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The structural, dynamical, and electronic properties of liquid MgO have been investigated over a wide range
of pressure �0 to �240 GPa� and temperature �3000–10 000 K� using first-principles molecular dynamics
�FPMD� within the framework of density-functional theory and the pseudopotential approximation. Our results
show that the liquid structure is highly sensitive to compression: the Mg-O coordination number increases from
5 at zero pressure to 7 at high pressure. The Grüneisen parameter and heat capacity are found to increase upon
twofold compression by 40% and 20%, respectively. The dynamical behavior of the liquid phase is character-
ized by the diffusion coefficient, which is found to decrease with increasing pressure and to increase with
increasing temperature in a way that can be accurately characterized by an Arrhenius relationship with acti-
vation energy and volume of 0.85 eV and 1.3 Å3, respectively. The calculated electronic density of states show
that the electronic structure of the liquid phase differs substantially from that of the crystalline phase: the liquid
has no band gap and a density of states at the Fermi level increases with increasing volume and temperature.
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I. INTRODUCTION

Understanding the behavior of the liquid state of oxides
such as MgO at high pressure is important for several rea-
sons. First, Mg and O are thought to be the two most abun-
dant elements in Earth’s mantle. Knowledge of the physical
properties of liquid MgO under extreme pressure and tem-
perature conditions of the deep interior is essential to mod-
eling the thermal, chemical, and dynamical state of the Earth.
For instance, the equation of state of the liquid is an impor-
tant factor controlling the relative density of partial melts
produced by geological processes and coexisting solids, and
thus whether these melts will rise or sink.1 The diffusivity
controls the rate of chemical reaction of liquids with their
surroundings, and can be related to the viscosity, which con-
trols the rate of transport. Second, MgO is a prototype oxide
and a simple system with a wide stability field: understand-
ing the physics of this liquid is expected to lend considerable
insight into the behavior of other oxide and silicate liquids.
Third, relevant experimental studies are still lacking so the
computational approach will help better characterize the liq-
uid state thermodynamic and elastic properties at high pres-
sure.

Molecular dynamics �MD� simulations based on semi-
empirical or ab initio models2–9 were previously employed
extensively to investigate both crystalline and liquid phases
of the mantle materials. First-principles molecular dy-
namics �FPMD� simulations have just begun to appear for
the majority of Earth minerals including MgO �Ref. 10� and
MgSiO3 �Ref. 11�. Quantitative predictions are now feasible
because the FPMD simulations involving several tens to a
few hundreds of atoms for durations of several picoseconds
can be performed with moderate computing resources. While
melting of MgO was the focus of a recent first-principles
study,10 the structural, dynamic, and electronic properties of

the liquid state are yet to be studied. The FPMD approach
can be considered as an attractive complement to experiment
because experimental measurements, particularly at extreme
pressure-temperature conditions, are difficult to conduct. For
instance, the only experimental data relevant to the high-
pressure liquid phase are a study of melting of MgO up to
32 GPa �Ref. 12�.

In this paper, we report a detailed FPMD investigation of
the liquid state of MgO as a function of pressure and tem-
perature. We calculate and analyze the structural, dynamical,
and electronic properties. The organization of the paper is as
follows: Sec. II presents the FPMD technique used and other
computational details. Section III presents the calculated re-
sults with discussion of the equation of state, thermodynamic
properties, geometric and electronic structures, and dynami-
cal properties. Section IV draws some conclusions.

II. METHODOLOGY

The computations have been performed using the first-
principles molecular dynamics method. The key difference
between FPMD and traditional molecular dynamics simula-
tions is that the interatomic forces in FPMD are calculated
using density-functional theory13 within the local density ap-
proximation �LDA�14 and plane-wave pseudopotental theory.
Once the electronic structure of a given atomic system is
determined, the required interatomic forces are computed
from the Hellmann–Feynman theorem. One thus performs
Born–Oppenheimer molecular dynamics simulations, i.e., the
interatomic forces are computed at each time step of the
simulation from a fully self-consistent solution of the elec-
tronic structure problem.15 We have found that the electronic
structure of the liquid, which is described in detail below, is
not that of an insulator. We have therefore used the finite
temperature formulation of density-functional theory.16 We
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have used ultrasoft Mg �with the core radius of 1.06 Å and
the 3s2 electronic configuration� and O �with the core radius
of 0.8 Å and the 2s22p4 electronic configuration� pseudopo-
tentials and the VASP parallel code.16 We have used a plane-
wave cutoff of 400 eV and gamma point sampling17 for both
the solid and liquid phases. The Pulay correction, which var-
ies with compression from 2.3 to 4.2 GPa over the volume
range considered in this study, has been added to the calcu-
lated total pressure.18 The effect of the generalized gradient
corrections �GGA� �Ref. 19� is shown to systematically over-
estimate the volume by about 2%, compared to the LDA
result throughout the pressure range considered �see Fig. 1,
inset�. The calculated equation of state for the static lattice
with LDA compares extremely well with experimental
data20–22 over a wide range of pressure since the zero-point
and room-temperature contributions would increase the vol-
ume by about 2% �Ref. 23�. The predicted differences be-
tween LDA and GGA volumes are consistent with previous
theoretical calculations that used essentially the identical
electronic structure method,10 which also showed that the
LDA melting temperature of MgO at zero pressure agrees
much better with the experimental value than the GGA melt-
ing temperature.12

Our FPMD approach uses the canonical �NVT� ensemble
in which the number of atoms in the periodically repeated
unit cell �N�, the volume �V�, and the temperature �T� are
fixed. Temperature is controlled using an extended Lagrang-
ian formulation in which a degree of freedom is included to
represent a reservoir �thermostat�.24 The Lagrangian is

L =
1

2�
i

mi�vi�2 − V�r�i� +
1

2
Qṡ2 − �f + 1�kBT0 ln s , �1�

where s is the new dynamical variable and Q is the associ-
ated mass parameter. T0 is the externally set temperature and
f is the number of degrees of freedom in the system. To
speed convergence, Q is chosen so that the period of oscil-
lation of the temperature �or s� is similar to the mean period
of atomic vibrations. Our NVT ensemble consists of 64 at-
oms in a cubic supercell. The crystalline structure is first
melted and equilibrated at 10 000 K for a period of 5 ps. We
then quench the system from 10 000 K to a desired lower
temperature of 7000 K over a time interval of 2 ps. At this
temperature, we first thermalize the system for 1 ps and col-
lect data over another 4 ps. The same procedure is repeated
for subsequent lower temperatures. At each temperature, we
confirm that the system is in the liquid state by analysis of
the radial distribution function and the mean-square displace-
ment �MSD� as a function of time. Figure 2 shows that the
running time average of the total pressure �with Pulay cor-
rection included� for the liquid phase at 3000 K converges
very well over the period of 5 ps. Note that a time step of
1 fs is used. Microcanonical simulations show that the sys-
tematic drift in the total energy is less than 0.0002 and
0.0005 eV/MgO over the period of 5 ps at 3000 and
10 000 K, respectively. Uncertainties in the energy and pres-
sure were computed by the blocking method.25 The conver-
gence of the time-averaged properties has been confirmed by
extending the run duration up to 10 ps. Simulations with a
larger system of 216 atoms also did not produce significantly
different results.

We have performed FPMD simulations of the liquid state
at ten volumes V /V0=0.982, 0.931, 0.858, 0.793, 0.752,
0.681, 0.641, 0.584, 0.522, and 0.465, where V0=27.40 Å3 is
the zero pressure volume at 3000 K �see Sec. III B�. The
corresponding GGA value of V0 is 28.27 Å3, which is over-
estimated relative to the LDA volume as in the case of the
static lattice. Computations are performed along six iso-

FIG. 1. �Color� Equation of state of liquid MgO at 3000 �dia-
monds�, 4000 �squares�, 5000 �circles�, 6000 �triangles�, 7000 �as-
terisks�, and 10 000 K �crosses�. The uncertainties are within the
size of the symbols used to represent the data. The FPMD results
are fit to the Mie-Grüneisen equation of state �lines, Eq. �3�� with
the parameter of the reference isotherm at 3000 K as given in the
text, and the thermal pressure described by: PTH�V ,T�=A�V� /V�T
−T0� with A�V� /6K=0.93–1.25�V−V0� /V0. The inset shows the
equation of state for the static lattice �LDA and GGA results repre-
sented by the solid and dashed lines, respectively�, compared with
the room-temperature experimental data �Refs. 20–22�.

FIG. 2. �Color� Pressure as a function of time over 5 ps period
of simulation. Also shown are the running time average, uncertain-
ties, and the averaged value taken over the time period of last 4 ps.
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therms: 3000, 4000, 5000, 6000, 7000, and 10 000 K, that
are expected to encompass the melting transition over the
pressure range investigated. For comparison, experimental
determinations of the zero pressure melting temperature are
3040±100 K �Ref. 12� and 3250±20 K �Ref. 26�. Computa-
tions based on density-functional theory in the local density
approximation find that the melting temperature increases
from 3070±50 K at zero pressure to 8144±40 K at 136 GPa
�Ref. 10�. Extrapolation of these theoretical results with the
Simon equation27 yields 10 000 K at 220 GPa. We pay par-
ticular attention to the variation of liquid state properties
along the melting curve computed in Ref. 10 since the elec-
tronic structure methods used in that study are essentially
identical to ours. We note that an extrapolation of the melting
temperature based on experimental measurements12 to a
maximum pressure of 30 GPa, which yield a much lower
melting temperature in the Mbar range, has recently been
questioned.8 For comparison, we have also performed FPMD
simulations of the crystalline phase along the 3000 K iso-
therm �Fig. 1�.

III. RESULTS AND DISCUSSION

A. Structural properties

The radial distribution function �RDF�, g�r�, is computed
to examine the structural properties of the simulated liquid
system.28,29 The RDF is the probability of finding another
atom at a distance r from a specified atom. Taking advantage
of the periodicity of the supercell, one can extend the system
so that it is possible to calculate the RDF at distances greater
than the simulation cell size. We have also computed the
partial radial distribution functions gMg-O�r�, gMg-Mg�r�, and
gO-O�r�. Figure 3 shows the partial RDF at three different
compression and temperature conditions along the LDA
melting curve. The RDF shows large fluctuations at small
distances and approaches unity at larger distances indicating
the short-range order and long-range disorder characteristic
of the liquid state. The first peaks in the unlike and like
partial RDF decrease in amplitude and become broader with
compression, consistent with previous calculations.2,8 The
position of the first peak for gMg-O�r� systematically shifts to
a smaller distance as the compression increases �Fig. 3�a��.
The line shapes for gMg-Mg�r� and gO-O�r� are essentially
identical. We also note large differences between liquid and
solid pair-correlation functions: The solid phase shows sev-
eral well-defined peaks after the first peak �Fig. 3�.

We estimate the Mg-O coordination number in the liquid
by

C�� = 4��x��
0

rmin

r2g���r�dr . �2�

Here, � is the number density and x� is the concentration
�N� /N� of species �. Since we are interested only in the
nearest neighbors, the cutoff is taken to be the first minimum
�rmin� of the corresponding partial pair distribution function.
The calculated average Mg-O coordination number is 4.5–5
at zero pressure, which is smaller than the crystalline coor-
dination of 6. This agrees with previous calculations.2,8 The

coordination number increases with increasing pressure and
exceeds 7 at pressures above 150 GPa �Fig. 4�. A similar
trend was obtained previously,2 although in that study, the
coordination number remained close to 6 at the high pres-
sure. Our results do not predict any systematic dependence
of the coordination number on temperature at constant vol-
ume. A large pressure-induced increase in the coordination
number was also found in our simulations of MgSiO3
liquid.11

B. Equations of state

Our FPMD results �Fig. 1� are described with the Mie-
Grüneisen equation of state

FIG. 3. Radial distribution functions of liquid MgO: �a� Mg-O
and �b� Mg-Mg �which is very similar to O-O case� at three differ-
ent conditions: V /V0=0.982, T=3000 K �thick lines�, V /V0
=0.681, T=6000 K thin lines�, and V /V0=0.464, T=10 000 K
�dashed lines�, where V0=27.40 Å3. Also shown are the results for
solid MgO at V /V0=0.681 and 6000 K �thin gray lines�.
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P�V,T� = P�V,T0� + PTH�V,T� , �3�

where P�V ,T0� is the pressure on the reference isotherm, and
T=T0 and PTH�V ,T� are the thermal pressure. We find that
the thermal pressure is linear in temperature over the entire
range of volume and temperature studied �see Fig. 5� �Refs.
30 and 31�, including in the supercooled liquid regime that

lies below the LDA melting temperature at high pressure.
Analysis of the atomic structure also shows continuous
trends across the melting line �previous section�. The iso-
therms diverge on compression; that is, the thermal pressure
increases on compression. The reference isotherm, taken to
be T0=3000 K, is accurately described by the third-order
Birch–Murnaghan equation of state with zero pressure vol-
ume, bulk modulus, and first pressure derivative of the bulk
modulus: V0=27.40 �±0.25� Å3, K0=30.76 �±2.9� GPa, and
K0�=5.03 �±0.33�. For comparison, the equation of state pa-
rameters obtained from the potential-induced breathing �PIB�
model2 are V0=27.0 Å3, K0=59.2 GPa, and K0�=3.83.

The equation of state of the solid phase at 3000 K is also
shown in Fig. 1 for comparison. The difference in the zero
pressure volume of the solid and liquid phase at 3000 K is
5.79 Å3/MgO, which is comparable to the volume change
on melting of �4.6 to �6.2 Å3 from previous
calculations.2–5,10 With increasing compression, the volume
difference between the solid and liquid phase drops rapidly,
reaching 0.15 Å3 at 150 GPa, and it appears to asymptoti-
cally approach zero. A very similar trend was previously
predicted.2

We have also calculated the thermal Gruneisen parameter,
defined as �= �V /CV���PTH /�T�, where CV=�E /�T is the
heat capacity at constant volume. A linear equation is fit to
the calculated energy-temperature results at each volume to
derive CV. Both � and CV increase with increasing compres-
sion �Figs. 6�a� and 6�b��. The behavior of the liquid is in
marked contrast to the crystalline phase for which CV re-
mains nearly unchanged with compression and � decreases
with compression.23 At high pressure the heat capacity of the
liquid substantially exceeds the Dulong–Petit limit that is
closely obeyed by the crystalline phase. We attribute the
larger heat capacity of the liquid to the change in structure of
the liquid with increasing temperature. Whereas the mean
coordination number is insensitive to temperature at constant
volume, the range of coordination environments increases
with increasing temperature. We attribute the increase of �
with compression to the pressure-induced change in the
structure of the liquid: higher coordination numbers are ex-
pected to result in larger values of the Grüneisen parameter
according to the analysis of Ref. 32. Our recent study of
MgSiO3 liquid shows many similarities:11 the value of CV
also substantially exceeds the Dulong–Petit value, although
in the case of the silicate CV decreases slightly with compres-
sion. In the silicate, the Grüneisen parameter also increases
on compression, although much more rapidly than in the
case of MgO.

C. Dynamical properties

Diffusion is an important dynamical phenomenon for a
liquid phase. It can be characterized by calculating diffusion
coefficient33 as follows:

D = lim
t→�

	�r�t��2

6t

, �4�

where

FIG. 4. Mg-O coordination number �CN� of liquid MgO as a
function of volume at 3000 �diamonds�, 4000 �squares�, 5000
�circles�, 6000 �triangles�, 7000 �asterisks�, and 10 000 K �crosses�.
Also shown are values at 8000 �filled circles� and 9000 K �filled
squares� at some compressed volumes.

FIG. 5. The total pressure at six different volumes, V /V0
=0.982, 0.793, 0.681, 0.584, 0.522, and 0.464. Also shown are re-
sults �crosses� of a 216-atom simulation at V /V0=0.982, where
V0=27.40 Å3. The uncertainties are within the size of the symbols
used to represent the data.
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	�r�t��2
 =
1

N
�
i=1

N

�r�i�t + t0� − r�i�t0��2 �5�

is the mean-square displacement, and r�i�t0� and r�i�t+ t0� are
the positions of ith atom at the start and end of the time
interval t. The MSD for a given time t is then calculated by
averaging over time origins �t0� �Ref. 28�. In our calcula-
tions, we account for the translational symmetry of the sys-
tem so that the MSD value is not restricted by the size of the
supercell. The calculated MSD as a function of time at three
different conditions along the LDA melting curve is shown
in Fig. 7�a�. It is clear that the MSD is linear with time. The
calculated total self-diffusion coefficients are fit to the
Arrhenius relation �Fig. 7�b��,

D�P,T� = D0 exp�− �Ea + PVa�/RT� , �6�

with D0=200 m2/s, Ea=0.85 eV the activation energy, and
Va=1.3 Å3 the activation volume. The diffusion constant can

also be obtained for each atom type individually. The calcu-
lated values of the diffusion constant at different pressures
and temperatures for the O atoms are 10%–15% larger than
the total values whereas those for the Mg atoms are 8%–12%
smaller than the total value. The results show that tempera-
ture systematically enhances diffusion whereas pressure sys-
tematically suppresses it. The result of these competing ef-
fects is that the diffusion coefficient is nearly constant along
the LDA melting curve: D varies by only a factor of 2 along
the melting curve up to at least 200 GPa.

D. Electronic properties

The electronic density of states �DoS� is calculated for the
solid and liquid at three points along the LDA melting curve

FIG. 7. �Color� �a� Time dependence of the mean-square dis-
placement �MSD� in liquid MgO at three points along the LDA
melting curve. �b� The calculated diffusion coefficient as a function
of pressure and temperature, and the fit �lines� to the Arrhenius law.
The symbols have the same meanings as in Fig. 1. The thick solid
line represents the value along the LDA melting curve.

FIG. 6. Isochoric heat capacity, CV �a� and thermal Gruneisen
parameter, � of liquid MgO �b� as a function of volume. The gray
line represents the quasiharmonic lattice-dynamics result for the
solid phase at 3000 K from Ref. 23. The dashed line is Dulong–
Petit limit.
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�Fig. 8�. There is a clear minimum near the Fermi level but
no gap in the case of the liquid phase. With increasing pres-
sure, the density of states at the Fermi level decreases and the
valence O-2p band begins to split. With increasing tempera-
ture, the density of state at the Fermi level increases. The
competing influence of pressure and temperature leave the
density of states at the Fermi level nearly constant along the
LDA melting curve. These features are reminiscent of evo-
lution of the electronic structure of the crystalline phase in
which the gap increasingly opens on compression and the
valence band shows a similar splitting, with the important
difference that in the static crystal a well defined and large
gap is present over the entire range of the volume explored
here.34,35 The local density approximation is known to under-
estimate the band gap, although beyond the scope of this
study, it would be interesting to explore the influence of the
other forms of the exchange-correlation functional on the
predicted band closure.

In crystalline MgO, Mg atoms give up their valence elec-
trons, which along with those from O atoms are primarily
localized in the vicinity of O ions, thereby making the oxide
highly ionic in the nature.35,36 As a result, the electronic dis-
tribution shows nearly perfect spherical symmetry about
each O site. In the liquid phase, due to dynamic rearrange-
ment of atoms, the spherical charge-density distributions

are significantly perturbed �Fig. 9 �top��. The electron density
isosurfaces form interatomic bridges instead of forming iso-
lated spherical surfaces �Fig. 9 �bottom��. It is also clear that
the ionic nature of interatomic charge transfer remains to be
unaffected to a great extent.

IV. CONCLUSIONS

We have successfully applied the first-principle molecular
dynamics method within the local density and pseudo-
potential approximations to explore the structural, dynamic,
and electronic properties of liquid MgO, an important com-

FIG. 8. Electronic density of states of solid MgO �top� at
V /V0=0.681 for the static lattice, and from FPDM simulations at
3000 and 6000 K, and of liquid MgO �bottom� at three different
V -T conditions along the LDA melting curve. The short vertical
arrows indicate the positions of Fermi energy.

FIG. 9. Isosurfaces at 0.05 �top� and 0.15 Å−3 �bottom� of the
electron density of liquid MgO at V /V0=0.982 and T0=3000 K.
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ponent of Earth’s mantle, over a wide range of pressure
�0 to �240 GPa� and temperature �3000–10 000 K�. The
calculated energy and thermal pressure are shown to be lin-
ear in temperature. The pressure-volume-temperature rela-
tionships are well represented with the standard Mie-
Grüneisen equation of state. The calculated heat capacity and
Grüneisen parameter are shown to increase with compres-
sion. The liquid structure is analyzed by calculating the pair-
correlation functions and Mg-O coordination number, which
vary substantially with compression. For instance, the Mg-O
coordination number increases from about 5 at zero pressure
to above 7 at high pressure. Finally, our results show that the

electronic structure of the liquid state shows some significant
features, particularly, band-gap closure and nonspherical va-
lence charge-density distribution about O sites. The liquid
state differs substantially from the crystalline state in terms
of geometric and electronic structure.
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