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ABSTRACT

The thermal conductivity of the lower mantle plays a major role in shaping the structure 
and dynamics of the region. However, the thermal conductivity of lower mantle minerals are, 
at present, not well constrained, because of dif!culties in making measurements at such high 
pressures. Here we describe the most common theoretical methods available to calculate the 
thermal conductivity of materials, which provide an invaluable alternative to experimental tech-
niques. In each case the general scheme is given and particular considerations highlighted. The 
advantages and disadvantages and applicability of the methods are then discussed. We conclude 
with a short review of theoretical studies of the lattice thermal conductivity of periclase.

INTRODUCTION

The bulk of the lower mantle is composed of ferropericlase and ferromagnesian silicate 
perovskite (Lee et al. 2004). To understand the lower mantle it is, therefore, essential to 
constrain the properties of these phases. Of particular importance are their thermal transport 
properties, which have, from formation, played a major role in shaping the deep Earth. Following 
segregation, the thermal conductivity of the lower mantle regulated the heat "ux from the core 
and thus had a signi!cant in"uence on thermal evolution, in particular on the rate of growth 
of the solid inner core (Lay et al. 2008). In the present Earth, thermal conductivity plays a 
signi!cant role in determining the structure and dynamics of the lower mantle, controlling 
the size and stability of thermal upwellings (Dubuffet et al. 1999; Dubuffett and Yuen 2000; 
Naliboff and Kellogg 2006, 2007). In addition, lateral variations in the thermal structure of the 
lowermost mantle, which could be related to lateral variations in thermal conductivity, have 
been shown to in"uence magnetic !eld generation (Gubbins et al. 2007; Willis et al. 2007).

The thermal conductivity of the lower mantle can be decomposed into two principle 
components. The !rst is the lattice contribution, related to thermal conduction by phonons 
(lattice vibrations). The second is the radiative contribution related to thermal conduction 
by photons (electromagnetic radiation). Conduction of heat by electrons is expected to be 
negligible. The lattice thermal conductivity of ferropericlase and ferromagnesian silicate 
perovskite has not been measured at lower mantle temperatures and pressures, and geophysical 
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values are estimated by model extrapolations from low-pressure data (Hofmeister 2007, 2008; 
Goncharov et al. 2009). Experimental measurements of radiative thermal conductivity remain 
inconclusive. Though there is general agreement that the high-to-low-spin transition in iron 
decreases radiative conductivity (Goncharov et al. 2006; Keppler et al. 2007), instead of 
increasing it as was !rst thought (Badro et al. 2003, 2004), disagreement remains on values in 
the low-spin regime. Measurements of the radiative conductivity of silicate perovskite differ by 
an order of magnitude (Goncharov et al. 2008; Keppler et al. 2008). However, even if the higher 
values are adopted, it seems probable that the lattice contribution dominates at lower mantle 
conditions.

Numerous theoretical techniques for determining lattice thermal conductivity have been 
reported in the literature (e.g., Evans and Morris 1990; Müller-plathe 1997; Daly et al. 2002; 
Nieto-Draghi and Avalos 2003; de Koker 2009; Tang and Dong 2009) and have been applied 
to a wide range of materials. However, their application to lower mantle phases is a relatively 
recent development with only a handful of studies published (Cohen 1998; Shukla et al. 2008; 
Stackhouse et al. 2008;  de Koker 2009; Tang and Dong 2009), all of which focus on periclase, 
the pure magnesium end-member of ferropericlase. The purpose of the present work is to provide 
an overview of the most popular theoretical methods for calculating lattice thermal conductivity, 
discussing their underlying theories, relative merits and shortcomings and highlighting possible 
pitfalls. In addition, the few theoretical studies of periclase are reviewed. The overall aim is to 
equip the reader with the knowledge required to select and use the most appropriate method in 
their own work, after considering the computational resources and time available to them. 

FUNDAMENTAL PRINCIPLES

Imagine that a temperature gradient is imposed across a solid, heat "ows from the hotter 
region to the cooler one. Fourier’s Law states that the magnitude of the induced heat "ux will 
be proportional to the temperature gradient, and de!nes thermal conductivity as the property 
of the solid that relates the two 
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where qi is the heat "ux, T/ xj the temperature gradient and kij the second-rank thermal 
conductivity tensor. For those materials of cubic or isotropic symmetry the thermal conductivity 
tensor is isotropic (Nye 1957), such that 

k kij ij ( )2

and thus Fourier’s law reduces to
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where the temperature gradient and heat "ux are in the same direction.

It should be noted that Fourier’s law is only applicable to systems in steady-state. For 
systems out of steady-state we must use the heat conduction equation (Holman 1976; Kreith 
and Bohn 2001). Focusing on the conductive contribution to heat transfer, for an isotropic 
system, the heat conduction equation reads
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where  is the density and CP the isobaric speci!c heat. For small homogeneous crystals the 
spatial gradient in k may be neglected. Taking this into account, and dividing both sides by 

CP leads to
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where D is the thermal diffusivity, related to k via 
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The phonon contribution to thermal conductivity is related to microscopic dynamics via 
(Ziman 1960; Srivastava 1990) 
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where the sum is over all wave vectors q and 3N polarization indices s (N is the number of 
atoms in the primitive cell); vq,s the group velocity and q,s the relaxation time associated with 
each mode. The mode contribution to the heat capacity is
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where q,s is the frequency of the mode; kB Boltzmann’s constant; h Planck’s constant; V 
volume; and T temperature. At lower mantle temperatures, and for typical lower mantle 
minerals, the mode heat capacities all take on the high temperature limiting value and lattice 
thermal conductivity may be written as

k 1
3

92C vv ( )

where Cv is the bulk volumetric isochoric heat capacity and the brackets indicate the average 
over all modes, or as

k 1
3

10C vv ( )

where  = v  is the phonon mean free path. 

THEORETICAL METHODS

In this section we describe the most widely used theoretical methods for calculating lattice 
thermal conductivity. These are based on either molecular dynamics or lattice dynamics or both, 
and it is assumed that the reader has a working knowledge of these and concepts associated 
with them. Information on these topics can be found elsewhere (e.g., Allen and Tildesley 1987; 
Leach 2001). The descriptions given below are not exhaustive and additional details can be 
found in some excellent reviews (McGaughey and Kaviany 2006; Chantrenne 2007).

Green-Kubo method

In an equilibrium molecular dynamics simulation the system under investigation has a 
constant average temperature and an average heat "ux of zero. However, at each instant of time 
a !nite heat "ux exists due to instantaneous "uctuations in temperature. The popular Green-
Kubo method (Green 1954; Kubo 1957), based on the general "uctuation-dissipation theorem 
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(Kubo 1966), relates the lattice thermal conductivity of the system to the time required for 
such "uctuations to dissipate 
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where kij is a component of the lattice thermal conductivity tensor (i and j = x, y or z), V the 
volume of the system, kB Boltzmann’s constant, T the temperature of the system, qi(0) the 
instantaneous heat "ux in the j direction at time zero and qj(t) the instantaneous heat "ux in the 
i direction at time t. The angular brackets on the right-hand-side indicate an average over time 
origins. Though the upper limit on the integral is in!nite the duration of the simulation must 
only exceed the relaxation time beyond which the integrand vanishes (Fig. 1). In molecular 
dynamics simulations time is discretized into time-steps, and thus in practice Equation (11) 
becomes a summation (Schelling et al. 2002) 
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where N is the total number of time-steps, each of length t, qi(m+n) the instantaneous heat 
"ux in the i direction at time-step m+n and qj(n) the instantaneous heat "ux in the j direction 
at time-step n. The instantaneous heat "ux, in a given direction, is evaluated from the energy 
associated with each atom in the simulation 
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where q is the heat "ux vector, ri the position vector of atom i and i the energy associated with 
atom i, and the sum is over all N atoms. The energy associated with each atom is the sum of its 

Figure 1. Heat "ux autocorrelation function (solid line) of a Lennard-Jones fcc crystal at T = 0.546 /kB or 
about 25 percent of the melting point, density N/V = (2)1/2/ 3, and N = 108. Time is non-dimensionalized 
such that one vibrational period of about 0.25(m 2/ )1/2. The two dashed lines represent approximations to 
the auto-correlation function that are valid in the limit of low temperature. m is the atomic mass,  is the 
Lennard-Jones length scale and  is the Lennard-Jones energy scale. Reprinted with permission from Ladd 
et al. (1986) Physical Review B, Vol. 34, p 5058-5064. Copyright 1986 by the American Physical Society. 
http://link.aps.org/doi/10.1103/PhysRevB.34.5058
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kinetic energy and potential energy 
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where mi is the mass of atom i, vi the velocity vector of atom i, and uij(rij) the pair-wise 
interaction between atoms i and j when separated by a distance rij. Substituting Equation (14) 
into Equation (13) we obtain 
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where rij = ri – rj and Fij is the force exerted on atom i by atom j. The !rst term within the 
square brackets is related to convection and the second to conduction. For more complex 
potentials additional terms are required (Schelling et al. 2002). 

It important to note that in Green-Kubo calculations, just as in many simulation studies, 
!nite-size effect are important and that calculated values converge towards experimental values 
with increasing system size (Volz and Chen 2000; Sun and Murthy 2006). Such convergence 
must be checked for in order ensure that calculated values are accurate.

Non-equilibrium molecular dynamics

Non-equilibrium molecular dynamics is the most intuitive theoretical method for 
determining lattice thermal conductivity, in that it calculates it from the ratio of a heat "ux to 
a temperature gradient, similar to what is done in experimental studies. The simulations can 
take one of two approaches: either a known heat "ux is imposed and the resulting temperature 
gradient is calculated or a !xed temperature gradient is imposed and the heat "ux required to 
maintain it calculated. However, the former is more usual and we focus on it here. 

In general, molecular dynamics simulations are performed in conjunction with a periodic 
simulation cell, representing the structure of the system under investigation. In such a context, 
the most common approach to imposing a heat "ux is to divide the simulation cell into an even 
number of equal-size sections, designate one as the hot section and another, half a simulation 
cell length along, as the cold section, and at regular intervals in time transfer heat from the cold 
section to the hot section (Fig. 2:A). Since the simulation cell is periodic, heat leaves both sides 
of the hot section and enters both sides of the cold section, leading to the generation of two heat 
"uxes in opposing directions and two corresponding temperature gradients (Fig. 2:B). 

There are a number of different schemes for transferring heat from the hot section to the 
cold section. One of the most popular methods involves the regular transfer of heat from the 
hottest atom in the cold section to the coldest atom in the hot section (Müller-plathe 1997; 
Nieto-Draghi and Avalos 2003). In particular, at intervals of a !xed number of time-steps, the 
hottest atom in the cold section is imagined to undergo an elastic collision with the coldest 
atom in the hot section and the velocities arising from such a collision assigned to the atoms 
prior to continuation of the simulation. The post-collision velocity of the atom in the cold 
section is calculated as
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where mc and mh are the respective masses of the atoms in the cold and hot sections, vc and 
vh their velocities before the collision and vc  and vh  their velocities after it. The reasons for 
using such a construct is that Equations (16) and (17) enable the exchange of heat between the 
sections, while conserving the total kinetic energy, potential energy and linear momentum of 
the system. The average heat "ux is then determined from
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where qi is the average heat "ux "owing in the i direction (where i = x, y or z), A the cross-
sectional area of the simulation cell perpendicular to i, N the total number of time-steps, t 
the time-step, t the frequency of the heat transfers in time-steps, and vh(n t) and vh (n t) the 
velocities of the atom in the hot section before and after transfer at time-step n t. The factor 
half arises because heat "ows from both sides of the hot section to both sides of the cold 

Figure 2. Typical set-up in a non-equilibrium molecular dynamic simulation (A) and resulting temperature 
pro!le (B). The simulation cell is divided into sections of equal dimensions, one is designated the ‘hot 
section’, another the ‘cold section’ and at regular intervals heat is transferred from the cold section to 
the hot section, by modi!cation of the velocities of some or all of the atoms in the two sections. The 
temperature gradient is non-linear around the hot and cold sections due to the non-Newtonian nature of 
the heat transfer. Only the linear portion of the temperature gradient is used in the calculation of thermal 
conductivity.
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section, with an average of half of the exchanged heat "owing in each of the two directions. 
Using this method it is impossible to know the resulting heat "ux a priori. However, by varying 
the frequency of heat transfers, it is possible to control the magnitude of the heat-"ux, and 
corresponding temperature gradient. 

More control on the magnitude of the imposed heat "ux is afforded in an alternative 
approach, which transfers heat from the cold section to the hot section by scaling the velocities 
of all of the atoms in the two sections (Jund and Jullien 1999). In particular, at regular intervals 
the velocities of the atoms in the hot and cold sections are adjusted according to 

v v v vi G i G( ) ( )19

where vi and vi  are the velocities of atom i before and after rescaling; vG is the velocity of the 
center of mass of the section before rescaling, computed from 
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where the sum is over all N atoms in the hot or cold section, mi is the mass of atom i, and  a 
scaling coef!cient given by 
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where  is the amount of heat to be transferred from the cold section to the hot section, and 
R is the relative energy of the section, de!ned as 
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In Equation (21) the sign is positive for the hot section and negative for the cold section. The 
heat "ux is calculated from 

q
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where A is the cross-sectional area of the simulation cell perpendicular to i, and t the time-
step. The magnitude of  is chosen to give the desired temperature gradient.

For both of the above heat transfer methods, once steady-state is reached, lattice thermal 
conductivity is calculated from Fourier’s Law in one dimension 
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where the temperature gradient, dT/dxi, is determined from the average instantaneous tempera-
ture of each section, TS, calculated at each time-step from 
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where the sum is over all N atoms located in the section.

The periodic nature of the simulation cell leads to two temperature gradients, equal in 
magnitude, but opposite in sign. It is normal to average the temperature of symmetrically 
equivalent sections to improve statistics. In some studies the difference in the average temperature 
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of symmetrically equivalent sections has been used as an indicator of whether or not steady state 
has been reached (e.g., Yoon et al. 2004). The process of energy transfer renders the dynamics in 
the immediate vicinity of the hot and cold sections non-Newtonian and the temperature pro!le 
in these regions non-linear (Fig. 2:B). In view of this, the temperature of the sections around the 
hot and cold sections are discarded during calculation of the temperature gradient. One practical 
consequence of this phenomenon is that, the simulation cell must be of a suf!cient size for the 
temperature pro!le to have a linear portion. 

The limited simulation cell size tractable with molecular dynamics methods often leads 
to the issue of !nite-size effects. In particular, in calculations of lattice thermal conductivity, 
unless the length of the simulation cell is many times larger than the phonon mean-free path, 
one computes a value lower than the true value. This is because of the direct relationship 
between lattice thermal conductivity and phonon mean free path (Eqn. 10). In a real solid, 
the mean free path is mainly limited by phonon-phonon scattering, although phonon-defect 
scattering will also play a role when defects are present, but in non-equilibrium molecular 
dynamics simulations phonons are also scattered in the hot and cold sections. This leads to a 
lower mean free path, and thus lower lattice thermal conductivity. It is, however, possible to 
overcome this problem by performing simulations for cells of different sizes, as has also been 
done in a number of recent simulation studies (e.g., Schelling et al. 2002; Stackhouse et al. 
2008). 

The effective phonon mean free eff path for each simulation cell is expressed in terms of 
that related to phonon-phonon scattering ph-ph and that related to phonon-boundary scattering 

ph-b, which occurs in the hot and cold sections 
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26
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Since phonons can originate from any point between the hot and cold section and be scattered 
in the hot or cold sections, the distance that a phonon will travel between scattering events (in 
the absence of phonon-phonon interactions) will be, on average, one quarter of the length of 
the simulation cell in the direction of the heat-"ux
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where Li is the length of the simulation cell in the i direction. If we substitute Equation (27) 
into Equation (10) and rearrange, for an isotropic solid, we have
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which means that a plot of k−1 against Li
−1 should be linear. Therefore by computing k for 

a range of Li values, and plotting k−1 against Li
−1 it is possible to extrapolate to Li

−1 = 0 to 
determine the lattice thermal conductivity of a simulation cell of in!nite size (Fig. 3), which 
should be comparable to the in!nite-system value. 

From a practical point of view, there are several important considerations that must made 
before performing non-equilibrium molecular dynamics simulations, necessitating some 
initial experimentation (Müller-Plathe 1997; Schelling et al. 2002; Chantrenne and Barrat 
2004; Mountain 2006; Mahajan et al. 2007). The !rst is that one must choose the number of 
sections in which to divide the simulation cell. This is not straightforward. Larger sections will 
contain more atoms, leading to a more accurate estimate of their instantaneous temperature. 
On the other hand, larger sections will mean fewer sections in total, and thus less data points 
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from which to calculate the temperature gradient. The magnitude of the heat "ux is also a 
concern. Imposing a large heat "ux will lead to a large temperature gradient and much faster 
convergence. However, Fourier’s Law is invalid for perturbations outside the linear response 
regime and care must be taken to ensure that it is still applicable. To assess this one can 
perform a series of simulations using heat "uxes of decreasing magnitude and check that the 
calculated lattice thermal conductivity is the same in each case. It is also worth noting that if 
the temperature gradient is large, then it will be unclear to which temperature the calculated 
lattice thermal conductivity corresponds. The effect of the size of the cross-sectional area 
perpendicular to the heat-"ux is another factor that is also sometimes considered. This and 
each of the above factors must be investigated for each system and chosen with care.

Transient non-equilibrium molecular dynamics

In a similar manner to the non-equilibrium molecular dynamics method, the transient non-
equilibrium molecular dynamics method (Daly and Maris 2002; Daly et al. 2002) begins by 
dividing a simulation cell into sections. However, instead of introducing a hot and cold section 
and imposing a constant one-dimensional heat "ux, a sinusoidal temperature perturbation is 
applied across the sections and lattice thermal conductivity is determined from the rate at 
which the system re-equilibrates (Fig. 4).

The sinusoidal temperature perturbation is applied to the system according to 
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where T(xi) is the temperature a distance xi across the simulation cell, in the i direction (where 
i = x, y or z), T0 the equilibrium temperature, T0 the amplitude of the sinusoidal temperature 
perturbation and Li the length of the simulation cell in the i direction. Once applied, the system 
is allowed to re-equilibrate and the decrease in the amplitude of the sinusoidal temperature 
perturbation computed as a function of time from 
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where T(xi,t) is the temperature a distance xi across the simulation cell in the i direction, at a 
time t. 

Figure 3. Typical plot of k−1 
against L−1 obtained from a series 
non-equilibrium molecular dynam-
ics simulation, using simulation 
cells of different size. Extrapolat-
ing back to L−1 = 0 it is possible 
to estimate the lattice thermal 
conductivity of a simulation cell 
of in!nite size, accounting for the 
arti!cial phonon-boundary scatter-
ing introduced by the heat transfer 
mechanism.
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The rate at which such a system re-equilibrates can be related to its thermal diffusivity by 
solving the appropriate heat conduction equation (Holman 1976; Kreith and Bohn 2001) 
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where Dii is a component of thermal diffusivity tensor. Taking the logarithm gives 
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which allows the determination of Dii from a simple plot of ln( T(t)/ T0) against t. The lattice 
thermal conductivity of the system can then be calculated from Equation (6), provided that its 
speci!c heat capacity and density are known.

In practice, the simulation cell is divided into N sections in the i direction, each of width 
Li/N, which we label 1 to N and time is discretized into time-steps, each of length t. In this 
context the initial temperature pro!le is expressed as 
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where T(n) is the temperature of section n. The temperature perturbation is applied by rescaling 
the velocities of all atoms in each section, according to  
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where vn and vn  are the velocities of atoms in section n before and after rescaling. The 
amplitude of the sinusoidal temperature perturbation is computed as  
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Figure 4. Typical procedure in a transient non-equilibrium molecular dynamics simulation. The system 
is brought to equilibrium at a temperature of T0. Then a sinusoidal temperature perturbation of amplitude 

T0 is applied, across the simulation cell, and thermal conductivity determined from that rate at which the 
system re-equilibrates.
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where T(m) is the amplitude of the sinusoidal temperature perturbation at time-step m and 
T(n,m) the instantaneous temperature of section n at time-step m computed from Equation 

(25). Thermal diffusivity is then determined from  
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where the time t is replaced by the product of the time-step number m and length t.

In addition to similar issues to those encountered in non-equilibrium molecular dynamics 
simulations, the transient molecular dynamics method suffers from a number of other 
complications. The sinusoidal temperature perturbation imposes a corresponding sinusoidal 
variation in thermal pressure across the simulation cell, which upon re-equilibration induces 
a low frequency vibrational mode, causing atoms to vibrate in the i direction (Daly and Maris 
2002; Daly et al. 2002). However, the effect is expected to be small, and can be reduced by 
using smaller perturbations. More worrisome is an issue regarding the !tting of Equation 
(36) at short and long times scales, which can only been remedied by applying an ad hoc 
modi!cation to the equation (Daly and Maris 2002; Daly et al. 2002).

Combined Quasiharmonic Lattice Dynamics and Molecular Dynamics Method

In lattice dynamics calculations the potential energy of a system is expressed as a Taylor 
series expansion of atomic displacements (Maradudin et al. 1963)  
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where V is the potential energy of the system; V0 the potential energy of the system with all the 
atoms in their equilibrium positions, ul, ,i the displacement of atom  in unit cell l in the i direc-
tion (where i = x, y or z) and ul , ,j the displacement of atom  in unit cell l  in the j direction 
(where j = x, y or z). Since the derivatives are evaluated with the atoms at their equilibrium posi-
tions, by de!nition, the !rst derivative must be zero. It is usual to truncate the expansion at the 
second derivative as is shown, making what is known as the quasiharmonic approximation. 

The second term on the right hand side represents the harmonic inter-atomic interactions 
and the double derivatives make up the elements of the force constant matrix 
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l i l j
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where l, ,i;l , ,j is the force exerted in the i direction on atom  in unit cell l, when atom atom 
 in unit cell l  is displaced a unit distance in the j direction. The elements of the force constant 

matrix can be determined either by making small displacements of the atoms in one unit cell, 
with all other atoms held !xed, and determining the forces on all other atoms—the !nite 
displacement method (Kresse et al. 1995; Alfé 2009), or from perturbation theory (Gonze and 
Lee 1997; Baroni et al. 2001). 

The equations of motion of the system can be expressed 
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where m  is the mass of atom . If we assume a harmonic solution to Equation (38) we have 
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where  is the mode frequency, t time, q mode wave vector and xl the coordinates of unit cell 
l. Substituting this into Equation (39) we obtain 

2 41( ( ( ), , ; ,
,

,q q) )u D ui i j
j

j

where the dynamical matrix, D ,i; ,j(q), is 
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Diagonalization of the dynamical matrix yields the phonon eigenmodes and their 
frequencies, which allows the determination of both cq,s and vq,s in Equation (7), but in order 
to calculate lattice thermal conductivity q,s is also needed. In the harmonic approximation 
the phonon lifetime is in!nite and is only limited by anharmonicity, i.e., phonon-phonon 
interactions, which must be computed using a method other than quasi-harmonic lattice 
dynamics. In principle anharmonicity will also cause shifts of the mode frequencies, although 
this effect is typically small for computations of the thermal conductivity (Fig. 5). Estimates 
of q,s can be obtained from molecular dynamics simulations (de Koker 2009; Turney et al. 
2009). One method is to use the Fourier transform of the velocity autocorrelation function to 
determine the vibrational spectrum at individual wave vectors (Fig. 5) and relate relaxation 
times to the width of spectral peaks (de Koker 2009). Other techniques include !tting the 
phonon potential energy autocorrelation function (Turney et al. 2009). Thus by performing 
both lattice dynamics and molecular dynamics of the same system it is possible to determine 
its lattice thermal conductivity.

Anharmonic lattice dynamics method

It is also possible to estimate lattice thermal conductivity from lattice dynamics calculations 
alone, by considering higher order terms in the Taylor expansion (Eqn. 37) (e.g., Broido et 
al. 2007; Tang and Dong 2009; Turney et al. 2009). In doing so it is possible to determine 

Figure 5. (center) Phonon frequencies of MgO periclase calculated from !rst-principles molecular 
dynamics (circles; temperature in Kelvin) and !rst-principles lattice dynamics in the quasi-harmonic 
approximation (lines). The black crosses are experimental values Sangster et al. (1970). (left and right 
panels) Examples of spectral peaks calculated from !rst-principles molecular dynamics, at [100] and [½ ½ 
½], used to determine phonon relaxation times. Reprinted with permission from de Koker (2009) Physical 
Review Letters, Vol. 103, Article #125902. Copyright 2009 by the American Physical Society. http://link.
aps.org/doi/10.1103/PhysRevLett.103.125902
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relaxation times and anharmonic frequencies. Aside from the pertubative treatment of the 
anharmonic terms, the Taylor series is also typically truncated, neglecting part of the anharmonic 
contributions, which can lead to approximations in computed thermal conductivity values. 

DISCUSSION

Having described the various approaches for calculating lattice thermal conductivity, we 
now discuss the relative advantages and disadvantages of each, in an attempt to provide some 
general guidance on selecting the most appropriate method. Of course, as is the case in all 
theoretical investigations, this will involve making a compromise between speed and precision, 
and consideration of available computational resources. Since there have been only a handful 
of investigations that have used the transient non-equilibrium molecular dynamics method 
and lattice dynamics techniques, we focus on the Green-Kubo and non-equilibrium molecular 
dynamics methods, which make up the majority of studies in the literature.

If one considers the Green-Kubo method, a clear advantage is that the entire lattice 
thermal conductivity tensor can be calculated from one simulation. This is in contrast to the 
non-equilibrium molecular dynamics methods, which necessitates several simulations in each 
direction, to achieve the same. This could be an important consideration, if the mineral of interest 
is known to be anisotropic. The Green-Kubo method also requires less experimentation than 
non-equilibrium molecular dynamics methods, there being no need to investigate the effect of 
section size or heat "ux on results. On the other hand, it can take a long time for the correlation 
function to decay to zero, thus long simulations are often required. In addition, the Green-Kubo 
method requires the identi!cation of the self-energy of each atom, which is not straightforward 
in the context of !rst-principles calculations, meaning that it is, for the most part, limited to the 
study of those phases which are well described by a set of empirical pair potentials. 

This issue of empirical pair potentials versus !rst-principles computation of forces is an 
important one. Due to the large size and length of simulations that must performed in calcula-
tions of lattice thermal conductivity, nearly all previous theoretical investigations have utilized 
empirical pair potentials to describe the forces between atoms. Using such pair potentials large 
simulation cells can be used, containing thousands of atoms, and it is possible to model poly-
crystalline systems and the in"uence of grain boundaries (e.g., Shukla et al. 2008). However, 
pair potentials are, in general, parameterized using experimental data determined at ambient 
conditions or values from static !rst-principles calculations. It is thus uncertain how well they 
are able to describe the motion of atoms at lower mantle temperature and pressures. On the 
other hand, forces determined from !rst-principles, via the Hellmann-Feynman theorem (Hell-
mann 1937; Feynman 1939) are parameter free and therefore expected to be more reliable. 

Non-equilibrium molecular dynamics simulations can be performed using both empirical 
pair potentials or within the framework of !rst-principles calculations. Calculating forces from 
!rst-principles increases the computational resources required, which means that much smaller 
simulation cells must be used, leading to increased !nite size effects. However, it has been shown 
that these can be dealt with in a systematic manner, although it should be noted that because of 
the nature of the reciprocal plot, associated error-bars can be large for systems with high lattice 
thermal conductivities (Stackhouse et al. 2008). Of the non-equilibrium molecular dynamics 
methods, the imposed heat-"ux method requires smaller simulation cells, as compared to the 
transient method. This is because the size of the simulation cell limits the number of sections 
and many more sections are required to de!ne a sinusoidal temperature perturbation than a 
linear temperature gradient.

It should also be pointed out that all of the molecular dynamics based methods discussed 
describe the motion of the atoms using classical mechanics, i.e., by solving Newton’s equations 
of motions. This is true even for ab initio molecular dynamics simulations, where, although 
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the forces are determined from !rst-principles, atomic motion is still described by classical 
mechanics, which generates errors at very low temperatures due to quantum effects on 
the dynamics (Jund and Jullien 1999). However, this is not expected to be a concern when 
calculating values for minerals at lower mantle temperatures, far above their estimated Debye 
temperatures.

Quantum effects are included in lattice dynamics calculations. In addition, like the 
Green-Kubo method, lattice dynamics should also be able to determine the full lattice thermal 
conductivity tensor. In general, lattice dynamics studies use forces calculated from !rst-
principles, in order to obtain accurate mode frequencies and lifetimes, but the computational 
resources required to perform a combined lattice and molecular dynamics investigation is still 
likely to be less than that required for non-equilibrium molecular dynamics studies, at least for 
simple structures. In more complex structures, such as silicate perovskite, the task of computing 
the vibrational spectrum and identifying each mode may prove formidable. 

In view of all the above, if computational resources allow, we recommend performing 
!rst-principles non-equilibrium molecular dynamics simulations to calculate the lattice thermal 
conductivity of minerals. This avoids concerns regarding the robustness of empirical pair 
potentials. However, empirical pair potentials may perform well at lower temperatures and 
pressures, as will be seen in the next section, and in this case they can be used. 

THE LATTICE THERMAL CONDUCTIVITY OF PERICLASE

Periclase is the pure magnesium end-member of ferropericlase, thought to be the second 
most abundant phase in the lower mantle. The simple rock-salt structure of the phase makes 
it an ideal mineral on which to test new methods. In all, there have been !ve studies of the 
lattice thermal conductivity of periclase: one based on the Green-Kubo method (Cohen 1998); 
two using non-equilibrium molecular dynamics simulations (Shukla et al. 2008; Stackhouse et 
al. 2008); one using a combination of lattice dynamics and equilibrium molecular dynamics 
simulations (de Koker 2009) and one using anharmonic lattice dynamics (Tang and Dong 2009). 
The phase has thus been studied using almost all of the methods described in the previous 
section. The results of these investigations are compared with available experimental data in 
Figures 6. Note that, Tang and Dong (2009) only reported temperature and pressure derivatives. 
The results of Stackhouse et al. (2008) are still under review and are not shown. 

If we !rst consider the ambient pressure data, one can see that the Green-Kubo calcula-
tions of Cohen (1998), based on a non-empirical ionic model, predict values a little lower than 
experimental values and those from other theoretical studies. The results of the non-equilibrium 
molecular dynamics simulations that used pair potentials (Shukla et al. 2008) agree well with 
experiment, in particular, those of Hofmeister and Yuen (2007). This suggests that empirical pair 
potentials can perform well at low pressures. The !rst-principles non-equilibrium molecular dy-
namics calculations of Stackhouse et al. (2008), also agree well with experimental values, in par-
ticular, those of Kanamori et al. (1968). Moving to high pressure, we !nd that the !rst-principles 
calculations of de Koker (2009) predicts values in good agreement with the experimental data of 
Goncharov et al. (2009), which fall between the two theoretical predictions (Fig. 6). 

It should be noted that the values determined in the theoretical studies discussed are for 
perfect periclase single crystals, which do not contain iron impurities or defects. In the lower 
mantle, ferropericlase exists in polycrystalline form and grain boundaries, and defects, such 
as iron impurities will increase phonon scattering, decreasing the lattice thermal conductivity 
of the phase. The lattice thermal conductivity of periclase should therefore be viewed as an 
upper bound to that of ferropericlase. In their non-equilibrium molecular dynamic simulations, 
Shukla et al. (2008) investigated the effect of grain boundary scattering on the lattice thermal 
conductivity of periclase, !nding it to be signi!cant at low temperatures, while at higher 
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temperatures, such as those expected in the lower mantle, the effect was small. This is because 
at high temperatures the phonon mean free path is smaller than the grain size, while at lower 
temperatures they may be comparable. The in"uence of grain size will therefore depend on the 
intrinsic lattice thermal conductivity of the single crystal. The effect of defects, such as iron 
impurities, remains to be quanti!ed in periclase.

CONCLUSION

Determining the thermal conductivity of lower mantle minerals is important for 
constraining many important processes in both the past and present deep Earth. In light of 
the experimental dif!culties in measuring thermal conductivity, theoretical methods offer an 
invaluable alternative. There exist a number of different theoretical techniques, which have 
been used in the !eld of materials science, which can also be applied to mantle minerals. Each 
of these methods have advantages and disadvantages, and the appropriate method must be 
chosen in a compromise between speed and accuracy. Studies of periclase indicate, at present, 
that non-equilibrium molecular dynamics simulations are promising and will be readily scaled 
to more complex crystal structures.
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Figure 6. The lattice thermal conductivity of periclase as a function of temperature at 0 GPa (main) and 
as a function of pressure at 2000 K (inset). Simulation values: CO90 (Cohen 1998); SH08 (Shukla et al. 
2008); DK09 (de Koker 2009). Experimental values: KA68 (Kanamori et al. 1968); KA97 (Katsura 1997); 
HY07 (Hofmeister and Yuen 2007); GO09 (Goncharov et al. 2009). Theoretical values: MJ97 (Manga and 
Jeanloz 1997); KA97 (Estimated from results of Katsura 1997). Best agreement with experiment is found 
for the non-equilibrium molecular dynamics simulations (Shukla et al. 2008).
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