearized augmented plane-wave (LAPW) method is the current state of the
art in density functional theory computations. It makes no essential approximations
beyond that to the exchange-correlation functional, allowing us to solve routinely for
all electrons, both core and valence. For example, it makes no approximations of the
shape of the charge density or potential. The accurate representation of the potential
and the core states means that the LAPW method is equally applicable to all elements
of the periodic table and over the entire range of densities of interest in planetary or
astrophysical studies.

The LAPW method differs from its forerunner, the APW method, in that the APW
method assumes a spherically symmetric potential near the nuclei [30, 31]. Because of
its precise representation of the potential, the LAPW method is sometimes referred to
as the full-potential LAPW (FLAPW). LAPW shares the ability to represent precisely
the full potential and the charge density with the full-potential linear muffin-tin orbital
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Figure 2.1.4 (Top) One
LAPW basis function in the
vicinity of a hydrogen
nucleus located at the
origin: G = (0, #/2, 0),
Inax = 6, EI(RY) =

—(I + 1)7%; (bottom) the
plane wave G = (0, /2, 0).

(FP-LMTO) method [32]. The FP-LMTO method is very similar to the LAPW method
in its capabilities and level of accuracy, differing primarily in the details of the basis
functions.

The accuracy and the flexibility of the LAPW method are derived from its basis,
which explicitly treats the first-order partitioning of space into near-nucleus regions,
where the charge density and its spatial variability are large, and interstitial regions,
where the charge density varies more slowly (Fig. 2.1.4) [33-35]. These two regions
are delimited by the construction of so-called muffin-tin spheres of radius Ry centered
on each nucleus «. A dual-basis set is constructed, consisting of plane waves in the
interstitial regions that are matched continuously to more rapidly varying functions
inside the spheres. Within the muffin-tin spheres (' < Ryp),

o) = [af,ui (EY . r') + bty (EF r')] Yim(' /1), (2.1.15)
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/ I
and for r' > RY,

" (r) = explitk + G) - 1], (2.1.16)

where r’ = r —R,, R, are the positions of the nuclei, G is a wave vector, #; and i; are
the solution to the radial part of the Schrodinger equation and its energy derivative,
respectively, for the spherically symmetric portion of the potential inside the muffin-tin
sphere atenergy Ej, and the coefficients a and b are determined by requiring continuity
of the basis function and its first radial derivative on the muffin-tin sphere.

With this basis set, all-electron calculations for silicates or transition metals typically
require of the order of 100 basis functions per atom. The primary disadvantage of the
LAPW method is that the complexity of the basis functions makes it relatively intensive
computationally. In practice, this limits the size of the system that can be studied. Even
so, LAPW computations for structures as complex as that of MgSiO; perovskite (20
atoms in the unit cell) have been performed [36].

Basis sets consisting solely of plane waves, because of their analytical simplicity,
have some advantages over the LAPW basis. However, all-electron calculations are
virtually impossible with a plane-wave basis set; the number of basis functions needed
to represent the rapid spatial oscillations of the core region is much too large to be
practical. For this reason, the plane-wave basis is generally linked in practice to the
pseudopotential approximation, in which the Fourier content of charge density and
potential are limited by design.

2.1.32 Convergence

There are two primary convergence issues: the size of the basis and the integrations
over reciprocal space [e.g., Eq. (2.1.9)]. Both basis sets have the property of smooth
convergence; this means that convergence of the computations is readily assessed;
quantities of interest vary smoothly as the basis-set size is increased. In the LAPW
method, the size of the basis set is described by the dimensionless quantity Ryt Kpax,
where K is the maximum wave number of the plane waves included in the basis
set. In the pseudopotential method, the size of the basis is set by the maximum kinetic
energy of the plane waves E., = K2, inatomic units. Typical values for computations
of silicates are Ryy Kmax = 7 and E, = 40—80 Ry, depending on the pseudopotential
that is used.

Sampling of the Brillouin zone is treated with the special-points method, which
has been shown to yield rapid convergence [37]. For insulators, only a few points
(1-10) are typically needed to achieve fuily converged total energies; metals require
denser sampling because of the often complex structure of the Fermi surface. The
special-points method constructs a uniform grid of k points of specified resolution in
the first Brillouin zone. The resulting set of k points is divided into subgroups (stars) of
symmetrically equivalent points. The Kohn—Sham equations are solved for only one
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member of each star, and the wave functions at other points in the star are reconstructed
with the appropriate symmetry operations, weighting the contribution of each star by
its degeneracy.

The results of convergence tests typical of a transition metal are shown in Fi g.2.1.5.
Convergence of the total energy to within a few tenths of a millirydberg (~50 parts per
10 in the case of iron) are routinely achieved. This level of convergence is essential
for making accurate predictions — typical solid—solid heats of transformation are of
the order of a few millirydbergs. A general feature of convergence in either LAPW
or pseudopotential methods is that energy differences — between two volumes of
one structure or between two different structures — converge much faster than total
energies.

214 Some Applications

2.14.1 Equation of State

The error that is due to the LDA can be evaluated by a comparison of the results of
LAPW calculations, which make no further essential approximations beyond the LDA,
with experiment (Fig. 2.1.6). In investigations of silicates and oxides of geophysical
interest, it has been found that errors in volumes are typically 1%—4%, with theoreti-
cal volumes being uniformly smaller than experimental [36, 39-41]. Part of this small
difference is due to the higher temperatures of experiments (300 K) compared with
the athermal calculations. This is a highly satisfactory level of agreement for a theory
that is parameter free and independent of experiment. All-electron LDA computations
of transition metals show errors of similar magnitude in the zero-pressure volume; for
the 34 and the 4d metals, the calculations uniformly underestimate the experimental
volumes, whereas for the 54 metals, the situation is more complex [42]. For the
heaviest materials, additional effects such as spin-orbit coupling, often neglected
in computations, may become important and contribute to the discrepancy between
theory and experiment.

The GGA improves the agreement between theory and experimental equat-
ions of state for most materials, including the 3d transition metals. In the case of
iron, LAPW and FP-LMTO calculations differ from the experimentally measured
room-temperature equation of state by 3% at zero pressure and by less than 1% at
core pressures [21, 32, 43]; agreement with high-temperature Hugoniot data is equally
good [44].

Pseudopotential calculations make additional approximations that lead to additional
errors (Fig. 2.1.6). These are small in magnitude and comparable in size with the LDA
error. At this level of detail, different pseudopotentials yield results that differ from each
other and from the all-electron LDA result from LAPW. Because the pseudopotential
method is nearly as accurate as the much more elaborate LAPW method, it is often
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(thin curves) pseudopotential calculations based on the indicated
potentials.

preferred for many applications, as its computational advantages allow much larger
and more complex systems to be studied.

2.1.42 Structural Optimization

The structure and compression mechanisms of a number of complex silicates have been
studied with density functional theory at high pressure, including MgSiOs enstatite
and perovskite, Mg,SiO, forsterite, and SiO; in the quartz, stishovite, CaCl,, and
columbite structures [27, 40, 41, 45-50]. These investigations (1) provide an important
test of the approximations on which first-principles methods are based (2) illustrate in
detail often not obtainable by experiment the nature of compression mechanisms, and
(3) provide a sensitive test of the hypothesis that some minerals undergo high-order
symmetry-invariant phase transformations.

When the method of Wentzcovitch [28] is used, the optimization of complex crystal
structures such as forsterite is an efficient procedure. Typically, of the order of 10-20
iterations are required for full structural convergence in this mineral with 7 internal
degrees of freedom and three lattice parameters [48). The results of first-principles
calculations show that volume compression is primarily accommodated by nearly
isotropic compression of the MgOg octahedra, which are much softer than the Si04
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tetrahedra. Changes in bond lengths and angles are smooth and monotonic, unlike the
results of x-ray diffraction experiments. In particular, density functional theory does
not support the proposal that compression mechanisms change suddenly at pressures
near 9 GPa. Brodholt et al. [51], by using different pseudopotentials, also found no
evidence for sudden changes in compression mechanisms.

2.14.3 Phase Stability

In many ways, phase stability provides the most stringent test of first-principles meth-
ods. The reason is that we are comparing total energies computed for two different
structures with different basis sets and Brillouin zones at the level of heats of transfor-
mations, generally a miniscule fraction of the total energy (less than 1 part per 109).
First-principles LDA results for transformations in oxides and silicates have shown
excellent agreement with experiment [39—41, 50, 52—54]. In the case of transition
metals, the form of the exchange-correlation potential is critical. LDA fails to predict
the correct ground state of iron, finding incorrectly that the hcp phase has a lower total
energy than the bec. The GGA correctly recovers the bee ground state (Fig. 2.1.7).
Moreover, it accurately predicts the pressure of the phase transition from bec to hep

400

360 Fe |

T=300 K
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240
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40 50 60 70 80
Volume (Bohr */Atom)

Figure 2.1.7 GGA equations of state of ferromagnetic bce and
nonmagnetic hep (solid curve) phases of iron compared with the
experimental data of Jephcoat et al. [55] (bce, open squares; hep,
filled circles) and Mao et al. [56] (hep, open circles). The dashed
line indicates the predicted phase-transition pressure of 11 GPa.
(From Ref. [44].)
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near 11 GPa. This is an important result because the energetics are particularly sub-
tle in the case of this transition as it involves a ferromagnetic and a nonmagnetic
phase.

2.1.4.4 Elastic Constants

The elastic constants are of central importance geophysically because they govern the
passage of seismic waves, our primary source of information on the structure of the
Earth’s interior. Despite their importance, density functional calculations of the elastic
constants of earth materials have appeared only recently. The key development has
been that of an efficient structural optimization scheme [27] and calculation of stresses
from the Hellman—Feynman theorem. Elastic constants are determined by calculation
of the stress generated by deviatoric strains applied to the equilibrium structure. It
is straightforward to demonstrate that we are within the linear regime by performing
the calculation at a variety of values of the strain magnitude and extrapolating to the
limit of zero strain [54]. These calculations show that strains of the order of 1% are
appropriate for silicates and oxides. By carefully choosing the symmetry of the applied
strain, we can calculate all elements of the elastic-constant tensor with a small number
of different strains. For example, the three elastic constants of a cubic mineral can be
determined from a single strain; four different strains have been used for orthorhombic
minerals (nine independent elastic constants) [57].

The full elastic-constant tensors of a number of silicates and oxides have been deter-
mined with the plane-wave pseudopotential method, including that of MgO periclase,
MgSiO; perovskite, Mg, SiO, forsterite and ringwoodite, and SiO, in the stishovite,
CaCl,, and columbite structures [27, 47, 54, 57-59]. Once the elastic-constant tensor
is determined, it is straightforward to calculate the elastic-wave (seismic) velocities in
any direction, the elastic anisotropy, and the seismic-wave velocities of isotropic ag-
gregates. Results for MgSiO; perovskite [47] (Fig. 2.1.8) show several geophysically
important features: (1) athermal longitudinal and shear-wave velocities of isotropic
aggregates of this mineral nearly parallel those of the lower mantle and are uniformly
larger, (2) perovskite remains highly anisotropic throughout the pressure regime of the
lower mantle, and (3) its anisotropy changes qualitatively with increasing pressure.
The theoretical results are consistent with the hypothesis that perovskite is the most
abundant mineral in the lower mantle [66]; they further require that it exist in approx-
imately randomly oriented aggregates, except possibly in the D" region, where it may
partially account for the seismic anisotropy observed there.

2.1.5 Future Directions

; This review has only given an indication of the realm of geophysical application of
density functional theory. I have reviewed only a subset of the important calcula-

tions that have been performed and have not touched on possible future directions.

2.1.5 Fut
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Other applications of density functional theory include the following:

1. The investigation of magnetism in metal alloys, silicates, and oxides. Studies of
transition-metal compounds have shown that earth materials display
remarkably rich magnetic behavior that has important implications for our
understanding of bonding, equations of state, elasticity, and phase
stability [61]. This is a challenging area that requires new theoretical
developments because transition-metal oxides such as hematite and magnetite
are Mott insulators that owe their electronic properties to strong localization of
the d electrons. Mott-insulating behavior is fundamentally beyond the scope of
band-structure theory as outlined here.

2. First-principles computation of phonon spectra [62, 63]. In addition to making
contact with experimental observation of zone-center vibrational frequencies,
these predictions allow us to investigate phase stability and, to the extent that
thermal properties are quasi harmonic, high-temperature properties [67]. The
computation in polar substances is subtle and necessarily involves not only the
calculation of force constants, but also that of the dielectric constant and Born
effective charge tensors so that coupling to the macroscopic field at zone center
is properly accounted for. Efficient calculation involves a technique known as
linear response, in which computation of the linear response of the charge
density to a perturbation allows second derivatives of the total energy to be

computed directly [64].

3. First-principles molecular dynamics simulations at high temperatures. These
have now been performed for the first time in a study of liquid iron at core
conditions [65]. The method is general and relies on only the principles of the
plane-wave pseudopotential method and the computation of stresses and forces
outlined here. The first-principles investigation of other solid and fluid earth
materials by this technique represents an exciting future direction.

216 Conclusions

Modern first-principles methods are now capable of realistic predictions of many ex-
perimentally observable and geophysically important properties such as the equation
of state, phase stability, crystal structure, and elasticity. Parameter free and completely
independent of experiment, these methods have been shown to reproduce observa-
tions of even subtle features such as phase transitions and the elastic anisotropy with
good accuracy. Density functional theory represents the ideal complement to the ex-
perimental approach toward studying the behavior of earth materials under extreme
conditions. Accelerated progress is predicted on a number of fronts in this challenging
field, resulting from the continued interplay of theory and experiment.
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