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The magnetic state of hexagonal close-packed iron has been the
subject of debate for more than three decades. Although Möss-
bauer measurements find no evidence of the hyperfine splitting
that can signal the presence of magnetic moments, density func-
tional theory predicts an antiferromagnetic (afm) ground state.
This discrepancy between theory and experiment is now particu-
larly important because of recent experimental findings of anom-
alous splitting in the Raman spectra and the presence of super-
conductivity in hexagonal close-packed iron, which may be caused
by magnetic correlations. Here, we report results from first prin-
ciples calculations on the previously predicted theoretical collinear
afm ground state that strongly support the presence of afm
correlations in hexagonal close-packed iron. We show that anom-
alous splitting of the Raman mode can be explained by spin–
phonon interactions. Moreover, we find that the calculated hyper-
fine field is very weak and would lead to hyperfine splitting below
the resolution of Mössbauer experiments.

Physical properties of iron are of great importance to many
fields in the sciences, as iron is one of the most abundant and

stable elements in the universe and the very basis for the steel
industry. Hexagonal close-packed (hcp) iron, the form stable at
high pressure, plays a central role in geophysics, as the Earth’s
inner core is thought to be primarily composed of this phase (1,
2), and in our understanding of impact and explosive phenomena
in iron and steel (3). The magnetic state of iron has a major
influence on the physics of iron and iron alloys, including the
relative stability of the iron polymorphs (4, 5). The magnetic
structure of the hcp phase has been the subject of a scientific
debate for three decades (6), leading to contradictory results
from experiments and theory. Although experiments are inter-
preted to show the absence of magnetism in hcp iron (6–10),
computations based on density functional theory find an anti-
ferromagnetic (afm) ground state stable to �50 GPa (11),
similar to magnetism in the double hcp phase (5). The possible
presence of magnetism in hcp iron as further substantiated in this
article has important implications. In geophysics many experi-
ments are carried out on potentially magnetic hcp iron and are
then extrapolated to pressures of Earth’s core, into the nonmag-
netic region of the hcp stability field at high pressure, and may
consequently not be valid. The possible presence of magnetism
in hcp iron also plays an important role in the discussion of
the recently observed superconductivity of hcp iron (12, 13):
Magnetic correlations in hcp iron appear to be necessary to
explain the observed pressure dependence of its superconduc-
tivity (14–16).

The two lower-pressure polymorphs of iron are both magnetic.
The phase stable around ambient conditions, body-centered
cubic (bcc), owes its stability entirely to the presence of ferro-
magnetism (4). Heating above the Curie temperature causes the
spins to disorder and the net magnetization to vanish, but the
individual atomic moments are virtually unchanged in magni-
tude as temperature has little influence on the electronic struc-
ture. The face-centered cubic (fcc) phase is stable at higher
temperatures at low pressure and has no ordered magnetic
structure. However, local atomic moments are present in this
phase; they interact antiferromagnetically and are responsible
for anomalous phonon dispersion (17) and the antiinvar effect
(18) in fcc iron. The fcc and hcp lattices are frustrated with

respect to antiferromagnetism: it is impossible to surround every
atom with atoms of opposite spin. Theory (19) and experimental
studies of precipitates (20) reveal the fcc ground state to be an
incommensurate spin wave.

Pressure has a large effect on the magnetic structure through
the delicate balance between the potential energy, which stabi-
lizes magnetism, and the kinetic energy, which stabilizes a
nonmagnetic state. Potential energy is lowered by aligning spins
since like spin electrons cannot occupy the same spatial orbital
and therefore repel each other less than unlike spins. Lowering
of the potential energy comes at the cost of higher kinetic energy
as electrons of the same spin must occupy higher lying states.
Magnetism tends to be favored in materials, such as bcc iron,
with a high density of electronic states at the Fermi level (the
highest occupied orbitals). Pressure broadens the electronic
bands and tends to increase the separation between these states,
causing the magnetic moments to decrease in magnitude on
compression. Because the magnetization energy is more favor-
able at larger volumes, magnetism tends to expand the lattice and
increase the compressibility as compared with the nonmagnetic
state.

The absence of observable splitting in the Mössbauer signal in
hcp iron to low temperatures (7, 8) places an upper limit of the
hyperfine field (HFF) of only 5 kG (0.5 T) (8), leading to the
conclusion that no significant magnetic moments are present.
However, theoretical density functional theory methods give a
stable afm state for hcp iron (11). This structure (afmII, Fig. 1)
is characterized by alternating spin up and down planes perpen-
dicular to the basal planes in the hcp cell, or a spin wave with
wave vector q � (0,1�2,0), at the high symmetry point M on the
Brillouin zone boundary. The afmII phase has been predicted to
be stable for hcp iron up to 60 GPa (Fig. 2), a finding that is
robust within density functional theory computations using both
the local density and generalized gradient approximation to the
exchange correlation potential (11, 14, 15). Taking the afmII
structure into account improves the agreement of computed and
experimental equation of state for hcp iron significantly (11).

Recent experimental observations, including anomalous split-
ting of the Raman mode (21, 22), shed some light on the
apparent discrepancy between theory and experiment. The
Raman active phonon in a monatomic hcp system is the doubly
degenerate transverse optic (TO or E2g) mode. Consequently,
only one peak is expected in Raman spectra of hcp iron.
However, experiments using synthetic diamonds as anvils in the
diamond anvil cell show two peaks up to pressures of 40 GPa (21,
22), suggesting a symmetry lower than the atomic arrangement.
The afmII magnetic structure provides such a symmetry break-
ing mechanism, resulting in two TO modes, the B2g and B3g
modes, characterized by displacements of the close-packed
planes with respect to one another along the orthorhombic a-axis
(TOa) and b-axis (TOb), respectively (Fig. 1). Both of these
modes are Raman active.
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Here, we calculate the TO mode frequencies and the HFF of
the afmII structure over the compression range where finite afm
moments are predicted (Fig. 2) by using the spin-polarized fully
relativistic all-electron linearized-augmented plane-wave
method (23, 24) with the generalized gradient approximation
(25). Raman frequencies are calculated by the frozen phonon
method: energy changes are evaluated in response to small
displacements along the phonon eigenvector, with the second-
order term yielding the frequency. For comparison we also
calculate the TO mode frequency for the nonmagnetic structure.
The HFF is computed self-consistently from the spin up and
down charge density at the nucleus averaged about the Thomp-
son sphere, generalizing the Fermi contact interaction to the
relativistic case (26). To efficiently perform the calculations we
fix the axial ratio c�a � 1.6 close to the experimentally (27) and
computationally (11) determined equilibrium value.

Inspection of the magnetic structure reveals that fundamen-
tally different spin interactions are involved in the two TO modes
(Fig. 1). For the TOa mode atoms approach nearest neighbors
with unlike spin, corresponding to afm correlations. For TOb

atoms alternately move toward or away from a nearest neighbor
with like spin, corresponding to ferromagnetic (fm) correlations.
The resulting energy-displacement relations reflect the magnetic
interactions (Fig. 3). For afm correlations the curvature of the
energy is reduced with respect to the nonmagnetic case, and for
fm correlations there is additional (along positive b) or reduced
(negative b) repulsion. The calculated equilibrium magnetic
moments are consistent with these findings (Fig. 3). The moment
increases for displacements involving afm correlations (along a);

for positive b they decrease considerably as like-spin nearest
neighbors approach, and increase as this distance grows.

We find that the TOa mode frequency agrees well with that of
the lower-frequency, higher-amplitude peak found in the Raman
experiments (21, 22) and that the TOb mode frequency corre-
sponds to the experimentally observed satellite peak at higher
frequency (Fig. 4). The magnitude of the predicted TO mode
splitting decreases as the afm moment is reduced by compres-
sion, in excellent agreement with the observation in the Raman
experiments (Fig. 4). The systematic offset of the calculated
frequencies by �20 cm�1 (�10%) is typical for a comparison of
computed and measured phonon frequencies (28). The magni-
tude of splitting predicted here is related to afmII, but other
magnetic structures will also result in splitting of the TO mode.

Spin–phonon interactions have been found to have a strong
effect on Raman scattering in a number of systems, including
cupric oxide (29) and the copper-ruthenium oxide
RuSr2GdCu2O8 (30). The general character of the effect of
spin–phonon interaction on the Raman spectra in these mate-
rials is consistent with the observations for hcp iron: broad, low
amplitude, satellite peaks appear when the sample is below the
Curie or Néel temperature.

The inherent frustration of the triangular lattice might lead
one to suspect more complex spin arrangements than the one
considered here, such as incommensurate spin waves or non-
collinear structures, as in the case of fcc iron (19, 20), or a spin
glass. If only nearest-neighbor afm interactions are important,
the ground state of the hcp lattice is infinitely degenerate (31).
Diep (31) showed further that in this case the hcp lattice adopts
a collinear spin configuration at finite temperature, correspond-
ing to the afmII structure, due to an entropic effect, known as
ordering by disorder (32). Noncollinear calculations show that at
least for high volumes the ground state is noncollinear, but

Fig. 1. Orthorhombic afm ground state of hcp iron (afmII). Open circles show
the atomic positions at z � 1�4, filled circles at z � 3�4 with arrows pointing
in (crosses) and out of the plane (dots) indicating the direction of spin. The
orthorhombic unit cell (space group Pmma) is given (solid lines, four atoms in
the unit cell), and the axes are labeled. The direction of the wave vector q for
the afmII spin wave is along the b axis, with length 1�2, at the M point on the
Brillouin zone boundary (q � 0,1�2,0). The a- and b-axes define the eigenvec-
tors for the TO modes (TOa or B2g and TOb or B3g). The c-axis is out of the plane.
For reference, a hexagonal base at z � 1�4 is outlined (dashed lines).

Fig. 2. Magnetic moments for iron as a function of pressure from theoretical
results. Circles show the ferromagnetic moments for the bcc phase, and
squares show spin-up afm moments (moments for both phases are taken
within the muffin tin sphere) for the afmII phase of hcp iron. Units of the
magnetic moments are the atomic units Bohr magneton (�B, 1 �B �
927.4�10�26 J�T). The vertical dashed line is the phase transition pressure from
the bcc to the afmII phase, and magnetic moments in the stability regions of
the two phases are shown by filled symbols. The lines through the bcc and
afmII are linear interpolations to guide the eye.
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stabilization energies are small (33). One may consequently
imagine a magnetic-phase transition sequence from a noncol-
linear ground state to the collinear afmII structure to a para-
magnet with increasing temperature, which could also explain
the strong decrease in amplitude and eventual disappearance of
the satellite peak in experiments when the temperature is
lowered (34). The absence of splitting in another set of exper-
iments (35) can be explained by the use of natural diamonds for
the cell anvils, where fluorescence significantly impairs the
quality of the spectra, to the extent that the satellite peak would
not be observable.

The inference of magnetism from the Raman splitting is in
apparent conflict with the Mössbauer experiments that show no
significant HFF for hcp iron: the disappearance of the typical
Mössbauer sextet for 57Fe at the transition from bcc to hcp iron
has even been used to monitor the hysteresis and sharpness of
this phase transition (9). To address the Mössbauer experiments
we have calculated the HFF for afmII iron and find it to be only
a few kG throughout its stability field (Table 1). This is two
orders of magnitude smaller than the HFF for fm bcc iron. For
bcc we find �323 kG at an atomic volume (V � 80 Bohr3, with
1 Bohr � 0.529177�10�10 m) close to the experimental zero
pressure volume, in good agreement with the experimental
saturation value (�339 kG), and obtain a slight decrease of the
HHF as a function of compression (Table 1). The separation of
the outermost peaks in the Mössbauer spectrum (L1 and L6) is
diagnostic of the HFF, and a typical value of 4 kG for afmII
would result in a separation of �0.2 mms�1, within the width of
the central Mössbauer peak. The small HFF for afmII results
from the core and valence contributions having opposite signs
and almost canceling (Table 1). It is worth noting that in the

presence of an external field large internal magnetic fields
develop in hcp iron (10); this anomalously large susceptibility
supports our interpretation of hidden magnetic correlations in
hcp iron.

Fig. 3. (Lower) Energy of displacement of hcp iron at V � 70 Bohr3 per atom.
Relative energy changes (in Rydberg, the atomic unit of energy with 1 Ry �
2.179872�10�18 J) as a function of displacement for the nonmagnetic structure
(■ ), and the afmII structure for displacements along TOa (Œ) and TOb (�).
Dotted and solid lines are third-order polynomial fits to the results. (Upper)
The change in the afmII moment as a function of displacement for TOa and TOb

(same symbols, with dashed lines to guide the eye).

Fig. 4. Raman frequencies as a function of atomic volume. The afmII structure
results in twotransverseoptical frequencieswithTOa beingthe lower (Œ)andTOb

(�) the upper branch. Also shown are nonmagnetic calculations (■ ). The dashed
lines through TOa and TOb are third-order polynomial fits in V�2/3. Experiments
(19,22) identifytwopeaks intheRamanspectraupto40GPainopensymbols.The
stronger peak is shown (‚), and the weaker peak is shown (ƒ). The upper scale
shows the corresponding pressure as based on the theoretical equation of state
of the afmII structure (11). (Inset) Compared are the splitting in Raman frequen-
cies from theory (Œ) and experiment (‚).

Table 1. HFF in bcc and afmll hcp iron under compression

V, Bohr3 P, GPa M, �B B, kG Bc, kG Bv, kG

bcc Fe
79 (exp) 0 2.13 �339
81 (ref. 40) 2.46 �316 �280 �36

80 �7 2.22 (2.28) �329 �286 �43
75 6 2.14 (2.18) �309 �279 �31
70 23 2.09 (2.06) �287 �266 �21
65 48 1.90 (1.92) �261 �249 �12
60 86 1.75 (1.77) �226 �227 1

afmll Fe
75 �12 0 (1.40) 3 �170 173
70 2 0 (1.10) 4 �132 136
65 22 0 (0.69) 4 �85 89
60 56 0 (0.20) 2 �31 33

Given are atomic volumes, V, the corresponding pressure, P, from the
respective computational equation of state (11), and the magnetic moment,
M, for the unit cell and inside the muffin tin sphere (in braces) in Bohr
magnetons. The total HFF, B, and its contributions due to core, Bc, and valence
electrons, Bv, follow. For the HFF computations we treat all electronic states up
to 3s as core and higher lying states as valence electrons. For the afmll M in the
muffin tin spheres and contributions to the HFF for the spin up atoms are
given. A comparison to previous calculation (40) for bcc is included. We find
that including spin-orbit coupling has negligible effect on the HFF. The
calculations of the HFF were performed with the WIEN2K linearized-augmented
plane-wave program (24).
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Other experimental investigations of possible magnetic states
in hcp iron have been inconclusive. Magnetism in hcp iron exists
at overexpanded volumes in epitaxially grown multilayers on a
ruthenium substrate (36). The change in nuclear x-ray absorp-
tion spectra across the bcc–hcp phase transition (37) results from
a considerable reduction in magnetic moments across this tran-
sition, but cannot unambiguously be interpreted as absence of
moments in the high-pressure polymorph. The change in ab-
sorption spectra is due to changes in the density of states and to
spin-related satellites (38).

Long thought to be antithetical, superconductivity and mag-
netism are simultaneously observed in an increasing number of
systems. Among these, ZrZn2 is of particular interest: supercon-
ductivity and magnetism appear to be directly coupled as
evidenced by the loss of superconductivity and magnetism at the
same pressure (39). A similar connection between magnetism
and superconductivity in hcp iron, which has been observed only
recently (12, 13) has now been investigated. Although different
in detail, computational studies (14–16) suggest that supercon-
ductivity in hcp iron is exotic and related to spin fluctuations.
Jarlborg (14) in particular shows that the topology in pressure-

temperature space and the critical temperature of superconduc-
tivity are determined by magnetic f luctuations.

Additional experiments investigating magnetism and magnetic
correlations in iron under pressure and temperature, such as in
situ susceptibility and neutron scattering, would be of great
interest. They would not only elucidate the properties of this
comment element, but help in understanding the equation of
state for iron and shed important insight into extrapolations of
physical properties to conditions of Earth’s core. They will also
help in understanding and refining theoretical methods for
simulating and studying magnetism in materials.
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