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The Earth’s inner core plays a vital role in the dynamics of our planet and is itself strongly exposed
to dynamic processes as evidenced by a complex pattern of elastic structure. To gain deeper insight
into the nature of these processes we rely on a characterization of the physical properties of the inner
core which are governed by the material physics of its main constituent, iron. Here we review recent
research on structure and dynamics of the inner core, focusing on advances in mineral physics. We
will discuss results on core composition, crystalline structure, temperature,and various aspects of
elasticity. Based on recent computational results, we will show that aggregate seismic properties of
the inner core can be explained by temperature and compression effects on the elasticity of pure
iron, and use single crystal anisotropy to develop a speculative textural model of the inner core that
can explain major aspects of inner core anisotropy.

PACS numbers:

INTRODUCTION

The presence and slow growth of Earth’s inner core
is one of the most significant manifestations of the dy-
namics in the interior of our planet. As it is inaccessible
to direct observation, an understanding of the physical
state of the inner core requires an integrative approach
combining results from many fields in the geosciences.
Seismology, geo- and paleomagnetism, geo- and cosmo-
chemistry, geodynamics, and mineral physics have ad-
vanced our knowledge of the structure and processes in
the inner core, revealing many surprises.

Foremost among these have been the discoveries of
anisotropy and heterogeneity in the inner core. Long
assumed to be a featureless spherically symmetric body,
a higher number and higher quality of seismic data re-
vealed that the inner core is strongly anisotropic to com-
pressional wave propagation [Morelli et al., 1986; Wood-

house et al., 1986]. Generally, seismic waves travel faster
along paths parallel to the Earth’s polar axis by 3-4%
compared to equatorial ray paths [Creager, 1992; Song

and Helmberger, 1993]. The presence of anisotropy is sig-
nificant because it promises to reveal dynamical processes
within the inner core.

Anisotropy is usually attributed to lattice preferred
orientation, which may develop during inner core growth
[Karato, 1993; Bergman, 1997], or by solid state defor-
mation [Buffett, 2000]. The source of stress that may be
responsible for deformation of the inner core is unknown,
although several mechanisms have been proposed [Jean-

loz and Wenk, 1988; Yoshida et al., 1996; Buffett 1996;

1997; Karato, 1999; Buffett and Bloxham 2000].

An understanding of the origin of inner core anisotro-
py will require further advances in our knowledge of the
physical properties of iron at inner core conditions, and
may rely critically on further observations of the detailed
structure of the inner core. For example, recent obser-

vations indicate that the magnitude of the anisotropy
may vary with position: heterogeneity has been observed
on length scales from 1-1000 km [Creager, 1997; Tanaka

and Hamaguchi, 1997; Vidale and Earle, 2000]. Inner
core structure may change with time as well. Song and

Richards [1996] interpreted apparent changes in travel
times of inner core sensitive phases in terms of super-
rotation of the inner core with respect to the mantle.
Some recent studies have argued for a much slower ro-
tation rate than that advocated originally, or questioned
the interpretation of time dependent structure [Souriau,

1998; Laske and Masters, 1999; Vidale and Earle, 2000].

The inner core also plays an essential role in the dy-
namics of the overlying outer core. The anisotropy and
long magnetic diffusion time of the inner core may alter
the frequency and nature of reversals, and influence the
form of the time-averaged field [Hollerbach and Jones,

1993; Clement and Stixrude, 1995]. Moreover, impor-
tant energy sources driving the geodynamo process are
associated with solidification of the inner core: the den-
sity contrast across the inner core boundary is due to the
phase transition from the liquid to the solid, and chemical
differentiation during theincongruent freezing of the in-
ner core. Both of these processes provide energy for the
dynamo through the release of latent heat [Verhoogen,

1961] and the generation of chemical buoyancy [Bragin-

sky, 1963]. Other energy sources for magnetic field gen-
eration are secular cooling of the Earth, gravitational en-
ergy from thermal contraction of the core, radioactive
heat generation, and precession [Verhoogen, 1980; Buf-

fett et al., 1996].

Both thermal and compositional contributions to the
buoyancy depend on the thermal state of the core. The
more viscous mantle controls the cooling time scale of the
Earth and facilitates the formation of a thermal bound-
ary layer at the core mantle boundary. The heat flux out
of the core controls the rate of inner core growth and light
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element partitioning during this process [Buffett et al.,

1996]. Conversely, a reliable estimate on temperature in
the Earth’s core would advance our understanding of the
current thermal state and evolution of the Earth [Jean-

loz and Morris, 1986; Yukutake, 2000] with important
implications for the dynamics of the Earth.

Because the inner core is inaccessible, the study of
model systems by theory and experiments is essential.
Here we consider the ways in which mineral physics may
lend deeper insight into inner core processes and to the
origin of its structure, extending previous reviews by
Jeanloz [1990] and Stixrude and Brown [1998]. We begin
with geophysical background on the inner core including
recent seismological advances, constraints on the compo-
sition, thermal state, and dynamics of the inner core. As
our subsequent discussions draw on various experimental
and theoretical approaches in mineral physics we then
give an overview of recent developments in methods in
the following section, focusing on computational mineral
physics (a recent review focusing on advances in exper-
iments has been given by Hemley and Mao [2001]). To
the extent that the inner core is composed of nearly pure
iron, physical properties of this element at high pres-
sure and temperature govern the behavior of the inner
core; we consequently review advances in our knowledge
of the high pressure physical properties of iron, focusing
on crystalline structure, equation of state, and elastic-
ity at both static condition and high temperature. In
the final section we examine the implications of these re-
sults for inner core temperature, and integrate aspects
of elasticity with considerations of the dynamics in the
inner core to develop a simple speculative model of poly-
crystalline structure that explains major aspects of its
anisotropy.

GEOPHYSICAL BACKGROUND

Aggregate Seismic Properties

Lehmann [1936] discovered the inner core by recogniz-
ing weak arrivals of PKiKP within the P-wave shadow
zone of the core. The amplitudes of these arrivals were
sufficient to invoke a discontinuous seismic boundary
in the Earth’s core. The P-wave contrast across this
boundary was soon established; Birch [1940] and Bullen

[1946] argued that the inner core must be solid based on
this estimate. The best evidence for inner core solidity
comes from studies of inner core sensitive normal modes
[Dziewonski and Gilbert, 1971]: Earth models with finite
shear modulus of the inner core provide a significantly
better fit to eigenfrequency observations than those with
a liquid inner core. Recent observations of body wave
phases involving a shear wave in the inner core (PKJKP,
SKJKP, and pPKJKP) [Okal and Cansi, 1998; Deuss

et al., 2000] support solidity, but are still controversial.

The inferred shear wave velocity vS of the inner core is re-
markable: it is low compared to the compressional wave
velocity vP , a property which can also be expressed in
terms of the Poisson’s ratio σ.The value of σ=0.44 for
the inner core is nearly that of a liquid (0.5), leading
to speculation that this region may be partially molten
[Singh et al., 2000].

In principle density ρ, vP , and vS also depend on
depth. However, constraints on the depth dependence of
ρ and vS are weak. Seismic observations are consistent
with an inner core in a state of adiabatic self-compression.

Anisotropy

First evidence for deviations from a spherically sym-
metric structure came from the observation that eigen-
frequencies of core sensitive normal modes are split much
more strongly than predicted by ellipticity and rotation
of the Earth alone [Masters and Gilbert, 1981]. Anoma-
lies in PKIKP travel times were initially interpreted as
topography on the inner core [Poupinet et al., 1983].
Morelli et al. [1986] and Woodhouse et al. [1986] inter-
preted similar observations of eigenfrequencies and travel
times as inner core anisotropy. Observation of differen-
tial travel times PKIKP-PKPBC [Creager, 1992; Song

and Helmberger, 1993] and a reanalysis of normal mode
data [Tromp, 1993] confirmed that the inner core dis-
plays a hexagonal (cylindrical) pattern of anisotropy with
a magnitude of 3-4% and symmetry axis nearly parallel
to Earth’s rotation axis. For example, PKIKP arrives
5-6 s earlier along polar paths than predicted from radi-
ally symmetric Earth models such as PREM [Dziewonski

and Anderson, 1981]. It is worthwhile pointing out that
some of the travel time differences could be due to man-
tle structure not accounted for in the reference model
[Bréger et al., 1999; Ishii et al., 2002a; 2002b]. In par-
ticular, small scale heterogeneity in the lowermost man-
tle could be sampled preferentially for select body wave
core paths [Bregér et al., 1999; Tromp, 2001; Ishii et al.,

2002b].

In further investigation deviations from first order
anisotropy have been put forward, for example lateral
variations in vP of the inner core on length scales ranging
from hemispherical differences [Tanaka and Hamaguchi,

1997; Creager, 1999; Niu and Wen, 2001], to hundreds
of kilometers [Creager, 1997], down to a few kilometers
[Vidale and Earle, 2000]. Radial variations may also ex-
ist: weak anisotropy may be present in the uppermost
inner core (to a depth of 50-100 km) [Shearer, 1994;

Song and Helmberger, 1995; Su and Dziewonski, 1995]
and strong uniform anisotropy in its inner half [Song and

Helmberger, 1995; Creager, 1999]. Seismological studies
of the inner core are discussed in more detail elsewhere
in this volume.
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Composition

Seismically determined properties of the core may be
compared to laboratory measurements under high com-
pression. Measurements of the equation of state show
that only elements with an atomic number close to that
of iron satisfy the seismic constraints [Birch, 1964]. Ad-
ditional arguments are necessary to uniquely implicate
iron [Jeanloz, 1990]: iron is one of the most abundant
elements in stars and meteorites, much more so than in
the portions of the Earth that are directly observable
[Brown and Mussett, 1993]; and a conducting liquid is
necessary in the outer core to explain the existence of a
long lived dynamo process that creates Earth’s magnetic
field [Merrill et al., 1996].

To the degree that we are certain about the main
constituent of the core we are also sure that the core
contains other lighter elements: pure iron can not sat-
isfy the seismological constraints for both portions of the
core. Liquid iron is about 10% too dense to satisfy both
the density and bulk modulus in the outer core [Birch.,

1964; Jeanloz, 1979; Brown and McQueen, 1986] and
while solid iron can explain the bulk modulus of the in-
ner core for reasonable temperatures it overestimates the
density even for very high temperature (8000 K) [Jeph-
coat and Olson, 1987; Stixrude et al., 1997]. The iden-
tity and amount of the light element is still uncertain,
but based on cosmochemical arguments hydrogen, car-
bon, oxygen, magnesium, silicon, and sulfur have been
proposed [Poirier, 1994], with oxygen and sulfur being
the most popular. To infer information on the composi-
tion of the core from geochemistry, two questions are of
central importance: did the core form in chemical equilib-
rium [Karato and Murthy, 1997] and what are the physi-
cal conditions of the core forming event, as pressure and
temperature critically determine the partition coefficient
of various elements between silicate and metallic melt [Ito
et al., 1995; Li and Agee, 1996; Okuchi, 1997].

Alternatively, one may use the available seismological
information on the current physical state of the outer
and inner core (ρ, vP , vS) and compare to the physi-
cal properties of candidate iron alloys at the appropriate
pressure and temperature condition. The compositional
space of Fe-X with X any light element has been sparsely
sampled in shock wave experiments at the conditions rel-
evant for the core. Only binary compounds in the Fe-S
system (pyrrhotite Fe0.9S [Brown et al., 1984, troilite FeS
[Anderson and Ahrens, 1996], and pyrite Fe2S [Ahrens

and Jeanloz, 1987; Anderson and Ahrens, 1996]) as well
as wüstite FeO [Jeanloz and Ahrens, 1980; Yagi et al.,

1988] have been exposed to shock. The data has been ex-
trapolated to inner core conditions [Stixrude et al., 1997]
and compared to the required elastic parameters (Fig. 1).
This analysis indicates that small amounts of either S or
O (few atomic percent)would be sufficient to match the
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FIG. 1: Properties of the alloy fraction that are required to
match the seismically observed properties of the inner core
[Stixrude et al., 1997]. For a given temperature (solid lines)
the required effective bulk modulus is plotted as a function
of required effective density. The dashed lines connect points
of common alloy fraction for any light element X (2, 5, 10,
and 20% from left to right). Estimated uncertainties in the
alloy fractions required are indicated with the error bars on
the curve corresponding to 6000 K (1% in density and 5%
in bulk modulus). Superimposed are extrapolations of shock
wave experimental estimates for FeO [Jeanloz and Ahrens,

1980; Yagi et al., 1988], FeS [Anderson and Ahrens, 1996],
and Fe2S [Ahrens and Jeanloz, 1987; Anderson and Ahrens,

1996] at 345 GPa and 6000 K (estimated uncertainties are 5%
in density and 10% in bulk modulus).

properties of the inner core.

Alfè et al. [2000a; 2000b; 2002] combined the geophys-
ical approach with a chemical argument. They evaluated
the liquid-solid partition coefficients of candidate light el-
ements assuming thermodynamic equilibrium at the in-
ner core boundary. The results show that neither S, Si,
nor O alone can satisfy the observed density contrast at
the inner core boundary and that a ternary or higher
mixture of small amounts of S or Si with O is required.

Thermal State

Like the composition, the temperature of the inner core
cannot be determined by direct observation. Assuming
that the inner core is growing in equilibrium from in-
congruent freezing of the outer core liquid a knowledge
of the melting behavior of iron-rich systems at the pres-
sure of the inner core boundary (330 GPa) would yield
an important fixed-point temperature for the construc-
tion of whole Earth geotherms. Because the core is not a
pure system, the temperature at the inner core boundary
should differ from the melting point of pure iron. Freez-
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ing point depression in an eutectic system with no solid
solution is given by the van Laar equation [Brown and

McQueen, 1982] which yields a value of 800 K for a melt-
ing point of iron of 6000 K and 10% mole fraction of the
light element. The value for the freezing point depression
must be viewed as highly uncertain, however, since solid
solution almost certainly exists at the high temperatures
of the core. An independent estimate of the temperature
of the core may be obtained by comparing the elastic
properties of iron with those seismologically determined.
We describe this approach as applied to the inner core
below.

Seismic observations do provide constraints on some
aspects of the thermal stateof the core. In the outer
core the compressional wave velocity vP equals the bulk
sound velocity vB =

√

KS/ρ. In a homogeneous, con-
vecting system, vB and ρ are related by adiabatic self-
compression. Deviations from this state are characterized
by the Bullen [1963] inhomogeneity parameter η being
different from one. η is defined as

η = −v
2
B

ρg

∂ρ

∂r
, (1)

where g the gravitational acceleration, and r the radius.
η for the outer core is constrained by seismology to be
1±0.05 [Masters, 1979]. This is consistent with (but does
not uniquely require) a vigorously convecting outer core,
and a resulting geotherm close to an adiabat, character-
ized by the gradient:

∂T

∂r
= − γg

v2
B

T, (2)

where γ is the Grüneisen parameter. Adopting the
value measured for liquid iron at core conditions (γ=1.5)
[Brown and McQueen, 1986] and a temperature at the
inner core boundary of 6000 K, one finds a temperature
contrast of 1500 K across the outer core.

The temperature contrast in the inner core is likely to
be small. We can place an upper bound on it by assuming
that the inner core is a perfect thermal insulator. If the
inner core grows through freezing of the outer core its
temperature profile will follow the solidus temperature.
Based on this assumption Stixrude et al. [1997] estimated
the total temperature difference across the inner core to
be less than 400 K. Conductive or convective heat loss
will further reduce this temperature gradient relative to
the insulating case. Conduction is likely to be a very
effective way to extract heat from the inner core, such
that the temperature profile may fall below an adiabat
[Yukutake, 1998; Buffett, 2000].

Dynamics

Song and Richards [1996] found that the differential
travel time of PKIKP-PKPBC for earthquakes in the

South Sandwich islands recorded in Alaska increased by
0.3 s over a period of three decades, and concluded that
the inner core rotates relative to the mantle by 1◦/year, a
finding that was confirmed qualitatively using global data
sets [Su et al., 1996]. Creager [1997] showed that part of
the signal could be explained by lateral heterogeneity in
the inner core, and reassessed the rotation rate to a lower
value. Recent years have seen body wave [Souriau, 1998]
and free oscillations studies [Laske and Masters, 1999]
that can not resolve inner core rotation, and put close
bounds on rotation rate.

If it is present, differential inner core rotation would
provide one of the few opportunities for direct observa-
tions of the dynamics in Earth’s deep interior. Moreover,
differential rotation could have a significant effect on the
angular momentum budget of the Earth yielding an ex-
planation of decadal fluctuations in the length of day
[Buffett, 1996; Buffett and Creager, 1999]. Its origin is
not fully understood, but geodynamo simulations pro-
duce super-rotation by electro-magnetic coupling with
the overlying outer core [Glatzmaier and Roberts, 1996;

Kuang and Bloxham, 1997; Aurnou et al., 1998]. Gravi-
tational stresses, arising from mass anomalies in the man-
tle, are also expected to act on the inner core [Buffett,
1996; 1997]. These tend to work against super-rotation
by gravitationally locking the inner core into synchronous
rotation with the mantle. In detail, the interplay between
forces driving and resisting super-rotation depend on the
rheology of the inner core, which is currently unknown. If
the viscosity is sufficiently low, super-rotation may take
place, with the consequence that the inner core under-
goes continuous viscous deformation in response to the
gravitational perturbations.

The interaction of super-rotation with gravitational
stresses is just one of many proposed sources of inter-
nal deformation in the inner core. The subject has re-
ceived substantial attention because solid state flow in
the inner core can result in lattice-preferred orientation,
thought to be essential for producing seismically observed
anisotropy.

Other proposed sources of stress in the inner core in-
clude:
(a) Coupling with the magnetic field generated in the
overlying outer core [Karato, 1999; Buffett and Bloxham,

2000; Buffett and Wenk, 2001]. Karato [1999] considered
the radial component of the Lorentz force (Fr) at the in-
ner core boundary which is caused by the zonal magnetic
field (Bφ). This is typically the strongest contribution to
the Lorentz force in geodynamo models [Glatzmaier and

Roberts, 1995; Kuang and Bloxham, 1997]. Buffett and

Bloxham [2000] argue that the inner core adjusts to Fr

in a way to minimize steady solid state flow: only weak
flow in the inner core is induced that is largely confined
to the outermost portion. Considering additional terms
to the Lorentz force ~F by including radial components of
the magnetic field Br they conclude that the azimuthal
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term Fφ which is proportional to BrBφ induces a steady
shear flow throughout the inner core.
(b) Thermal convection [Jeanloz and Wenk, 1988; Wenk

et al., 2000a]. As in any proposed model of inner core
flow, the viscosity of the inner core remains an impor-
tant uncertainty, as does the origin and magnitude of
heat sources required to drive the convection.
(c) Aspherical growth of the inner core [Yoshida et al.,

1996]. Fundamental considerations, based on the ex-
pected cylindrical symmetry of flow in the outer core,
and detailed geodynamo simulations [Glatzmaier and

Roberts, 1995] indicate that heat is transported more
efficiently in the equatorial plane than along the poles,
leading to an inhomogeneous growth rate of the inner
core, and internal viscous relaxation. A key question
is whether the magnitude of the effect is sufficient to
produce lattice preferred orientation. In particular, the
resulting strain rates are very small, and may not be suf-
ficient to generate significant polycrystalline texture via
recrystallization.

It has also been proposed that polycrystalline texture
in the inner core may be acquired during solidification
[Karato, 1993; Bergman, 1997]. However, if the inner
core does experience solid state deformation, by one or
more of the mechanisms described above, it is unclear
to what extent the texture acquired during solidification
would be preserved. It is possible that texture in the out-
ermost portions of the inner core is dominated by the so-
lidification process, whereas lattice preferred orientation
in the bulk of the inner core is produced by deformation.

Further progress in our understanding of the composi-
tion, temperature, dynamics, and origin of anisotropy in
the inner core is currently limited by our lack of knowl-
edge of the properties of iron and iron alloys at high
pressures and temperatures. A better understanding of
elastic and other properties of iron at inner core condi-
tions can provide a way to test hypotheses concerning
the state and dynamics of the inner core.

MINERAL PHYSICS METHODS

As elasticity plays a central role in deep Earth geo-
physics we will emphasize aspects of mineral physics that
are directly related to the determination of elastic proper-
ties. To gain deeper insight into complex elastic behavior,
such as anisotropy, we need to know the full elastic con-
stant tensor at the conditions in the Earth’s center. We
will focus on methods based on first-principles quantum
mechanical theory, but also briefly review experimental
progress, as it relates to comparison and validation of the-
ory. A full review of experimental work has been given
recently by Hemley and Mao [2001].

Experimental Progress

Determination of the elastic constants of metals in
the diamond cell remains a particular challenge as now-
standard techniques, such as Brillouin spectroscopy, can-
not readily be used for opaque materials. A variety of
alternative methods have been developed and applied to
study iron at high pressure and ambient temperature. In
the lattice strain technique [Singh et al., 1998a; 1998b]
X-ray diffraction is used to study the strain induced in
a polycrystal by uniaxial stress. A full determination
of the elastic constant requires the measurement of d-
spacing for many (h, k, l) lattice planes, or additional as-
sumptions such as homogeneity of the stress field in the
sample [Mao et al., 1998]. Other efforts have exploited
the relationship between phonon dispersion in the long-
wavelength limit and elastic wave propagation: measure-
ments of phonon dispersion have been used to estimate
the average elastic wave velocity [Lübbers et al., 2000;

Mao et al., 2001], and the longitudinal wave velocity [Fi-

quet et al., 2001]. An approximate calibration has been
explored in which the zone-center Raman active optical
mode is related to the c44 shear elastic constant by a
Brillouin-zone folding argument [Olijnyk and Jephcoat,

2000]. Finally, Anderson et al. [2001] by analyzing pres-
sure induced changes in the intensity of X-ray diffraction
patterns from hcp iron, extracted a Debye temperature
ΘD, and thus average elastic wave velocity, which they
equated with vS .

Whereas diamond anvil cell experiments most readily
measure properties at ambient temperature, shock wave
experiments achieve pressure and temperature conditions
similar to those of the core through dynamic compres-
sion.By varying the speed of the driver impacting the
sample, a set of different thermodynamic conditions are
accessed, along a curve in pressure-density space called
the Hugoniot. Temperature is not determined directly by
the Rankine-Hugoniot equations, it must be measured us-
ing special techniques, such as optical pyrometry [Yoo et

al., 1993] or calculated on the basis of a thermodynamic
model [Brown and McQueen, 1986]. Using temperature
and Grüneisen paramter an adiabatic bulk modulus (KS)
on the Hugoniot can be determined. The impact of the
driver plate on the sample not only sets up a shock in
the sample but also in the plate itself. When the shock
wave reflects off the back of the impactor, pressure is re-
leased and a longitudinal (compressional) sound wave is
set up traveling forward through the system of impactor
and sample. This has been exploited to determine vP ;
combining vP with KS the corresponding vS can be cal-
culated [Brown and McQueen, 1986].
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Computational Mineral Physics

With the sparse probing of thermodynamic conditions
relevant for Earth’s inner core by the experimental meth-
ods discussed in the previous section, and the difficulty
to obtain information on single crystal elasticity, first-
principles material physics methods provide an ideal sup-
plement to experimental study, with all of thermody-
namic space accessible, and various approaches to deter-
mine elasticity at hand. In the following sections we will
introduce the basic principles of calculating such proper-
ties.

Total Energy Methods

Density functional theory [Hohenberg and Kohn, 1964;

Kohn and Sham, 1965] provides a powerful and in prin-
ciple exact way to obtain the energetics of a material
with N nuclei and n interacting electrons in the ground-
state (for a review see Lundqvist and March [1987]), with
the electronic charge density ρe(~r) being the fundamental
variable. It can be shown [Hohenberg and Kohn, 1964]
that ground state properties are a unique functional of
ρe(~r) with the total (internal) energy

E[ρe(~r)] = T [ρe(~r)] + U [ρe(~r)] +Exc[ρe(~r)]. (3)

Here T is the kinetic energy of a system of non-inter/-
acting electrons with the same charge density as the in-
teracting system, and U is the electrostatic (Coulomb)
energy containing terms for the electrostatic interaction
between the nuclei, the electrons, and nuclei-electron in-
teractions. The final term Exc is the exchange-corre/-
lation energy accounting for many body interactions be-
tween the electrons. Density functional theory allows one
to calculate the exact charge density ρe(~r) and hence the
many-body total energy from a set of n single-particle
coupled differential equations [Kohn and Sham, 1965]

{−∇2 + VKS [ρe(~r)]}ψi = εiψi, (4)

where ψi is the wave function of a single electronic state,
εi the corresponding eigenvalue, and VKS the effective
(Kohn-Sham) potential that includes the Coulomb and
exchange-correlation terms from (3). The Kohn-Sham
equations are solved self-consistently by iteration. Den-
sity functional theory has been generalized to spin polar-
ized (magnetic) systems [Singh, 1994].

While density functional theory is exact in principle
the exact solution of the Kohn-Sham equations requires
the knowledge of the universal form of the exchange-
correlation potential which is yet unknown. Approxima-
tions for Vxc however have been very successful. The lo-
cal density approximation (LDA) [Lundqvist and March,

1983] replaces Vxc at every point in the crystal with the
value of a homogeneous electron gas with the same local

charge density. This lowest order approximation yields
excellent agreement with experiment for a wide variety
of materials, but fails for some metals. Most prominently
for iron LDA wrongly predicts hcp as the ground state
structure for iron at ambient pressure [Stixrude et al.,

1994]. Generalized gradient approximations (GGA) in-
clude a dependence on local gradients of the charge den-
sity in addition to the charge density itself [Perdew et al.,

1996]. GGA yields the correct ground state of iron at
ambient pressure and predicts the phase transition from
bcc to hcp iron at the experimentally determined pres-
sure [Asada and Terakura, 1992; Stixrude et al., 1994].

In addition to total energy it is possible to calculate
directly first derivatives of the total energy with first-
principles methods. This allows one to determine forces
acting on the nuclei and stresses acting on the lattice
[Nielsen and Martins, 1985].

All-electron, or full potential methods make no addi-
tional essential approximations to density functional the-
ory. Computational methods such as the Linearized Aug-
mented Plane Wave (LAPW) method provide an impor-
tant standard of comparison. All-electron methods are
very costly (slow), and are currently impractical for many
problems of interest. More approximate computational
methods have been developed, which, when applied with
care, can yield results that are nearly identical to the
all-electron limit.

In the pseudopotential approximation the nucleus and
core electrons are replaced inside a sphere of radius rc
(cut-off radius) with a simpler object that has the same
scattering properties (for a review see Pickett [1989]).
The pseudopotential is much smoother than the bare
Coulomb potential of the nuclei, and the solution sought
is only for the pseudo-wavefunctions of the valence elec-
trons that show less rapid spatial fluctuations than the
real wavefunction in the core region or those of the
core electrons themselves. The construction of the pseu-
dopotential is non-unique and good agreement with all-
electron calculations must be demonstrated.

Iron provides a particular challenge. For example,
all-electron results show that pressure-induced changes
in the 3p band are important for the equation of state
[Stixrude et al., 1994], and so should be treated fully as
valence electrons in a pseudopotential approach.

For our work on the high temperature elasticity of hcp
iron [Steinle-Neumann et al., 2001] we have constructed
a Troullier-Martins [Troullier and Martins, 1991] type
pseudopotential for iron in which 3s, 3p, 3d, and higher
electronic states are treated fully as valence electrons.
Agreement with all-electron calculations of the equation
of state and elastic constants is excellent: for hcp iron
the pressure at inner core densities is within 1 % of all-
electron (LAPW) results (Fig. 2), and the elastic con-
stant tensor at inner core density is within 2% rms.

The predictions of density functional theory can be
compared directly with experiment, or with geophysical
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FIG. 2: Equation of state for hcp iron obtained from all elec-
tron results (dashed line) [Steinle-Neumann et al., 1999] and
the pseudopotential used in the calculation of high temper-
ature thermoelasticity (solid line) [Steinle-Neumann et al.,

2001].

observations. For example, by computing the total en-
ergy as a function of volume, one obtains the equation of
state. This equation of state is static, that is the effects of
thermal vibrations are absent. This athermal state is one
that is not attainable in the lab where zero-point motion
cannot be eliminated. Static properties are often directly
comparable to experimental measurements taken at am-
bient temperature since the effect of 300 K is small for
properties such as the density, or the elastic constants.
However, for comparison with the earth’s core, thermal
effects are essential. Calculation of the effects of temper-
ature from first-principles is more involved because one
must calculate the energies associated with atomic dis-
placements, including those that break the symmetry of
the lattice.

High Temperature Methods

Statistical mechanics provides the tools to deal with
material properties at high temperature. The thermody-
namic behavior of any physical system is uniquely defined
by the so-called fundamental relation, which, for a non-
magnetic or Pauli-paramagnetic solid in the canonical en-
semble (particle number N , volume V , and temperature
T held constant) takes the form

F (V, T ) = E(V, T ) − TSel(V, T ) + Fvib(V, T ) (5)

where F is the Helmholtz free energy. The total energy
E(V, T ) is now a function of T as well, because we ex-
plicitly have to account for thermal excitation of electrons

according to Fermi-Dirac statistics. Sel is the entropy as-
sociated with this excitation of the electrons [McMahon
and Ross, 1977], and Fvib is the vibrational part of the
free energy. Fvib is derived from the partition function
for a system with N atoms, which in the classical limit,
appropriate at high temperature conditions (significantly
above ΘD) is

Zvib =
1

N !Λ3N
· (6)

∫

d ~R1d ~R2 . . . d ~RN exp

[

−

Fel( ~R1, ~R2, . . . , ~RN ; T )

kT

]

and

Fvib = −kT lnZvib. (7)

Zvib is a 3N dimensional integral over the coordinates of
the nuclei located at ~Ri with the electronic free energy
Fel = E−TSel uniquely defined by the coordinates of the
atoms and T . Λ = h/

√
2πmkT is the de Broglie wave-

length with h the Planck and k the Boltzmann constant,
and m the nuclear mass.

A näıve attempt to evaluate the integral (7) fails be-
cause of the large dimensionality, and because most con-
figurations contribute little to the integral. What is re-
quired is a search of configuration space that is directed
towards those configurations that have relatively low en-
ergy. In the particle-in-a-cell (PIC) method and the
lattice dynamics method described next, atoms are re-
stricted to vibrations about their ideal crystallographic
sites, that is diffusion is neglected. This is not a severe
approximation to equilibrium thermodynamic properties
at temperatures below the premelting region. Molecular
dynamics, described last, in principle permits diffusion,
although in practice computationally feasible dynamical
trajectories are sufficiently short that special techniques
are often required to study non-equilibrium processes.

Particle-in-a-Cell

Here the basic approximation motivates the division
of the lattice into non-overlapping sub-volumes centered
on the nuclei (Wigner-Seitz cell ∆ WS) with the coordi-
nates of each atom restricted to its cell. A second basic
assumption in the PIC model is that the motions of the
atoms are uncorrelated. We can expect this approxima-
tion to become increasingly valid with rising temperature
above ΘD and below melting.

If the energy change resulting from moving one parti-
cle be independent of the vibrations of the other atoms,
the partition function factorizes, and the 3N dimensional
integral is replaced by the product of N identical 3-
dimensional integrals, which reduces the computational
burden tremendously

Zvib =
1

Λ3N

(
∫

∆WS

d ~Rw exp

[

−∆Fel( ~Rw, T )

kT

])N

(8)
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with

∆Fel( ~Rw, T ) = Fel( ~Rw, T ) − Fel( ~Rw0, T ). (9)

(N ! no longer appears in the prefactor of (8) as the atoms
are distinguished by their lattice site.) One evaluates the
energetics of moving one atom w (the so-called wanderer)

with the equilibrium lattice position ~Rw0 in the potential
of the otherwise ideal lattice; this is a mean field approach
to the vibrational free energy.

Because large displacements of w are included in the
integral (up to about 1/2 nearest neighbor distance) the
PIC model treats anharmonicity of the vibrations explic-
itly. The method is computationally very efficient, and
can be sped up even more by minimizing the total num-
ber of calculations involved in evaluating the integral (8).
The angular integrations can be performed efficiently by
developing a quadrature which requires evaluation of the
integrand along a small number of special directions that
are determined by the point symmetry of the lattice site
[Wasserman et al., 1996].

The cell model has been used for calculations on iron
for the thermodynamics of both the hcp and fcc phase
[Wasserman et al., 1996], and for high temperature elas-
ticity of hcp iron [Steinle-Neumann et al., 2001]. It has
also been successfully applied to thermoelasticity of tan-
talum [Cohen and Gülseren, 2001; Gülseren and Cohen,

2002].

Lattice Dynamics

The calculation of forces on the atoms allows one di-
rectly to compute the vibrational frequencies of the ma-
terial. The dynamical matrix may be calculated row by
row by displacing one atom by a small amount from its
equilibrium site in a supercell and evaluating the result-
ing forces on the other atoms. Fvib is then calculated by
performing the appropriate summation over wavevector
and phonon branches.

A fundamental approximation in lattice dynamics is
that the vibrations of the atoms about their equilibrium
are harmonic, only terms that are quadratic in atomic
displacements are retained in the expression for the total
energy. However, anharmonicity might become impor-
tant for conditions of the inner core where the tempera-
ture is just below the melting point of the material, and
considerable effort must be put into anharmonic correc-
tions.

Lattice dynamics has been used extensively over the
past few years to address the thermodynamics of hcp iron
[Alfè et al., 2001], studies on stability of various phases
[Voc̆adlo et al., 2000], melting [Alfè et al., 1999], and
studies on core composition [Alfè et al., 2000a; 2000b;
2002].

Molecular Dynamics

While lattice dynamics and the PIC model essentially
evaluate ensemble averages for the thermodynamics of a
system, molecular dynamics explores the time evolution
of a single realization of the system. In this case ther-
modynamic properties are calculated as time averages by
appealing to the ergodic hypothesis. To obtain the time
evolution of the system the forces acting on the atoms
are coupled with Newton’s second law. The set of N
coupled differential equations is then integrated. A large
supercell (100 atoms) and long time series (thousands of
time steps) are required for convergence of equilibrium
properties. Molecular dynamics has been applied to the
study of high temperature properties of solid iron includ-
ing melting [Laio et al., 2000] by using a clever hybrid
scheme for the electronic structure, as well as for liquid
iron [de Wijs et al., 1998]. Laio et al., [2000] combined
first-principles total energy and force calculations for a
limited number of time steps with a semi-empirical po-
tential fit to the first-principle results.

Elastic Constants

Seismic wave propagation is governed by the elastic
constants, and the density. In most cases, seismic fre-
quencies are sufficiently high that the adiabatic elastic
constants, cSijkl, are relevant. First-principles calcula-
tions of the type described here yield the isothermal elas-
tic constants, cTijkl, most directly, and a conversion must
be applied [Davies, 1974]

cSijkl = cTijkl +
T

ρCV

λijλkl, (10)

where CV is the specific heat at constant volume and

λij =
∑

l,k≤l

αklc
T
ijkl. (11)

The thermal expansivity tensor αij for a hexagonal sys-
tem has only entries in the diagonal with

α11 = α22 = 1/a · (∂a/∂T )P , α33 = 1/c · (∂c/∂T )P ,
(12)

the linear thermal expansivity of the a- and c-axis, re-
spectively.

Under conditions of isotropic pre-stress, elastic wave
propagation is governed by the so-called stress-strain co-
efficients which are defined by

σij = cTijklεkl, (13)

with σij the stress and εij the strain. Other definitions
of the elastic constants have appeared in the literature
[Barron and Klein, 1965]: one may define elastic con-
stants as the second strain derivatives of the free energy,
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which are not equivalent to (13) in general. If the pre-
stress is isotropic, and if the applied strain is isochoric to
all orders, then the free energy may be directly related
to the stress-strain coefficients

F (V, ε′ij , T ) = F (V, 0, T ) +
1

2
cTijkl(V, T )ε′ijε

′
kl. (14)

where the primes indicate the deviatoric strain. This
relationship has been used to calculate the elastic con-
stants from first-principles calculations of the total en-
ergy alone [Cohen et al., 1997; Steinle-Neumann et al.,

1999]. The elastic constants may also be calculated by
appealing to the dissipation-fluctuation theorem which
relates the cTijkl to fluctuations in the shape of the crystal
at constant stress. This provides one means of calculating
the elastic constants in molecular dynamics simulations
[Parrinello and Rahman, 1982; Wentzcovitch, 1991].

Elastic wave velocities are related to the elastic con-
stants by the Christoffel equations

(

cSijklnjnk − ρv2δil
)

ui = 0, (15)

where ~n is the propagation direction and ~u the polar-
ization of the wave, v the phase velocity, and δil is
the Kronecker delta function. Solving (15) for a given
propagation direction yields three velocities, one with
quasi-longitudinal polarization (vP ), and two with quasi-
transverse polarizations (vS). From the full elastic con-
stant tensor, we may also determine the bulk (KS) and
shear (G) moduli using Hashin-Shtrikman bounds [Watt

and Peselnick, 1980] which give tighter bounds onG than
the usually used Voigt-Reuss-Hill averages[Hill, 1963].
The isotropically averaged aggregate velocities vP and
vS can then be calculated by

vP =

√

KS + 4
3
G

ρ
, vS =

√

G

ρ
(16)

Usually the Voigt notation is used to represent elastic
constants, replacing the fourth rank tensor cijkl with a
6×6 pseudomatrix in which pairs of indices are replaced
by a single index utilizing the symmetry of the stress and
strain tensors:

11 → 1; 22 → 2; 33 → 3; (17)

23, 32 → 4; 13, 31 → 5; 12, 21 → 6.

In this notation the five single crystal elastic constants
for a hexagonal system are: the longitudinal elastic con-
stants c11 and c33, the off-diagonal elastic constants,
c12 and c13, and a shear constant c44. In the follow-
ing discussions we also refer to another linearly depen-
dent shear constant for comparison with c44: c66 =
1/2(c11−c12). To calculate the five elastic constants with
a first-principles total energy method, we must evaluate
the effect of five different strains on the free energy (14).
The bulk modulus and the change in the equilibrium c/a
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FIG. 3: Phase diagram of iron from diamond anvil cell ex-
periments. Stable crystalline phases are bcc at ambient con-
ditions, fcc (solid circles) at high temperature, and hcp (dia-
monds). Liquid iron is shown in the open symbols. bcc also
has a small phase stability field at low pressure immediately
below melting. Data are from Shen et al. [1998] and Shen

and Heinz [1998]. The inset shows the pressure-temperature
range relevant for a study of the inner core.

ratio with compression provide two pieces of informa-
tion, yielding two independent combinations of elastic
constants. The application of three isochoric strains,
of hexagonal, orthorhombic, and monoclinic symmetry,
yield the other three pieces of information necessary to
obtain the full elastic constant tensor [Steinle-Neumann

et al., 1999].

PHYSICAL PROPERTIES OF DENSE IRON

Phase Diagram

To the extent that the inner core is composed of pure
iron (or nearly pure iron), the phase diagram of iron de-
termines the crystalline structure of the inner core. De-
spite considerable progress in experimental determina-
tion of the phase diagram and melting at pressures ap-
proaching those of the core, the stable phase of iron at
inner core conditions can not yet uniquely be identified.

This issue is of great geophysical and geochemical im-
portance. First, it is central in our understanding of inner
core anisotropy. Different phases of iron show a distinctly
different single crystal anisotropy both in magnitude and
symmetry [Stixrude and Cohen, 1995b]. The enthalpy of
various phases and hence the amount of latent heat re-
leased at the inner core boundary may depend strongly
on the crystalline phase. Finally, the ability to incorpo-
rate impurities may be determined by the structure.
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Three phases of iron have been unambiguously identi-
fied (Fig. 3): the ambient condition ferromagnetic body
center cubic phase (bcc, α) is stable to about 13 GPa
and up to 1200 K; at higher temperature the cubic close
packed (fcc, γ) phase exists, with bcc reappearing in a
narrow stability field (δ) just below melting. The mag-
netic ground state of the fcc phase is a complex spin
density wave [Tsunoda et al., 1993; Uhl et al., 1994];
in the stability field of fcc iron the local moments ap-
pear not to be ordered, however. The hexagonal close
packed (hcp, ε) phase is the high pressure phase, stable
to at least 300 GPa at room temperature [Mao et al.,

1990]. Theory predicts this phase to be non-magnetic
(Pauli paramagnet) at core pressures [Söderlind et al.,

1996; Steinle-Neumann et al., 1999]. Magnetism is not
observed experimentally in the hcp phase [Taylor et al.,

1991], but magnetic moments on the atoms are predicted
on the basis of first-principles theory [Steinle-Neumann

et al., 1999] up to 50 GPa. Moreover, magnetism is
observed in epitaxially grown overexpanded lattices of
hcp iron [Maurer et al., 1991], consistent with theoreti-
cal predictions. The possible presence of magnetic states
in hcp iron is important for understanding the equation
of state (see below) and the phase diagram in the sub-
megabar range. The competition between magnetic and
non-magnetic contributions to the internal energy, dif-
ferences in vibrational and magnetic entropy, and differ-
ences in volume all contribute to phase stability in iron
[Moroni et al., 1996].

Two experimental lines of evidence suggest additional
stable polymorphs of iron at high pressure and tempera-
ture. First, in the shock wave experiment by Brown and

McQueen [1986] (see also Brown et al. [2000] and Brown

[2001]) there are two discontinuities in vP , one at 200
GPa, the other 243 GPa (Fig. 4).

While the one at higher pressure was associated with
melting of the sample, the lower one was originally at-
tributed to the hcp to fcc phase transition. With a bet-
ter characterization of the phase diagram at lower tem-
perature and pressure today this is an unlikelyscenario:
the fcc-hcp phase transition ends with a triple point at
much lower pressure (Fig. 3) [Shen et al., 1998; Boehler,

2000]. Re-appearance of the bcc phase of iron has been
suggested as an explanation of the apparent solid-solid
phase transformation at 200 GPa [Matsui and Anderson,

1997]. However, first-principles theory shows that the
bcc phase is mechanically unstable at high pressure and
is unlikely to exist as a stable phase [Stixrude and Co-

hen, 1995a; Söderlind et al., 1996; Voc̆adlo et al., 2000].
An alternative interpretation attributes the first discon-
tinuity to the onset of melting, with melting completed
only at 243 GPa [Boehler and Ross, 1997]. A recent rep-
etition of the experiment of Brown and McQueen [1986]
has been unable to resolve whether or not a phase trans-
formation in addition to melting occurs on the Hugoniot
[Nguyen and Holmes, 2001].
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FIG. 4: Melting temperatures of iron and estimates of the
geotherm in Earth’s core, with the geotherm from Stacey

[1992] in the solid line. Experiments on melting of iron are
shown with a square from static diamond anvil cell experi-
ments [Boehler, 1993] and with circles for melting along the
Hugoniot (solid from Brown and McQueen [1986] and open
from Yoo et al. [1993]). The two points from Brown and Mc-

Queen [1986] show the uncertainty in the detection of melt-
ing: both points represent discontinuities in acoustic velocity
along the Hugoniot, and the occurrence of melting is ambigu-
ous. Two points from Yoo et al. [1993] bracket melting as
observed with optical pyrometry. Diamonds show theoreti-
cal estimates of the melting point of iron at the pressure of
the inner core boundary by Alfè et al. [1999] (upper symbol)
and Laio et al. [2000] (lower symbol). Inner core tempera-
ture estimated from a comparison of inner core elasticity with
that of iron [Steinle-Neumann et al., 2001] is shown with a
solid triangle. The dashed line is an adiabat through the core,
based on the latter result.

Second, additional phases of iron have been proposed
on the basis of static highpressure experiments. X-ray
diffraction patterns measured in laser heated diamond
anvil cell experiments have been argued to be incompati-
ble with any known iron polymorph [Saxena et al., 1995;

Yoo et al., 1995; Andrault et al., 1997]. The anomalous
signal is subtle, and the proposed structures, a double
hexagonal dhcp [Saxena et al., 1995; Yoo et al., 1995]
and an orthorhombic structure [Andrault et al., 1997],
are closely related to hcp. Using in-situ X-ray diffraction
Shen et al. [1998] found only fcc and hcp phases at pres-
sure and temperature, while the dhcp phase was observed
in temperature quenched samples. Andrault et al. [1997]
used high strength pressure media which could induce
non-hydrostatic conditions [Boehler, 2000]. Voc̆adlo et

al. [2000] examined the relative stability of proposed high
pressure phases using computational ab-initio methods,
and found that the orthorhombic structure is mechani-
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cally unstable, and that the dhcp phase is energetically
less favored than hcp.

Most measurements of the melting temperature of iron
from static experiments show reasonable agreement up to
a pressure of 100 GPa, where the melting point is 2800-
3300 K [Shen and Heinz, 1998; Boehler, 2000; Hemley

and Mao, 2001]; the data of Williams et al. [1987] yield
a significantly higher temperature at 100 GPa (4100 K).
The highest pressure datum from diamond anvil cell ex-
periments is at 200 GPa where Boehler [1993] finds the
melting point at 3800 K (Fig. 4).

As mentioned above, in shock wave experiments the
temperature is not determined directly; based on their
dynamic compression data Brown and McQueen [1986]
calculated the temperature at the Hugoniot melting point
(243 GPa) to be in the range of 5000 to 5700 K (Fig. 4),
consistent with subsequent theoretical calculations of the
Hugoniot temperature [Wasserman et al., 1996]. Mea-
surements of the temperature by optical pyrometry yield
a melting point between 235 and 300 GPa with tempera-
tures of 6350 and 6720 K, respectively [Yoo et al., 1993].

Two ab- initio calculations of the melting curve of iron
have been carried out, yielding inconsistent results (Fig.
4). Alfè et al. [1999] found a melting temperature of
6700 ± 600 K at the inner core boundary by compar-
ing Gibbs free energies of solid and liquid. Laio et al.

[2000] determined a considerably lower temperature of
5400 ± 400 K. The origin of these discrepancies are not
clear, but may be related to the quality of the anhar-
monic corrections in the study of Alfè et al. [1999], the
semi-empirical potential used to augment first-principles
calculations in the study of Laio et al. [2000], or dif-
ferent statistical sampling and runtime adopted in these
two studies. In this context, it is worth pointing out
that theoretical calculations of the melting temperature
are extremely demanding as they involve the comparison
of two large numbers (Gibbs free energies of solid and
liquid) which must both be calculated to high precision.

Static Equation of State

Experimental measurements and theoretical predic-
tions of the equation of state of non-magnetic hcp iron
agree well at core pressures (Fig. 5). At relatively low
pressures, however, a discrepancy develops that is larger
than that for the bcc phase and what is typical for other
transition metals [Körling and Hḧaglund, 1992; Steinle-

Neumann et al., 1999] suggesting that fundamental as-
pects of the physics of hcp iron may not be well under-
stood to date.

Although experiment has so far not detected mag-
netism in hcp iron, recent first-principles theoretical cal-
culations have found stable magnetic states [Steinle-

Neumann et al., 1999]. These are more stable than the
non-magnetic state by more than 10 mRy at low pres-
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FIG. 5: Equation of state for hcp iron in the lower panel.
Static theoretical results are compared to room temperature
diamond anvil cell experiments by Jephcoat et al. [1986] (open
circles) and Mao et al. [1990] (solid circles). The dashed
line shows non-magnetic results [Stixrude et al., 1994], the
solid line the density-pressure relation for an antiferromag-
netic structure (afmII) [Steinle-Neumann et al., 1999]. The
inset shows the magnetic moment (circles) and associated
magnetic stabilization energy (squares) for the afmII struc-
ture. The afmII structure itself with atoms at z=1/4 in solid,
z=3/4 in open circles is displayed in the upper panel. Arrows
indicate the spin polarization of the atoms.

sure. The most stable magnetic arrangement found so far
is one of antiferromagnetic ordering (afmII, Fig. 5) which
retains a finite moment up to 50 GPa, well into the pres-
sure region where hcp iron is stable [Steinle-Neumann

et al., 1999]. Because magnetism tends to expand the
lattice, the presence of magnetism reducesthe discrep-
ancy between experimental and theoretical equations of
state considerably. It is likely that still more stable mag-
netic states will be found, and that the ground state is
a more complex magnetic structure involving spin-glass
like disorder, incommensurate spin density waves, non-
collinear magnetism, or a combination of these [Cohen et
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al., 2002].

Static Elastic Constants

A comparison shows considerable disagreement of the
single crystal elastic constants (Fig. 6) between experi-
ment [Mao et al., 1998; Singh et al., 1998b] and theory
[Stixrude and Cohen, 1995b; Söderlind et al., 1996; Co-

hen et al., 1997; Steinle-Neumann et al., 1999].The dif-
ference in the longitudinal constants c11 and c33 decreases
from ∼50% at low pressure to a little morethan 10% at
high compression. As pronounced is the discrepancy for
the shear elastic constants: the difference in c44 increases
with compression to 30%, and c66 differs as much as 40%
at high pressure, and by a factor of two at the low density
data point.

Because the full elastic constant tensor of hcp iron has
been measured only by the new lattice strain technique,
the large discrepancy between experiment and theoreti-
cal prediction prompted a stringent comparison of both
methods for a well characterized hcp metal. For the
5d transition metal rhenium, ultrasonic measurements
of elastic constants were not only performed at ambi-
ent condition, but also up to 0.5 GPa, constraining the
initial pressure slope (Fig. 6) [Manghnani et al., 1974].
Calculated elastic constants at zero pressure and their
compression dependence [Steinle-Neumann et al., 1999]
show excellent agreement with the ultrasonic data. In
contrast, lattice strain experiments [Duffy et al., 1999] do
not compare favorably with either result. One of the lon-
gitudinal elastic constants (c33) is considerably smaller
(20%), and as in the case for iron the shear constant c44
shows the largest discrepancy, being larger than the ul-
trasonic value by 50%. This comparison indicates that
additional factors other than elasticity influence the mea-
surements in lattice strain experiments. Subsequently it
has been found that strong lattice preferred orientation
developed in the experiments for hcp iron [Wenk et al

2000b; Matthies et al., 2001], which may cause the as-
sumption of stress homogeneity to be violated.

For aggregate vP and vS , the discrepancies between
theory and experiment are smaller, but still significant
(Fig. 7). Part of the discrepancy between theory and
experiment may be attributed to the equation of state.
Since theory overestimates the density of hcp iron at low
pressure, one expects the elastic wave velocities to be
overestimated. The reduction of bulk modulus for the
afmII magnetic state will yield lower compressional wave
velocity, but for a quantitative comparison of vP and vS

information on the full elastic constant tensor for this
orthorhombic structure (with nine independent elastic
constants) will be needed. The LA phonon data (vP )
by Fiquet et al. [2001] at high compression and the vS

from Anderson et al. [2001] at low pressure appear to be
anomalous as they fall below the shock wave data [Brown
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FIG. 6: Single crystal elastic constants for hcp rhenium (up-
per panel) and iron as a function of compression. The solid
lines are Eulerian finite strain fits to computational results
[Steinle-Neumann et al., 1999]. Open symbols show lattice
strain experiments from Duffy et al. [1999] for rhenium and
Mao et al. [1998] for iron: c33 squares, c11 circles, c12 trian-
gles down, c13 triangles up, and c44 circles. The shear elastic
constant c44 as inferred from Raman frequency measurements
are shown with diamonds; data for rhenium are from Olijnyk

et al. [2001], for iron from Merkel et al. [2000]. For rhe-
nium ultrasonic measurements are available at low pressure
[Manghnani et al., 1974] (filled symbols as above, with initial
pressure dependence indicated).

and McQueen, 1986] which, due to thermal effects, would
be expected to yield smaller sound velocities than room
temperature experiments.

Thermal Equation of State

The Hugoniot provides the strongest constraint on
the equation of state of iron at core conditions. First-
principles theoretical calculations of the Hugoniot [Was-

serman et al., 1996; Laio et al., 2000; Alfè et al., 2001]
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FIG. 7: Aggregate acoustic velocities for hcp iron and the in-
ner core (crosses). Compressional (vP ) and shear (vS) wave
velocity are shown from first-principles calculations in solid
lines for the non-magnetic state [132]. Experimental results
at ambient temperature are based on the phonon density of
states (open circles) [Mao et al., 2001], the longitudinal acous-
tic phonon frequency (open squares) [Fiquet et al., 2001], ul-
trasonic measurements (open diamonds) [Mao et al., 1998],
and the intensity of x-ray diffraction peaks (dashed line) [An-

derson et al., 2001]. For comparison shock wave experimental
data in the stability field of hcp iron is included (filled trian-
gles) [Brown and McQueen, 1986]: for the shock wave results
temperature increases with compression resulting in a temper-
ature of approximately 4500 K at the highest density point in
the figure.

have typically found excellent agreement with that ex-
perimentally measured [Brown and McQueen, 1986].

A direct comparison of solid state properties between
shock wave experiments and computations at inner core
pressures is unfortunately not possible, as the Hugoniot
is in the stability field for the liquid above 250 GPa as dis-
cussed above. We have performed a detailed comparison
of the properties of iron at inner core conditions obtained
from several first-principles theoretical calculations [Laio

et al., 2000; Alfè et al., 2001; Steinle-Neumann et al.,

2001] and from static [Dubrovinsky et al., 2000] and dy-
namic compression experiments (Fig. 8). The properties
of iron determined from these sources agree with each
other to within 2% in pressure and to within 10% in bulk
modulus at 13 Mg/m3 and 6000 K. This comparison sup-
ports the conclusion that the inner core is not pure iron,
but that it must contain a small amount of lighter ele-
ments. Iron is consistently found to be denser than the
inner core, even at a temperature of 7000 K. The bulk
modulus of iron, while showing considerably more scat-
ter, appears to be consistent with that of the inner core
at a temperature near 6000 K.
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FIG. 8: Finite temperature equation of state of hcp iron. The
lower panel shows a comparison for pressure-density relation
in the inner core (crosses) and for hcp iron at temperatures
of 5000 K, 6000 K, and 7000 K. Experimental data (long
dashed lines) from Dubrovinsky et al. [2000] are extrapolated
to inner core conditions. Two sets of calculations are from
Steinle-Neumann et al. [2001] (solid lines) and from Alfè et

al. [2001] (dashed lines). For comparison included are pres-
sure and density on the Hugoniot at 7000 K (triangle) [Brown

and McQueen, 1986], and results by Laio et al. [2000] at 5400
K (open circles). The upper panel compares the correspond-
ing adiabatic bulk moduli along 6000 K isotherms with those
of the inner core (same symbols). For the theoretical results
by Alfè et al. [2001] and Steinle-Neumann et al. [2001] KS

is calculated self-consistently. KT from static experiments
[Dubrovinsky et al., 2000] and the result from Laio et al.

[2000] are converted using thermodynamic parameters from
theory.

Structure

The axial ratio c/a of the hexagonal unit cell is im-
portant for understanding the elastic anisotropy. Among
transition metals at ambient conditions, the value of c/a
is found to be correlated with the longitudinal wave
anisotropy, which can be characterized by the ratio
c33/c11. Large values of c/a are associated with a rel-
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atively small c33 and slow P-wave propagation along the
c-axis [Simmons and Wang, 1971]. A change in axial
ratio through compression or temperature could change
the single crystal anisotropy considerably.

Similar to most ambient condition hcp transition met-
als iron crystallizes with an axial ratio c/a slightly below
the ideal value (∼ 1.6) [Jephcoat et al., 1986; Stixrude

et al., 1994]. It changes little with compression, exper-
iments show a slight decrease with pressure, theory a
minor increase.

At ambient pressure, hcp transition metals typically
show significant but small changes in c/a up to high
homologous temperature [Eckerlin and Kandler, 1971].
The ratio c33/c11 shows correspondingly small changes
[Simmons and Wang, 1971]. The largest change in this
ratio is exhibited by titanium which shows a change of
13%. Experiments on hcp iron at higher pressure ob-
served a small increase in c/a with temperature in the
pressure range of 15-30 GPa and temperatures up to 1200
K (Fig. 9) [Huang et al., 1987; Funamori et al., 1996;

Uchida et al., 2001]. Similarly, Dubrovinsky et al. [1999]
report a c/a=1.623 at 61 GPa and 1550 K. However,
these results can be questioned on the grounds that non-
hydrostatic stress may have influenced the temperature
dependence of c/a, a contention supported by hystere-
sis on a heating and cooling cycle seen in the data of
Funamori et al. [1996], and data by Dubrovinsky et al.

[2000] at 185 GPa and 1115 K with a small c/a (1.585).

First-principles theoretical calculations have predic-
ted a significant temperature induced increase in the
c/a ratio of hcp iron [Wasserman et al., 1996; Steinle-

Neumann et al., 2001], which is apparently consistent
with the majority of the existing experimental data. For
an inner core density of 13.04 Mg/m3 the axial ratio in-
creases from the static value close to 1.6 to about 1.7 at
6000 K (Fig. 10). This implies that at constant density
the c-axis grows at the expense of the a-axis. The linear
thermal expansivities α11 and α33 at constant pressure
provide another way to represent the change in structural
properties. Over a wide range of thermodynamic condi-
tions, the a-axis is predicted to compress slightly with
increasing temperature (Fig. 11).

The temperature-induced change in c/a appears to de-
pend on the absolute temperature rather than homolo-
gous temperature: the reason that c/a of hcp iron reaches
such large values at inner core conditions appears to be
that higher sub-solidus temperatures may be reached.
The origin of the temperature induced increase in c/a
can be traced to the vibrational entropy, other contribu-
tions to the vibrational and electronic free energy have
little effect (Fig. 12). Our calculations show that the en-
tropy increases substantially with increasing c/a. The
entropic contribution to the free energy depends on the
absolute temperature

Fvib = Evib − TSvib (18)
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FIG. 9: Axial ratio c/a of hcp iron as a function of tempera-
ture. The dashed line shows theoretical results for a density of
12.52 Mg/m3 corresponding to a static pressure of 195 GPa
[Steinle-Neumann et al., 2001]. The symbols show a poly-
baric set of experimental data at lower pressures, with mea-
surements in the pressure range of 15-20 GPa from Uchida et

al. [2001] (triangles down) and Huang et al. [1987] (trian-
gles up). Open squares from Funamori et al. [1996] are in
the pressure range of 23-35 GPa. Higher pressure data are
from Dubrovinsky et al. [1999] (61 GPa, filled diamonds) and
Dubrovinsky et al. [2000] (185 GPa, square). For comparison
the room temperature axial ratio from Mao et al. [1990] (197
GPa, open circle) is included. The experimental uncertainty
shown for Mao et al. [1990] can be taken as representative.
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FIG. 11: Thermal expansivity of iron at high pressure. The
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experimental datum is from Duffy and Ahrens [1993] for an
average thermal expansivity over the range of 300-5200 K.
The upper panel shows the corresponding linear thermal ex-
pansivities for the a- (α11) and c-axes (α33).

so that large values of c/a become increasingly more fa-
vorable energetically at high temperature.

High Temperature Elasticity

As a consequence of the increase in c/a the longitu-
dinal anisotropy changes radically with temperature, c11
becomes larger than c33 (Fig. 13), with compressional
wave propagation in the basal plane being faster than
along the c-axis (Fig. 14). As the c-axis expands it be-
comes more compressible, and the corresponding longitu-
dinal modulus, c33, softens. c11 in turn increases slightly.
The off-diagonal elastic constants are also affected by the
temperature-induced change in structure: c12 increases
rapidly with temperature because the basal plane shrinks
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FIG. 12: Energy contributions to the total Helmholtz free
energy F as a function of axial ratio for ρ=13.04 Mg/m3 and
T=4000 K. The lower panel shows the static energy E (filled
symbols) and the electronic free energy Fel (opaque symbols).
The middle panel shows the vibrational free energy Fvib which
is divided into internal vibrational energy Evib (open symbols)
and a vibrational entropy term −TSvib (filled symbols) in the
upper panel.

withincreasing temperature at constant density.

The shear constants c44 and c66 show a strong temper-
ature dependence and decrease almost by a factor of four
at 6000 K and change order as well (Fig. 13). The velocity
of shear waves is considerably smaller at high tempera-
ture and the sense of shear anisotropy is reversed (Fig.
14), with the propagation of the (001) polarized shear
wave becoming faster along the c-axis than in the basal
plane.
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FIG. 13: Single crystal elastic constants of hcp iron at a den-
sity of 13.04 Mg/m3 [Steinle-Neumann et al., 2001]. Static
values are connected to high temperature results with a
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tic constant but included for comparison with c44.
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Neumann et al., 2001]. The wave propagation velocities for
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Our calculations imply a shear instability in hcp iron
at very high temperature, c66 approaches zero at 7000
K yielding an upper bound on its mechanical stability
or melting point. This is in qualitative agreement with
the results by Laio et al. [2000] who predict a shear
instability at somewhat lower temperature.
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FIG. 15: Aggregate acoustic properties of iron calculated as
a function of temperature [Steinle-Neumann et al., 2001] in
comparison to the inner core. The adiabatic bulk (KS) and
shear moduli (G) at 13.04 Mg/m3 are shown as a function of
temperature (solid circles) with the corresponding values of
the inner core at the same density (dotted lines). The open
square shows a previous computational result by Laio et al.

[2000].

PROPERTIES OF THE INNER CORE

Aggregate Elasticity

Our current understanding of the physical properties
of iron shows that the high Poisson’s ratio of the inner
core can be explained by solid-phase elasticity [Laio et

al., 2000; Steinle-Neumann et al., 2001]. The shear elas-
tic constants are predicted to decrease rapidly with in-
creasing temperature - by a factor of four at 6000 K. As
a result, G becomes rapidly smaller with increasing tem-
perature (Fig. 15), leading to a Poisson’s ratio of hcp iron
that is in quantitative agreement with seismic models of
the inner core. These results confirm inferences on the
basis of shock wave measurements of vP and estimates
of vS at core conditions [Brown and McQueen, 1986]. It
does not seem necessary to invoke additional mechanisms
to explain the high Poissons ratio of the inner core such
as viscoelastic dispersion [Jackson et al., 2000] or the
presence of partial melt [Singh et al., 2000].

Temperature

Knowledge of the elasticity of iron permits an estimate
of inner core temperature that is independent of the iron
melting curve and the associated uncertainties related to
freezing point depression. The temperature of the inner
core is estimated to be 5700 (± 500) K. At this temper-
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ature Poisson’s ratio, KS, and G of iron simultaneously
agree with the properties of seismological models of the
inner core (Fig. 15). We infer that the additional light
elements that must be present in the inner core have a
greater effect on the density through a decrease in mean
atomic weight, than they do on the elastic moduli. Fur-
ther investigations of the elasticity of iron-light element
alloys will be needed to test this hypothesis.

Based on an estimate of the Earth’s central temper-
ature, we may construct a core geotherm. We assume
that the temperature distribution in the inner and outer
core are adiabatic and adopt γ = 1.6 [Wasserman et al.,

1996; Alfè et al., 2001] for the inner core, and γ = 1.5
for the outer core (Fig. 4). The latter value is consistent
with shock wave data [Brown and McQueen, 1986]. With
this choice the temperature is 5750 K in the center of the
Earth, 5500 K at the inner core boundary, and 4000 K
at the core mantle boundary (Fig. 4).

Other estimates of the temperature at the inner core
boundary fall in the range of 4500-6000 K, depending
on melting point estimate and degree of melting point
depression. Our temperature is somewhat higher than
the geotherm given by Brown and McQueen [1986] with
5000 K at the inner core boundary, and also higher than
the extrapolation from static experiments (< 5000 K)
[Boehler, 2000] or that based on the melting point from
Laio et al. [2000] (5400 K). The melting point from Alfè

et al. [1999], which is similar to that measured by Yoo

et al. [1993], combined with an assumed melting point
depression of 700 K [Alfè et al., 2002] yields a inner core
boundary temperature at 6000 K.

Simplified Model of Texture and Anisotropy

The sense of anisotropy that is found at high temper-
ature changes our view of the polycrystalline texture of
the inner core and the dynamic processes that may pro-
duce it. On the basis of first-principles calculations of
the elastic constants, we propose a simple model of the
polycrystalline texture of the inner core that explains the
main features of its anisotropy [Steinle-Neumann et al.,

2001]. We find that if 1/3 of the basal planes are aligned
with Earth’s rotation axis in an otherwise randomly ori-
ented medium, compressional wave travel time anomalies
are well explained (Fig. 16). This model is almost cer-
tainly over-simplified. The key element is the tendency
for the fast crystallographic direction (a) to be aligned
with the observed symmetry axis of inner-core anisotropy
(approximately polar). It is probable that the actual di-
rection and degree of crystallographic alignment will vary
with geographic location. Such variations may account
for seismological observations of heterogeneity [Creager,

1997; Tanaka and Hamaguchi, 1997; Vidale and Earle.,

2000].
Important remaining questions include the origin of
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FIG. 16: Differential travel time differences of PKIKP-PKP
(BC-DF) due to inner core anisotropy as a function of prop-
agation direction. The solid line shows the results based on
a model of the inner core in which 1/3 of the crystals have
their basal planes aligned with the rotation axis in conjunc-
tion with the high temperature elastic constants for hcp iron
from Steinle-Neumann et al. [2001]. Seismological observa-
tions are from Song and Helmberger [1993] (diamonds) and
Creager [1999; 2000] (circles).

polycrystalline texture in the inner core, which may have
been acquired during solidification, or may have devel-
oped subsequently as a result of plastic deformation, as
discussed above. If plastic deformation is the prevalent
texturing mechanism as we have argued, crystal align-
ment must depend on the dominant microscopic defor-
mation mechanism in hcp iron at inner core conditions or
patterns of growth and recrystallization, and the source
of the stress field. While these are currently unknown,
our simple model is consistent with the available infor-
mation.

Candidates for the deformation mechanism include
diffusion and recrystallization [Yoshida et al., 1996;

Stixrude and Cohen, 1995b] dislocation glide [Wenk et

al., 1988; Wenk et al., 2000b; Poirier and Price, 1999],
or a combination of both [Buffett and Wenk, 2001]. The
type of deformation mechanism is determined by the
magnitude of stress and the grain size of the material.
When stresses are large, dislocation creep dominates be-
cause a large dislocation density facilitates the slip along
crystal planes; if the stress is small with a low disloca-
tion density diffusion creep prevails as diffusion of point
defects dominates deformation. Small grains facilitate
diffusion, larger grain sizes favor dislocation glide. Esti-
mates on the grain size of the crystals in the inner core
range from a few mm [Buffett, 1996] to the km scale
[Bergman, 1998]. With the critical grain size determining
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the deformation regime being in the meter range [Yoshida

et al., 1996] the large uncertainty in grain size does not
provide the means to favor one over the other.

Yoshida et al. [1996] argue that diffusion and recrys-
tallization would result in a texture with the elastically
stiffest (fastest) axis coinciding with the direction of the
flow, minimizing the strain energy; for iron at high tem-
perature this would tend to align basal planes with the
dominant pattern of flow. Among the crystallographic
slip planes that may participate in dislocation glide, the
basal plane is the slip system that is most easily activated
at high pressure according to recent theoretical and ex-
perimental work [Poirier and Price, 1999; Wenk et al.,

2000b]. The predicted high axial ratio at inner core con-
ditions would probably further enhance basal slip as it is
typical for ambient hcp metals with large c/a. As crys-
tals deform in an external stress field basal planes would
rotate in the direction of maximum shear, yielding a tex-
ture with basal planes aligned with the direction of flow
as well. Active recrystallization during slip would tend
to enhance the resulting fabric.

Above we have discussed possible sources for stress
in the inner core, which allyield distinct flow patterns.
Many of them share a flow that is dominant in the po-
lar direction [Yoshida et al., 1996; Karato, 1999] which
would yield a texture of basal planes aligned with Earth’s
rotation axis. The shear flow invoked by Buffett and

Bloxham [2000] also yields a texture with the general
characteristics of basal planes aligned with the polar di-
rection [Buffett and Wenk, 2001].

To obtain the seismic characteristics of such a textural
model from single crystal results we convert the elastic
anisotropy of iron to differential travel time anomalies.
We start by considering an aggregate in which all a-axes
of hcp iron are aligned with the polar axis of the inner
core but otherwise randomly oriented. We obtain the
elastic properties of this aggregate by averaging elastic-
ity over the solid angle about the a-axis [Stixrude, 1998]
which again yields an aggregate elasticity of hexagonal
(cylindrical) symmetry. Using the Christoffel equations
(15) we can calculate vP as function of the angle ξ be-
tween the P-wave propagation direction and the pole.
Defining the amplitude of the anisotropy as

δvP (ξ)/vP,av = (vP (ξ) − vP,av)/vP,av (19)

(vP,av is the average vP ) we obtain an amplitude of 10%
at ξ = 0◦. This is about a factor of three to five larger
than global seismic anisotropy models for the inner core
[Song, 1997; Ishii et al., 2002a]. It is unlikely that crys-
tallographic alignment in the inner core is perfect. Con-
sequently, in our simple model, the degree of alignment
is reduced by a factor of three in order to match the gross
amplitude of the seismically observed anisotropy.

To compare directly with seismic observations we com-
pute differential PKIKP travel time anomalies due to in-

ner core anisotropy by

δt(∆, ξ) = −t(∆)δvP (ξ)/vP,av, (20)

where ∆ is the angular distance from source to receiver,
and t the travel time of the PKIKP phase through the
inner core. PKIKP and PKPBC are seen together over
a narrow range of distances near ∆ = 150◦ (t=124 s)
which we use as a reference distance [Stixrude and Cohen,

1995b]. The resulting differential travel time differences
are in good agreement both in amplitude and angular
dependence with seismic data (Fig. 16).

While we refer to plastic deformation explicitly in the
development of this textural model, it is also consistent
with other classes of structure. The general character of
solidification texture from dentritic growth for pure zinc
(like iron at high temperature, a transition metal with
high c/a) [Bergman et al., 2000] is in agreement with the
model we propose.

CONCLUSIONS AND OUTLOOK

The seismically observed complexity in inner core
structure and importance of inner core crystallization for
geodynamo processes have initiated considerable inter-
est in the physical state and dynamics of this innermost
portion of our planet. Advances in experimental and the-
oretical methods in mineral physics have made it possible
to address important questions regarding core composi-
tion, temperature, crystalline structure, and elasticity in
the inner core.

Combining geophysical information on core structure
and chemical constraints for the partitioning of elements
between the solid and liquid promising steps have been
made to characterize the light element composition in the
core [Alfè et al., 2000a; 2000b; 2002] with first results
indicating that at least a ternary mixture is needed to
satisfy all data. The effect of the light element on inner
core elastic properties is expected to be minor, except
for density, as evidenced by the ability of pure iron to
reproduce inner core aggregate elastic properties [Laio et

al., 2000; Steinle-Neumann et al., 2001].

Discrepancies in static properties of the high pressure
phase of iron, hcp, between experimental data and theo-
retical predictions suggest that some aspect of the physics
of this phase is not well understood to date. Theory indi-
cates the possible presence of magnetic moments on the
atoms in the hcp phase [Steinle-Neumann et al., 1999].
Experimental and theoretical efforts should be targeted
towards a better characterization of magnetic properties
at pressures below 100 GPa. Theoretical investigation
should focus on the characterization of more complex
magnetic structures including non-collinear, disordered,
and incommensurate states [Cohen et al., 2002]. Also,
advances in studies of phonon spectra at high pressure
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will hopefully result in independent estimates of com-
pressional and shear acoustic wave velocities and of the
full elastic constant tensor in the near future.

The thermoelastic properties of iron appear to de-
pend critically on the c/a ratio, especially the elastic
anisotropy. A careful study of structural parameters as
a function of pressure and temperature using experimen-
tal and independent theoretical methods could be used
to test the predicted reversal in elastic anisotropy of hcp
iron at high temperature [Steinle-Neumann et al., 2001].

An extension of the melting curve from diamond anvil
cell experiments to higher pressures could help to lower
current uncertainties in the temperature of the Earth’s
core. However, present uncertainties in the melting point
of iron are probably comparable to uncertainties in the
freezing point depression. Further investigation of the
phase stability and elastic properties of iron light element
alloys will be important.
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