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S U M M A R Y
We develop a self-consistent thermodynamic description of silicate liquids applicable across
the entire mantle pressure and temperature regime. The description combines the finite strain
free energy expansion with an account of the temperature dependence of liquid properties
into a single fundamental relation, while honouring the expected limiting behaviour at large
volume and high temperature. We find that the fundamental relation describes well previous
experimental and theoretical results for liquid MgO, MgSiO3, Mg2SiO4 and SiO2. We apply the
description to calculate melting curves and Hugoniots of solid and liquid MgO and MgSiO3.
For periclase, we find a melting temperature at the core–mantle boundary (CMB) of 7810 ±
160 K, with the solid Hugoniot crossing the melting curve at 375 GPa, 9580 K, and the liquid
Hugoniot crossing at 470 GPa, 9870 K. For complete shock melting of periclase we predict a
density increase of 0.14 g cm−3 and a sound speed decrease of 2.2 km s−1. For perovskite, we
find a melting temperature at the CMB of 5100 ± 100 K with the perovskite section of the
enstatite Hugoniot crossing the melting curve at 150 GPa, 5190 K, and the liquid Hugoniot
crossing at 220 GPa, 5520 K. For complete shock melting of perovskite along the enstatite
principal Hugoniot, we predict a density increase of 0.10 g cm−3, with a sound speed decrease
of 2.6 km s−1.

Key words: Mantle processes; Equations of state; High-pressure behaviour; Phase transi-
tions; Planetary interiors; Physics of magma and magma bodies.

1 I N T RO D U C T I O N

Liquid state thermodynamics have long played a central role in the
study of mantle petrology and geochemistry. The chemical history
of a terrestrial planet is intimately tied to its thermal history through
fractionation processes associated with cooling of a magma ocean
and melting of a solid mantle (Ohtani & Sawamoto 1987; Ohtani
1988; Miller et al. 1991b; Agee & Walker 1993; Solomatov &
Stevenson 1993). Furthermore, seismic observations suggest the
presence of partial melt atop the 410 km discontinuity (Revenaugh
& Sipkin 1994; Song et al. 1994) and at the base of the mantle
(Garnero & Helmberger 1995; Williams & Garnero 1996;
Revenaugh & Meyer 1997). Accurate estimates of the solidus tem-
perature of the mantle at those depths can thus provide key con-
straints on the composition and geothermal profile of the mantle.
Decompression melting close to the free surface is responsible for
the mafic and ultramafic igneous rocks that, together with man-
tle xenoliths, provide our most direct chemical observations of the
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Earth’s deep interior. Accurate estimates of the equations of state
and phase equilibria of melts constrain the pressures at which melt-
ing primarily occurs (McKenzie & Bickle 1988; Asimow et al.
1995) and the depth limits from which melts can reach the surface
(Stolper et al. 1981; Agee & Walker 1988, 1993; Rigden et al. 1989;
De Koker et al. 2008).

While the equations of state of many solid mantle phases have
been measured to lower mantle pressures (Stixrude & Lithgow-
Bertelloni 2005, and references therein), the experimental study of
silicate liquids remains challenging, even at low pressures (Lange
& Carmichael 1987; Rigden et al. 1989; Lange & Navrotsky 1992;
Shen & Lazor 1995; Ai & Lange 2008). First principles molecu-
lar dynamics (FPMD) studies (Trave et al. 2002; Laudernet et al.
2004; Stixrude & Karki 2005; Karki et al. 2006, 2007; Wan et al.
2007; De Koker et al. 2008; Sun 2008) have recently focused on
silicate liquids at pressures and temperatures relevant to the full
extent of the Earth’s mantle, and revealed rich structural and ther-
modynamic compressional behaviour. Thermodynamic properties
were found to be significantly different from those of solids: the
isochoric heat capacity (C V ) is generally larger than the high tem-
perature limit seen in solids (3Nk B) and varies significantly on com-
pression; the Grüneisen parameter (γ ) increases with compression,
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whereas it always decreases during isostructural compression of
solids.

In this study, we develop a self-consistent thermodynamic de-
scription of liquid state thermodynamics relevant to silicate liquids
at pressures and temperatures characteristic of mantles and magma
oceans associated with terrestrial planets. We apply our thermody-
namic formalism to the description of FPMD results, using these
as a guide to the functional forms and the relevant physics. In ad-
dition, we derive an anharmonic fundamental relation for solids
at high temperature (i.e. in the classical limit), which we combine
with the liquid descriptions to obtain melting curves and theoretical
Hugoniot loci for MgO periclase and MgSiO3 perovskite.

2 P R E V I O U S W O R K

PVT equations of state were first described for the ideal gas (Boyle
1662; Clapeyron 1834). This equation of state treats particles as
independent, and is thus unable to describe the liquid–vapour tran-
sition. At high pressures, this relation is commonly applied to stellar
interiors (Chandrasekhar 1939; Phillips 1994), but it does not cap-
ture the comparative incompressibility of terrestrial materials such
as silicate liquids at the conditions characteristic of planetary interi-
ors. Subsequent Van der Waals (van der Waals 1873) and Redlich–
Kwong (Redlich & Kwong 1949) equations were formulated to
capture critical behaviour and the liquid–vapour transition, but are
only valid close to ambient conditions, predicting very incompress-
ible behaviour at higher pressure. Modified Redlich–Kwong forms
(Halbach & Chatterjee 1982; Holland & Powell 1991; Brodholt &
Wood 1993) address this problem, but require many free parameters
to constrain. Similarly, other empirical and semi-empirical forms,
developed primarily for interpolation of large data sets of liquid and
gas thermodynamic properties (Belonoshko & Saxena 1992; Pitzer
& Sterner 1994; Span & Wagner 1997), also require large numbers
of free parameters with consequent poor extrapolation and unphysi-
cal oscillations in thermodynamic properties. None of these existing
forms are thus able to capture the essentials of silicate liquids over
a geophysically interesting pressure range with sufficiently few free
parameters.

The Thomas–Fermi model (Slater & Krutter 1935; Marshak &
Bethe 1940; Feynman et al. 1949) gives an approximate description
of the equation of state at very high pressures, based on a simplified
model of the electronic charge density. It has been successfully
applied to stellar and gas giant interiors, but is too approximate
to offer insight into the behaviour of materials within the Earth’s
interior (Birch 1952; Knopoff & Uffen 1954). In high pressure
hydrodynamic simulations these problems are remedied to some
extent by the quotidian equation of state (More et al. 1988; Young
& Corey 1995), which, however, makes a number of simplifying
assumptions, in particular the Dulong–Petit law and the Lindemann
law, that have been shown not to hold for silicate melts (Stebbins
et al. 1984; Wolf & Jeanloz 1984; Stixrude & Karki 2005; Karki
et al. 2007; De Koker et al. 2008).

Experimental studies of the equation of state of silicate liquids
have been almost entirely limited to ambient and uppermost man-
tle pressures (Bottinga 1985; Lange & Carmichael 1987; Agee &
Walker 1988, 1993; Courtial et al. 1997; Lange 1997; Ai & Lange
2008), with only a few shock loading and multi-anvil measurements
giving insight into the equation of state at pressures characteristic
of the lower mantle (Rigden et al. 1984, 1989; Miller et al. 1991a;
Chen et al. 2002; Suzuki & Ohtani 2003; Matsukage et al. 2005;
Sakamaki et al. 2006; Mosenfelder et al. 2007, 2009). These re-

sults have shown that simple polynomial descriptions of P(V , T )
or V (P , T ) (Ghiorso & Sack 1995) are inadequate at high pressure
(Ghiorso 2004). The Birch–Murnaghan equation of state (Birch
1952, 1978) has been widely used (Rigden et al. 1989; Ghiorso et al.
2002; Lange 2003; Suzuki & Ohtani 2003; Matsukage et al. 2005;
Sakamaki et al. 2006; Lange 2007), but more high pressure data
are needed to test its validity. While the Birch–Murnaghan equa-
tion of state and similar forms, such as the Universal equation of
state, have been widely and successfully tested against measure-
ments on solids (Jeanloz 1989; Anderson 1995; Cohen et al. 2000),
this has not been done for silicate liquids. Indeed, the suitability of
the Birch–Murnaghan form has been questioned on a theoretical
basis (Hofmeister 1993; Ghiorso 2004).

A key issue which has not been carefully addressed, is the thermal
contribution to the liquid equation of state. In describing the temper-
ature and pressure dependence of a material simultaneously, great
care must be taken to preserve thermodynamic self-consistency
(Dorogokupets 2000; Ghiorso et al. 2002; Pavese 2002; Ghiorso
2004; Ai & Lange 2008). The main goal of the work presented here
is to derive a thermodynamic treatment of silicate liquids which self-
consistently describes their thermal and compressional behaviour.

3 F U N DA M E N TA L T H E R M O DY NA M I C
R E L AT I O N S

The basis of our approach is an expression for the Helmholtz free
energy

F = F(V, T ), (1)

as a function of its natural variables, volume (V ) and temperature
(T). We follow Callen (1985) in referring to F(V , T ) as a ‘funda-
mental thermodynamic relation’, because all thermodynamic infor-
mation may be self-consistently obtained from it by differentiation,
reduction of derivatives and Legendre transformations,

P = −
(

∂ F

∂V

)
T

, (2)

S = −
(

∂ F

∂T

)
V

, (3)

KT = V

(
∂2 F

∂V 2

)
T

, (4)

αKT = −
(

∂2 F

∂V ∂T

)
, (5)

CV = −T

(
∂2 F

∂T 2

)
V

, (6)

γ

V
= αKT

CV
, (7)

KS

KT
= CP

CV
= (1 + T αγ ) , (8)

G = F − V

(
∂ F

∂V

)
T

= F + PV, (9)

E = F − T

(
∂ F

∂T

)
V

= F + T S, (10)
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H = F − T

(
∂ F

∂T

)
V

− V

(
∂ F

∂V

)
T

= F + T S + PV . (11)

By deriving all the equilibrium thermodynamics from a single
function, self-consistency among properties is guaranteed through
Maxwell relations.

3.1 Liquids

The fundamental thermodynamic relation of the liquid phase is

F(V, T ) = Fig(V, T ) + Fxs(V, T ) + Fel(V, T ), (12)

where we have assumed the three contributions to F to be separable
(McQuarrie 1984). These contributions are: an ideal gas term (F ig)
arising from momenta of the atoms, an excess term (F xs) which
accounts for interatomic interaction, and an electronic term (F el)
describing the free energy due to thermal excitation of electrons.

3.1.1 Atomic momentum contribution

The atomic momentum contribution (ideal gas term) is given by an
ideal mixture of the ideal gas free energy (F igM ) for the respective
types of atoms (M) that make up the liquid (Lupis 1983; McQuarrie
1984),

Fig =
∑

M

NM FigM + kB NAT
∑

M

NM ln X M , (13)

FigM = −kB NAT

[
ln VM + 3

2
ln T + 3

2
ln

(
mM kB

2πh̄2

)
+ 1

]
, (14)

where

X M = NM∑
M NM

, (15)

N A is Avogadro’s number, k B is the Bolzmann constant, m M and
V M is, respectively, the mass and unit volume of one particle of
type M and N M is the number of atoms of each type per formula
unit.

3.1.2 Excess contribution

Let f = f (V ) and θ = θ (T ) such that f (V 0) = 0 and θ (T 0) = 0,
with V 0 and T 0 the reference volume and temperature. Expand F xs

in f and θ about the origin in a 2-D Taylor series. From the resulting
excess free energy

Fxs(V, T ) =
O f∑
i=0

′ Oθ∑
j=0

′
ai j

i! j!
f iθ j , (16)

follows

Pxs(V, T ) = − ∂ f

∂V

O f∑
i=0

′ Oθ∑
j=0

′
iai j

i! j!
f i−1θ j , (17)

Sxs(V, T ) = − ∂θ

∂T

O f∑
i=0

′ Oθ∑
j=0

′
jai j

i! j!
f iθ j−1, (18)

Exs(V, T ) =
O f∑
i=0

′ Oθ∑
j=0

′
ai j

i! j!
f iθ j−1

(
θ − jT

∂θ

∂T

)
, (19)

KT xs(V, T ) = V

O f∑
i=0

′ Oθ∑
j=0

′
iai j

i! j!
θ j

×
[(

∂2 f

∂V 2

)
f i−1 +

(
∂ f

∂V

)2

(i − 1) f i−2

]
, (20)

(αKT )xs(V, T ) = −
(

∂ f

∂V

)(
∂θ

∂T

) O f∑
i=0

′ Oθ∑
j=0

′
i jai j

i! j!
f i−1θ j−1, (21)

CV xs(V, T ) = −T

O f∑
i=0

′ Oθ∑
j=0

′
jai j

i! j!
f i

×
[(

∂2θ

∂T 2

)
θ j−1 +

(
∂θ

∂T

)2

( j − 1)θ j−2

]
, (22)

where we denote the respective orders of expansion in f and θ as
O f and Oθ , and primes on sums indicate that i + j < O f + Oθ

must be satisfied.
We follow Birch (1952, 1978) and choose

f = 1

n

[(
V0

V

) n
3

− 1

]
, (23)

which reduces to the Eulerian finite strain for n = 2. For T = T 0,
eq. (17) reduces to the Birch–Murnaghan equation of state.

By also describing the thermal variable θ as

θ =
[(

T

T0

)m

− 1

]
, (24)

the internal energy (eq. 19) becomes

Exs(V, T ) =
O f∑
i=0

Oθ∑
j=0

ai j

i! j!n

[(
V0

V

) n
3

− 1

]i [(
T

T0

)m

− 1

] j−1

×
[(

T

T0

)m

(1 − jm) − 1

]
, (25)

which, after applying the binomial theorem and rearranging terms
can be expressed along a given isochore V as a polynomial function
of T m

Exs(V, T ) =
Oθ∑
j=0

b j (V )

(
T

T0

) jm

, (26)

where

b j (V ) =
O f∑
i=0

∞∑
k=1

(−1)kai( j+k−1)
( jm − 1)

(n)(i)!( j)!(k − 1)!

×
[(

V0

V

) n
3

− 1

]i

.
(27)

3.1.3 Thermal electronic contribution

Our simulations, as well as shock wave experiments (Hicks et al.
2006), show significant electronic contributions to the equation of
state. However, the form of the electronic terms differ from those
familiar in the case of solid metals. Whereas in metals, the electronic
heat capacity increases linearly in temperature from zero Kelvin, in
silicate liquids the electronic contributions become significant only
above a large, finite temperature T el. The value of T el appears to be
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related to melting, although, for generality, we will not assume that
T el is identical to the melting temperature here. We therefore adopt
the form for the electronic heat capacity

CV el(V, T ) =
{

ζ (V ) [T − Tel(V )] T ≥ Tel

0 T < Tel
, (28)

where ζ is the thermo-electronic heat capacity coefficient and de-
pends only on volume.

With electronic entropy (S el) and free energy (F el) zero at T ≤
T el, integration yields

Sel = ζ

[
T − Tel − Tel ln

T

Tel

]
, (29)

Fel = −ζ

[
1

2

(
T 2 − T 2

el

) − T Tel ln
T

Tel

]
, (30)

from which the electronic energy (E el) and pressure (P el) follow as

Eel = 1

2
ζ [T − Tel]

2 , (31)

Pel = ∂ζ

∂V

[
1

2

(
T 2 − T 2

el

) − T Tel ln
T

Tel

]

+ ζ
∂Tel

∂V

[
(T − Tel) − T ln

T

Tel

]
.

(32)

We will describe the volume dependence of ζ and T el with a
power-law relation (Bukowinski 1977)

ζ = ζ0

(
V

V0

)ξ

, (33)

Tel = Tel0

(
V

V0

)η

. (34)

3.1.4 Limiting behaviour

The liquid relation is designed such that the infinite temperature
and volume limits capture the expected material properties at those
conditions, given suitable values of n and m. Limiting values of
the excess properties, derived from eqs (17)–(22) are summarized
in Table 1. Total values follow from addition of ideal gas, excess
and thermo-electronic terms, with the exception of the Grüneisen
parameter which is not additive.

Furthermore, the non-electronic portion of the liquid relation
captures the physics of the liquid–vapour transition at moderately
high volumes, although the power-law parametrization of volume
dependence in the thermo-electronic contribution does not capture
the limiting behaviour of F el as V → ∞.

Table 1. Theoretical behaviour of excess thermodynamic properties
in the limit of an ideal gas, and values of n and m such that these
limits hold. C(T) denotes a limiting value which depends only on T .

limV →∞ n limT →∞ m

P xs 0 > −3 ∞ >0
Sxs C(T) >0 0 < 1/Oθ

E xs C(T) >0 ∞ >0
K T xs 0 > −3/2 ∞ >0
αK T xs 0 > −3 0 < 1/Oθ

C V xs C(T) >0 0 < 1/Oθ

3.2 Solids at high temperature

We follow previous studies (Stixrude & Bukowinski 1990a;
Stixrude & Lithgow-Bertelloni 2005) and describe the solid by

F(V, T ) = F(V0, T0) + Fcmp(V, T0) + Fth(V, T ), (35)

with the assumption that the various contributions to F are sepa-
rable. F(V 0, T 0) is the free energy at reference volume (V 0) and
temperature (T 0), F cmp(V , T 0) and F th(V , T ) are the compres-
sional and thermal contributions to the free energy, respectively.
The contribution due to atomic momentum (F ig) is negligible, and
the thermo-electronic contribution (F el) is negligible for iron-free
oxides and silicate minerals.

F cmp is expressed as an expansion in terms of the Eulerian finite
strain (f ) (Birch 1952, 1978)

Fcmp = 9KT 0V0

[
1

2
f 2 + 1

6
a3 f 3 + 1

24
a4 f 4 + · · ·

]
, (36)

a3 = 3
(
K ′

T 0 − 4
)
, (37)

a4 = 9
[
KT 0 K ′′

T 0 + K ′
T 0

(
K ′

T 0 − 7
)] + 143, (38)

f = 1

2

[(
V0

V

) 2
3

− 1

]
. (39)

The familiar form of the Birch–Murnaghan equation of state follows
as the isothermal volume derivative of eq. (36). V 0, K T 0, K ′

T 0 and
K ′′

T 0 are the volume, bulk modulus, and its first and second pressure
derivatives at zero pressure and a reference temperature (T 0).

F th is obtained by integration of the entropy

Fth = −
∫ T

T0

S(V, T ′) dT ′, (40)

with the entropy in turn following from integration of the relevant
second-order properties

S(V, T ) = S(V0, T0) +
∫ V

V0

CV γ (V ′, T0)

V
dV ′ +

∫ T

T0

CV (V, T ′)
T ′ dT ′.

(41)

C V is taken as constant, although its value is not constrained to
allow for anharmonicity, so that F th now follows as

Fth(V, T ) = −S0 (T − T0) − CV

[
T ln

T

T0
− (T − T0)

]

− CV (T − T0)
∫ V

V0

γ (V ′, T0)

V ′ dV ′.
(42)

Applying eqs (2), (3) and (10) to eq. (35), we have

E(V, T ) = E0 + 9KT 0V0

[
1

2
f 2 + 1

6
a3 f 3 + a4

24
f 4 + · · ·

]

+ CV [T − T0] + CV [T − T0]
∫ V

V0

γ (V ′, T0)

V ′ dV ′,
(43)

P(V, T ) = 3KT 0(1 + 2 f )
5
2

[
f + a3

2
f 2 + a4

6
f 3 + · · ·

]
+ CV [T − T0]

γ (V, T0)

V
. (44)

Through the Maxwell relation

1

T

(
∂CV

∂V

)
T

= 1

V

(
∂CV γ

∂T

)
V

, (45)
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C V independent of V and T implies that γ is independent of T . We
consider two possible forms to describe γ (V ). Our preferred form
is that of Stixrude & Lithgow-Bertelloni (2005)

γ = γ ′
0 + (

2γ ′
0 + γ ′

1

)
f + 2γ ′

1 f 2

6
(
1 + γ ′

0 f + γ ′
1 f 2

) , (46)

with

γ0 = 1

6
γ ′

0, (47)

and

q0 = γ ′
1 + 2γ ′

0 − 6γ ′2
0

−3γ ′
0

, (48)

which they showed to be superior to the second form we consider,
the power law form extensively applied in the literature

γ = γ0

(
V

V0

)q0

, (49)

where γ 0 and q0 are constants.

4 F I R S T P R I N C I P L E S M O L E C U L A R
DY NA M I C S S I M U L AT I O N S

To test the solid and liquid fundamental relations, we use FPMD
simulation results for MgO periclase, MgSiO3 perovskite (Stixrude
& Karki 2005), as well as liquid MgO (Karki et al. 2006), Mg-
SiO3 (Stixrude & Karki 2005), Mg2SiO4 (De Koker et al. 2008)
and SiO2 (Karki et al. 2007). With the application to shock melt-
ing in mind, we supplement the MgSiO3 and MgO liquid data of
Stixrude & Karki (2005) and Karki et al. (2006) at high pressures.
These systems are melted at higher temperatures (8000 and 15 000
K, respectively), and then cooled isochorically as in previous cal-
culations. Mg2SiO4 and MgSiO3 liquid simulations at 2000 K are
also added to improve constraints at ambient pressure. We there-
fore have simulations spanning a range of compression of V /V X =
0.35– 1.20, where V X is an experimental estimate of the liquid
volume at ambient conditions.

Our computational technique is described in detail in our previ-
ous work, and we only highlight a few salient points here. FPMD
simulations based on Density Functional Theory (DFT, Hohenberg
& Kohn 1964; Kohn & Sham 1965) are performed as implemented
in the VASP plane-wave code (Kresse & Furthmüller 1996), using
pseudo-potentials (Kresse & Hafner 1994), the local density ap-
proximation (LDA, Ceperley & Alder 1980) and a single k-point at
the Brillouin zone centre (
). Systems consist of 64 (MgO liquid
and periclase), 112 (Mg2SiO4 liquid), 80 (MgSiO3 liquid and per-
ovskite) and 72 atoms (SiO2 liquid) in a periodic simulation cell.
The cell is cubic for liquid simulations, with solid cell dimensions
adjusted to obtain a hydrostatic stress tensor. Simulations are per-
formed in the canonical ensemble (constant NVT) through the use
of a thermostat (Nosé 1984). We use a time increment of 1.0 fs and
run durations of at least 3000 fs, sufficient for converged values
of the pressure and internal energy, the mean values of which are
obtained using the blocking method (Flyvberg & Petersen 1989).

Computational efficiency is significantly increased by the use of
a small basis set, for which the energy is converged but a correction
to the pressure (P Pulay) is required (Gomes Dacosta et al. 1986;
Francis & Payne 1990; De Koker et al. 2008). A further correction
P emp for the overbinding of the LDA is applied to the pressure
(Karki et al. 2001; Oganov et al. 2001), for which thermodynamic
self-consistency requires an adjustment to the energy of

Eemp(V ) = −Pemp[V − V0], (50)

where V 0 is the zero-pressure volume and we have defined
E emp(V 0) = 0.

Because atomic motion in molecular dynamics simulations is en-
tirely classical at all temperatures (Allen & Tildesley 1987; Frenkel
& Smit 1996), energy values do not capture the quantum effects
characteristic of atomic vibrations at low temperature in solids, and
are thus only physical in the limit of high temperatures. Quantum
corrections can be applied (Wigner 1932; Kirkwood 1933; Matsui
1989), but our interest here is in solids close to melting where such
corrections will be negligible.

The electronic entropy is obtained from the electronic eigenvalues
(ε i ) as (Mermin 1965; Kresse & Furthmüller 1996)

SDFT
el = −2kB

∑
i

[φ(εi ) ln φ(εi ) + [1 − φ(εi )] ln [1 − φ(εi )]] , (51)

where φ(ε i ) is the Fermi–Dirac distribution function

φ(εi ) = 1

eβ(εi −ε f ) + 1
, (52)

with β = 1/kBT . The Fermi energy (ε f ) is determined by the number
criterion.

5 D E T E R M I NAT I O N O F PA R A M E T E R S

To constrain the liquid relation, electronic entropy is fit to eq. (29),
with the subsequent E el and P el, together with the relevant E ig and
P ig values, removed from the total E and P values to obtain E xs and
P xs. That is

Exs = EMD − Eel − Eig, (53)

Pxs = PMD − Pel − Pig. (54)

These excess values are then fit to eqs (19) and (17) in a single
least squares inversion to constrain coefficients ai j , which in turn
are related to physical properties at the reference pressure (P0)
and temperature (T 0) (eqs A5–A19). The free parameters which
describe the solid—E 0, C V , γ 0, q 0, K 0, K ′

0—are similarly deter-
mined by inversion of the total E and P from FPMD to eqs (43) and
(44).

To complete the constraints on the fundamental relation, either
the free energy or the entropy must be known at a single reference
point, which fixes the value of a00 (eq. 16). This remaining parameter
affects only the absolute values of the thermodynamic potentials,
and thus phase equilibria, such as the melting curve, but not other
thermodynamic properties, which do not depend on the value of
a00 (eqs 17–22). As absolute values of the free energy or entropy
are very costly to compute via molecular dynamics simulations,
our approach in this study is to obtain the entropy of the liquid by
matching Gibbs free energies at one point on the melting curve (P m ,
T m)

H l
MD(Pm, Tm) − Tm Sl

0(Pm, Tm) = H s
MD(Pm, Tm) − Tm Ss

X (Pm, Tm),

(55)

where superscripts s and l refer to solid and liquid phases, respec-
tively, and Ss

X is the entropy of the solid computed via the experimen-
tally based thermodynamic model of Stixrude & Lithgow-Bertelloni
(2005). Our approach is in principle equivalent to integrating the
Claussius–Clapeyron equation from P m , T m (Stixrude & Karki
2005; De Koker et al. 2008), but is numerically more precise, as the
integration is performed analytically. The reference melting point
for MgO periclase is taken to be T m = 3070 K, P m = 0 GPa (Riley
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1966; Dubrovinsky & Saxena 1997; Alfe 2005). It has been sug-
gested that B4, rather than B1 may be the liquidus phase of MgO
at pressures less than 10 GPa (Aguado & Madden 2005), in which
case the proper reference temperature would be that of metastable
B1 melting at a temperature somewhat less than 3070 K. However,
the difference is likely to be small (<200 K, Aguado & Madden
2005). We follow Stixrude & Karki (2005) and use T m = 2900 K,
P m = 25 GPa as reference melting temperature for MgSiO3 per-
ovskite. Note that because the solid equation of state that we have
used here is only valid above the Debye temperature, we have cho-
sen in all cases values of the reference temperature that exceed the
Debye temperature.

The reference internal energy (E r) of polymorphs stable at ambi-
ent pressure and temperature, needed for calculating the Hugoniot
are found as the sum of the static (E st), zero point (E zp) and thermal
(E th) contributions to the internal energy

Er(Vr, 300 K) = Est(Vr) + Ezp(Vr, 0 K) + Eth(Vr, 300 K), (56)

where V r is the experimental volume at 0 GPa, 300 K. We find E st

via fully converged static DFT calculations of MgSiO3 Pbca or-
thoenstatite and MgO periclase. The remaining terms are computed
via the experimentally based thermodynamic model of Stixrude &
Lithgow-Bertelloni (2005) with the explicit expression for E zp in
the Debye–Gruneisen approximation given, for example, in Panero
& Stixrude (2004).

Figure 1. (a) Internal energy (E), (a, inset) thermal electronic entropy (Sel), (b) Pressure (P), (c) thermal pressure coefficient (αK T ), (d) isochoric heat capacity
(C V ) and (e) Grüneisen parameter (γ ) of MgO liquid. Coloured circles in (a) and (b) show values from FPMD simulations at 3000 K (blue), 4000 K (cyan),
5000 K (green), 6000 K (yellow), 7000 K (orange) and 10000 K (red) (Karki et al. 2006, except for points at V /V X = 0.35 and V /V X = 0.42). Black lines
indicate the fit of P and E to eq. (16) with Oθ = 1 (solid lines; first order in T , see text) and Oθ = 2 (dashed lines; second order in T , see text), and a third-order
expansion in finite strain. Errorbars are smaller than the size of the symbols. Black lines in (a, inset) indicates the fit to eq. (30). Lines in (c), (d) and (e) are
second derivatives of the fundamental relation, coloured by temperatures as the symbols in (a) and (b). These lines follow the trend previously found (Karki
et al. 2006) by independent linear fits of FPMD results along each simulated isochore (white symbols), but it should be kept in mind that these points represent
mean values over a large temperature range, which is not thermodynamically self-consistent, and may also be off due to the glass transition.

To perform the fit for the liquid, the order to which the excess
free energy needs to be expanded must be determined and n and
m specified. Considering its overwhelming success in fitting and
extrapolating high pressure equations of state, we adopt the Eulerian
finite strain in our description for melts as well, that is, we use n =
2. Similarly, the correct limiting behaviour as T → ∞ requires m
< 1 for Oθ = 1 and m < 1/2 for Oθ = 2. A unique value of m is
determined for each composition within the constraints required by
the value of Oθ required to fit the data.

6 R E S U LT S

6.1 Liquids

Consistent with the conclusions in the original studies, we find
that MgO, Mg2SiO4 and MgSiO3 liquid equations of state are
sufficiently described with a third-order finite strain expansion
(O f = 3), while SiO2 requires a fifth-order expansion (O f = 5)
(Figs 1–4). Values of m that optimize the first (Oθ = 1) and second
(Oθ = 2) order fits to the FPMD data, are noted in Table 2. Our pre-
ferred models are those where our FPMD results can be accurately
represented with the smallest number of free parameters. Oθ = 1
yields accurate fits for MgO, Mg2SiO4 and MgSiO3 (Figs 1–3), but
is insufficient for SiO2 (Fig. 4) where high temperature low den-
sity points are poorly modelled. These discrepancies are remedied
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Figure 2. Same as Fig. 1, but for Mg2SiO4 liquid. Coloured circles in (a) and (b) show values from FPMD simulations at 2000 K (purple), 3000 K (blue),
4000 K (green) and 6000 K (red) (De Koker et al. 2008, except for points at 2000 K). Black lines indicate the fit of P and E to eq. (16) with Oθ = 1 (solid lines)
and Oθ = 2 (dashed lines), and a third-order expansion in finite strain. White symbols in (c), (d) and (e) are the mean values from (De Koker et al. 2008).

Figure 3. Same as Fig. 2, but for MgSiO3 liquid. Coloured circles in (a) and (b) show values from FPMD simulations at 2000 K (purple), 3000 K (blue),
4000 K (green), 6000 K (yellow) and 8000 K (red) (Stixrude & Karki 2005, except for points at 2000 K and at V /V X = 0.4). Black lines indicate the fit of P
and E to eq. 16 with Oθ = 1 (solid lines) and Oθ = 2 (dashed lines), and a third-order expansion in finite strain. White symbols in (c), (d) and (e) are the mean
values from (Stixrude & Karki 2005).

C© 2009 The Authors, GJI, 178, 162–179

Journal compilation C© 2009 RAS



Silicate liquid thermodynamics 169

Figure 4. Same as Fig. 3, but for SiO2 liquid. Coloured circles in (a) and (b) show values from FPMD simulations at 3000 K (blue), 4000 K (green), 5000 K
(yellow) and 6000 K (red, white) (Karki et al. 2007). Black lines indicate the fit of P and E to eq. (16) with Oθ = 1 (solid lines) and Oθ = 2 (dashed lines),
and a fifth-order expansion in finite strain. Lines in (c), (d) and (e) are second derivatives of the Oθ = 1 fundamental relation. White symbols in (c), (d) and
(e) are the mean values from, and may be off due to the glass transition (Karki et al. 2007).

Table 2. m values used in liquids F xs fits.

Oθ MgO Mg2SiO4 MgSiO3 SiO2 Theorya

1 0.867 0.878 0.866 0.805 0.6
2 0.434 0.410 0.401 0.300 –

aRosenfeld & Tarazona (1998).

using Oθ = 2, with the SiO2 fit significantly further improved by
excluding the T = 6000 K, V /V X = 0.8, 0.9 and 1.0 points (white
circles in Fig. 4). These points are at pressures below 15 GPa, where
6000 K is of less geophysical importance. Therefore, our preferred
model for SiO2 is Oθ = 2, which precludes extrapolation for this
composition.

Thermodynamic properties at ambient pressure for the respective
liquids are compared to previous experimental and theoretical esti-
mates in Tables 3–6. Only partial molar experimental data for MgO
liquid is available, and we mostly compare to previous theoretical
estimates. Equation of state parameters differ slightly from those of
Karki et al. (2006), because all the data are used in obtaining the
equation of state fit. Values determined from Oθ = 1 and 2 are very
similar; Oθ = 1 is sufficient to model the data. The added simula-
tions at 2000 K for Mg2SiO4 and MgSiO3 enable us to draw a direct
comparison to experimental data collected at 1773 K.Oθ = 1 and 2
results are again very similar, and Oθ = 1 is sufficient to model the
results. As with MgO, the 3000 K equation of state parameters pa-
rameters of SiO2 also differ somewhat from those obtained by Karki
et al. (2007). Notable discrepancies with α, C V and C P likely result
from the large thermal extrapolation of experimental data. As noted

before, Oθ = 1 is not sufficient to represent the SiO2 data; indeed
Oθ = 1 and 2 results are rather different. Uncertainties in each
thermodynamic property is estimated by repeated fitting to a Monte
Carlo perturbation of the simulation data, constrained by its error
estimates. As shown in Figs 1–4, Oθ = 1 fundamental relations
yield αK T , γ and C V values similar to those obtained by (inconsis-
tent) isochoric linear fits, and are well behaved upon extrapolation.
In contrast, for Oθ = 2 these properties do not extrapolate well.

The ability of the liquid relation to capture the thermodynamics
of the liquid–vapour transition is illustrated by extrapolating the
Mg2SiO4 6000 K isotherm to very large volumes (Fig. 5). We ignore
the thermal electronic contribution here, as it will vanish at such
large volumes.

6.2 Solids

A third-order finite strain expansion is sufficient to fit the periclase
simulations up to a compression ratio of V /V X = 0.45, but we find
that a fourth-order expansion is required to account for the points
at higher pressures (Fig. 6). As found by Stixrude & Karki (2005),
a third-order finite strain expansion is sufficient to fit the perovskite
results, including the added data points at V /V X = 0.4 (Fig. 7).

For periclase and perovskite, thermodynamic parameters at
ambient pressure and reference temperature compare favourably
with values from experiment and previous theoretical calculations
(Tables 7 and 8). As previously concluded by Stixrude & Lithgow-
Bertelloni (2005), we find the representation of γ (V ) using eq. (46)
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Table 3. Thermodynamic properties of FPMD MgO liquid at 0 GPa, 3000 K.

Oθ = 1 Oθ = 2 Previous estimates

V (cm3 mol−1) 16.46(1) 16.46(1) [16.50]a , [16.26]b , [16.03]c,d , 16.03f

K T (GPa) 35.3(1) 32.2(4) [30.8(29)]a , [59.2]b

K S(GPa) 45.5(4) 47.8(18) 33 (1)h

K ′
T 4.65 4.92 [5.03(33)]a , [3.83]b

α(10−6 K−1) 100(1) 126(4) 204 f

S (NkB)i 10.51(5) j 11.03d,e

C V Nk B 3.6(2) 3.1(6) [3.0(3)]a

C P Nk B 4.7(9) 4.7(12) 5.19 (3)g

γ 0.96(2) 1.28(9) [0.95(7)]a , 1.25 f,g,h

Notes: Values of previous estimates shown in italics are extrapolated from lower
temperature and/or measurements on other compositions, and values shown in [] are
previous theoretical results.
aKarki et al. (2006);bCohen & Gong (1994);cKarki et al. (2000);dAlfe (2005);eStixrude
& Lithgow-Bertelloni (2005);f Lange (1997);gStebbins et al. (1984);hAi & Lange (2008).
iValue at melting temperature of 3070 K (Riley 1966; Zerr & Boehler 1994).
jBased on periclase Gibbs free energy at an assumed melting point of 3070 K, 0 GPa
(Riley 1966).

Table 4. Thermodynamic properties of FPMD Mg2SiO4 liquid at 0 GPa,
1773 K.

Oθ = 1 Oθ = 2 Previous estimates

V (cm3 mol−1) 51.9(1) 52.9(8) 50.9a

K T (GPa) 33.4(2) 30.1(3) 24.3 (1)b

K S (GPa) 36.6(3) 31.3(4) 27 (3)b

K ′
T 5.15 5.23 6.9d,i

α(10−6 K−1) 86(5) 56(7) 122 (7)a

S (NkB) j 8.5(3)k 8.10 (16)g,h

C V Nk B 4.1(1) 3.7(6) 3.7 (4)a,e

C P Nk B 4.5(8) 3.8(15) 3.9(4)e , 5.1 (3)f

γ 0.62(2) 0.42(4) 0.56 (3)a,b, f , 0.69 (4)a,b,e

aLange (1997); bAi & Lange (2008); cRivers & Carmichael (1987);
dRigden et al. (1989); eTangeman et al. (2001); f Stebbins et al. (1984);
gNavrotsky et al. (1989); hStixrude & Karki (2005).
iValue for CaMgSi2 O6.
jValue at melting temperature of 2163 K (Bowen & Andersen 1914).
kBased on forsterite Gibbs free energy at an assumed melting point of
2163 K, 0 GPa (De Koker et al. 2008).

to give a superior comparison to previous theoretical estimates (in-
sets in Figs 6 and 7).

7 A P P L I C AT I O N S

To illustrate the power of our method, we compute ambient pressure
thermodynamic properties as well as high pressure melting curves
and Hugoniots for MgO periclase and MgSiO3 perovskite (orthoen-
statite unshocked state), and the corresponding liquid phases. Our
aim is to obtain a direct comparison of our simulation results to
a broad range of low pressure measurements and high pressure
shock loading data and make predictions of trends to expect where
measurements have not yet been made.

Melting curves are obtained by finding the loci of pressure and
temperature where solid and liquid Gibbs free energies correspond.
As we use a reference melting temperature to constrain the liquid
free energy from that of the solid, this approach is equivalent to
integration of the Clapeyron equation, with integration done ana-
lytically rather than numerically.

For a given volume (V h) or density (ρ h), the theoretical Hugoniot
state is given by the temperature (T h) at which the pressure (P h)

Table 5. Thermodynamic properties of FPMD MgSiO3 liquid at
0 GPa, 1773 K.

Oθ = 1 Oθ = 2 Previous estimates

V (cm3 mol−1) 37.20(6) 38.02(8) 38.88a

K T (GPa) 27.3(2) 19.5(5) 16.81(7)b

K S (GPa) 30.3(3) 21.0(5) 22(2)b

K ′
T 5.71 7.17 6.9c,h

α(10−6 K−1) 102(3) 90(9) 84(4)a , 60d

S (NkB)i 8.06(8) j 7.62(6)e, f

C V Nk B 4.2(1) 3.5(4) 4.2(2)g

C P Nk B 4.6(8) 3.7(13) 4.61(15)g

γ 0.60(2) 0.46(7) 0.37(14)a,b,g

aLange (1997); bAi & Lange (2008); cRigden et al. (1989);
dTomlinson et al. (1958); eRichet & Bottinga (1986); f Stixrude &
Lithgow-Bertelloni (2005); gStebbins et al. (1984).
hValue for CaMgSi2 O6.
iValue at metastable congruent melting temperature of 1840 K
(Bowen & Andersen 1914).
jBased on perovskite Gibbs free energy at an assumed melting
point of 2900 K, 25 GPa (and references therein Stixrude & Karki
2005).

and internal energy (E h) satisfy the Rankine–Hugoniot relation,

(Eh − Er) = −1

2
(Ph + Pr) (Vh − Vr) , (57)

where E r and V r is, respectively, the internal energy and volume of
the unshocked state defined by pressure P r and temperature T r.

Because internal energy and volume (density) are the natural ther-
modynamic variables along the Hugoniot, a first-order phase tran-
sition, such as univariant melting, occurs over a range of pressure–
temperature conditions (Callen 1985). With increasing pressure, the
Hugoniot intersects the melting curve, follows the melting curve for
a finite interval of pressure along which the fraction of liquid in-
creases, and then departs from the melting curve as the solid phase
is exhausted. The liquid fraction along the melting portion of the
Hugoniot is found by solving eq. (57) for a mechanical mixture
of liquid and solid. Experiments may depart from this equilibrium
picture due to kinetic effects including superheating (Luo 2003).

The sound velocity of the shock compressed phase can be mea-
sured in a shock loading experiment, with a large velocity decrease
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Table 6. Thermodynamic properties of FPMD SiO2 liquid at 0 GPa, 3000 K.

Oθ = 1 Oθ = 2 Previous estimates

V (cm3 mol−1) 27.2(2) 27.2(4) [27.6]a , 28.7b, 28.6c,b, 26.9d , 31h

K T (GPa) 12.2(5) 7.1(18) [5.2(10)]a , 5.1b

K S (GPa) 12.2(8) 7.5(18) 10.6 (6)i

K ′
T 6.3 17.1 [22.5(30)]a

α(10−6 K−1) 1.4(140) 121(12) 40.86b, 12.3-123j

S (NkB) 8.92(12)k 8.35b, 8.26e, f,g

C V Nk B 5.3(2) 5.2(6) [5.0(4)]a

C P Nk B 5.3(9) 5.5(9) 3.4b, 3.21 (3)e

γ 0.003(20) 0.18(4) [0.2(1)]a

aKarki et al. (2007); bHudon et al. (2002); cGaetani et al. (1998); dLange
(1997); eStebbins et al. (1984); f Richet & Bottinga (1986); gStixrude &
Lithgow-Bertelloni (2005); hBacon et al. (1960); iAi & Lange (2008);
jDingwell et al. (1993).
kBased on stishovite Gibbs free energy at an assumed melting point of
3120 K, 14 GPa (Zhang et al. 1993; Shen & Lazor 1995).

Figure 5. Thermodynamics of vapourization in Mg2SiO4 liquid. Eq. (16)
also captures the thermodynamics of vapourization, as illustrated by extrap-
olation of the 6000 K isotherm in Mg2SiO4. The pressure of liquid–vapour
coexistence (0.09 GPa; horizontal red line) is found from the triplication in
G (arrow in inset), or equivalently from the Maxwell equal area construction
(area I = area II). The resulting heat of vapourization (1130 kJ mol−1) is
comparable to the heat of vapourization of forsterite used in giant impact
studies (Benz et al. 1989; Canup 2004).

Figure 6. (a) Pressure (P), (b) internal energy (E) and (c) Grüneisen parameter (γ ) of MgO periclase. Coloured circles show values from FPMD simulations
at 2000 K (purple), 3000 K (blue), 4000 K (green), 5000 K (yellow), 6000 K (orange) and 8000 K (red). Black lines in (a) and (b) indicate the fit of eq. (35),
with a fourth-order expansion in finite strain required to account for the points at V /V X = 0.35 (left inset). Errorbars are smaller than the size of the symbols.
Grüneisen parameter represented with eq. (46) (solid line) gives a superior fit to eq. (49) when compared to previous estimates (K20 – Karki et al. (2000), γ at
2000 K from lattice dynamics; OD30 – Oganov & Dorogokupets (2003), FPMD at 3000 K).

being a strong indication of melting. For a given phase, we compute
v P as

vP =
√

L

ρ
, (58)

where L is the longitudinal modulus

L = KS + 4/3μ, (59)

μ being the shear modulus. Because the deformation timescale in
a shockwave experiment is long compared to the relaxation time of
the liquid (Rigden et al. 1988), μ = 0 and L reduces to

L = KS . (60)

K S follows from eq. (8), and we obtain μ for the solid from ex-
perimental data using the model of Stixrude & Lithgow-Bertelloni
(2005). Where liquid and solid coexist along the Hugoniot, we find
the Voigt and Reuss bounds for L of the aggregate as (Watt et al.
1976)

LR =
(∑

xi/Li

)−1
≤ L ≤

∑
xi Li = LV, (61)

with the Hill average obtained as the arithmetic mean of L R and
L V.

Our periclase melting curve differs only by a small degree from
the previous first principles estimate of Alfe (2005) using FPMD
simulation of direct phase coexistence in the LDA (Fig. 8). Both
these curves are in general agreement with previous non-first prin-
ciples theoretical estimates of the melting of periclase at high pres-
sure (Cohen & Gong 1994; Vočadlo & Price 1996; Belonoshko &
Dubrovinsky 1996; Cohen & Weitz 1998; Strachan et al. 2001), and
are intermediate between the experimental determination of Zerr &
Boehler (1994) and the compositional extrapolation of Zhang & Fei
(2008). The slope remains positive over the entire pressure range
considered.

The FPMD periclase Hugoniot agrees very well with the mea-
sured pressure–density Hugoniot (Marsh 1980; Vassiliou & Ahrens
1981; Svendsen & Ahrens 1987; Duffy & Ahrens 1995), as well as
with the temperature measurements of Svendsen & Ahrens (1987).
The periclase Hugoniot crosses the melting curve at P = 375 GPa,
T = 9580 K, with the liquid phase periclase Hugoniot crossing
the melting curve at P = 470 GPa, T = 9870 K. Complete shock
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Figure 7. Same as Fig. 6, but for MgSiO3 perovskite. Coloured circles show values from FPMD simulations at 3000 K (blue), 4000 K (green) and 6000 K
(red). Black lines in (a) and (b) indicate the fit of eq. (35), with a third-order expansion in finite strain. K3 – Karki et al. (2000), γ at 3000 K from lattice
dynamics; O1 – Oganov et al. (2001), FPMD at 1000 K.

Table 7. Thermodynamic properties of FPMD MgO periclase
at 0 GPa, 2000 K.

This study Previous estimates

V (cm3 mol−1) 12.22(1) 12.23a

K T (GPa) 108.3(8) 102a

K S (GPa) 126(1) 126a

K ′
T 4.89 4.97a

K ′′
T K T −6.57 –

C V Nk B 3.01(3) 2.98a

C P Nk B 3.5(7) 3.69a

α(10−6 K−1) 56.3(9) 68.7a, 53b , [64]c , [48]d

γ 1.49(3) 1.72a, 1.47e , [1.71]c , [1.69]d

aStixrude & Lithgow-Bertelloni (2005); bTouloukian et al.
(1977); cKarki et al. (2000); dOganov & Dorogokupets (2003);
eIsaak et al. (1989).

Table 8. Thermodynamic properties of FPMD MgSiO3 per-
ovskite at 0 GPa, 2000 K.

This study Previous estimates

V (cm3 mol−1) 25.87(1) 25.81a , [26.26]b , [25.73]c

K T (GPa) 204(5) 189.06a , [181]b , [210.6]c

K S (GPa) 231(11) 212.57a

K ′
T 4.14 4.96a , [4.67]b , [4.49]c

α(10−6 K−1) 40(1) 40a , [45.2]b , [37.3]c

C V Nk B 3.1(3) 2.97a , [2.99]b

C P Nk B 3.5(9) 3.34a , [3.46]b

γ 1.6(1) 1.57a , [1.9]b , [1.51]c

aStixrude & Lithgow-Bertelloni (2005);bKarki et al.
(2000);cOganov et al. (2001).

melting is predicted to result in a ∼0.14 g cm−3 density in-
crease and a 2.2 km s−1 sound velocity decrease along the
Hugoniot.

The pressures at which we predict shock melting along the prin-
cipal Hugoniot of periclase are very high, and beyond the current
reach of shock wave experiments employing gas guns. However,
shock melting can be achieved by using porous or pre-heated un-
shocked samples. We thus also calculate the shock melting interval
for a number of pre-heated and porous starting materials (Tables 9
and 10).

Our perovskite melting curve (Fig. 9) is slightly different from
the result of Stixrude & Karki (2005), as a result of the larger range
of data used and the self-consistency imposed on the empirical
correction for the overbinding of the LDA. The curve is somewhat
colder than the measurements of Zerr & Boehler (1993) and Shen &
Lazor (1995), though warmer than the experimental measurements
of Knittle & Jeanloz (1989), Heinz & Jeanloz (1987) and Sweeney
& Heinz (1998), as well as the result of Stixrude & Bukowinski
(1990a). The Clapeyron slope remains positive over the entire pres-
sure range considered.

The FPMD perovskite component of the enstatite principal Hugo-
niot compares well with the measured pressure–density Hugoniot
(Akins et al. 2004) points at 149 and 170 GPa, but is notably warmer
than the temperature measurements of Luo et al. (2004). The per-
ovskite Hugoniot crosses the melting curve at P = 150 GPa, T =
5190 K, with the liquid phase Hugoniot crossing the melting curve
at P = 220 GPa, T = 5520 K. Complete shock melting is predicted
to result in a ∼0.10 g cm−3 density increase and a 2.6 km s−1 sound
velocity decrease along the Hugoniot. Shock melting interval for a
number of pre-heated and porous starting samples (orhtoenstatite)
are shown in Tables 11 and 12.

8 D I S C U S S I O N

For a given order of expansion in the thermal variable (Oθ ), optimal
values of m are remarkably similar for all four compositions con-
sidered. However, our results show that for Oθ = 1 these optimal
values differ notably from the value of m = 3/5 expected theoret-
ically for dense, simple liquids (Rosenfeld & Tarazona 1998). To
see this, note that the internal energy expression derived from our
liquid fundamental relation (eq. 26) is equivalent to the expression
of (Rosenfeld & Tarazona 1998) for Oθ = 1 and m = 3/5

Etheory(V, T ) = Eig(T ) + c0(V ) + c1(V )T
3
5 , (62)

where c0(V ) and c1(V ) are functions only of volume. In addition,
the assumption that E xs is linear in T

3
5 breaks down in the case

of SiO2 which requires Oθ = 2 to accurately represent the FPMD
results.

Our findings contrast those of previous semi-emprical MD stud-
ies of SiO2, MgSiO3 and Mg2SiO4 liquids (Saika-Voivod et al.
2001; Ghiorso et al. 2006; Martin et al. 2006), in which eq. (62)
was assumed to hold for individual isochores, and highlight the
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Figure 8. Shock melting of MgO periclase. (top panel) FPMD melting curve
of periclase with uncertainty given by grey envelope. Melting temperature at
the CMB is 7810 ± 160 K. Direct coexistence simulation using FPMD in the
LDA of Alfe (2005) (A05; orange dotted line), and experimental measure-
ments of Zhang & Fei (2008) (ZF08) and Zerr & Boehler (1994) (ZB94)
shown for comparison. The solid Hugoniot crosses the melting curve at
375 GPa, 9580 K, and the liquid Hugoniot crosses at 470 GPa, 9870 K (faint
dotted lines). In between these points the equilibrium Hugoniot follows the
melting curve. Metastable Hugoniot sections are shown as broken lines.
SA87 – shock temperature measurements of Svendsen & Ahrens (1987)
(middle panel). Pressure–density Hugoniot, compared with experimental
shock measurements of Al’tshuler et al. (1965) (A65), Marsh (1980) (M80),
Vassiliou & Ahrens (1981) (VA81), Svendsen & Ahrens (1987) (SA87) and
Duffy & Ahrens (1995) (DA95). Complete shock melting is predicted to re-
sult in a ∼0.14 g cm−3 density increase along the Hugoniot, even though no
density crossover is present along the melting curve. (bottom panel) Com-
pressional wave velocity (v P ) of the liquid is 2.2 km s−1 slower than that of
the solid calculated along the FPMD periclase Hugoniot using experimental
estimates of the shear modulus from Stixrude & Lithgow-Bertelloni (2005)
(SLB05). Coloured lines in insipient melting section of Hugoniot represent
the Voigt and Reuss bounds and the Hill average (Watt et al. 1976, see text).

Figure 9. Same as Fig. 8, but for MgSiO3 perovskite. (top panel) Melting
temperature at the CMB is 5100 ± 100 K, which is within the uncertainty of
the result of Stixrude & Karki (2005) (SK05; red dotted line). Experimental
melting measurements are shown for Heinz & Jeanloz (1987) (HJ), Knittle
& Jeanloz (1989) (KJ), Sweeney & Heinz (1998) (SH), Zerr & Boehler
(1993) (ZB93), and Shen & Lazor (1995) (SL95), together with orhtoen-
statite Hugoniot for perovskite calculated using the model of Stixrude &
Lithgow-Bertelloni (2005). The solid Hugoniot crosses the melting curve
at 150 GPa, 5190 K, and the liquid Hugoniot crosses at 220 GPa, 5520 K
(faint dotted lines). LM09 and AM09 – shock temperature measurements
for enstatite of Luo et al. (2004) and Akins et al. (2004), respectively, re-
assessed by Mosenfelder et al. (2009). T04 – Tsuchiya et al. (2004). (middle
panel) Pressure–density Hugoniot, compared with experimental shock mea-
surements. Complete shock melting is predicted to result in a ∼0.10 g cm−3

density increase along the Hugoniot. (bottom panel) Compressional wave
velocity (v P ) of the liquid is 2.6 km s−1 slower than that of the solid calcu-
lated along the FPMD perovskite Hugoniot using experimental extimates of
the shear modulus Stixrude & Lithgow-Bertelloni (2005) (SLB05).
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Table 9. Shock melting elastic properties of MgO periclase shocked from periclase pre-heated to T 0 at 0 GPa.

T 0(K) 300 1000 1500 2000 2500

init compl init compl init compl init compl init compl

P(GPa) 375 470 320 420 275 380 225 330 170 280
T (K) 9580 9870 9340 9730 9090 9590 8750 9390 8230 9110
ρxtl (g cm−3) 6.28 6.72 6.00 6.50 5.75 6.31 5.44 6.05 5.06 5.78
ρliq (g cm−3) 6.21 6.67 5.90 6.43 5.64 6.23 5.30 5.96 4.89 5.67
Kxtl

s (GPa) 1312 1588 1148 1444 1010 1327 854 1178 679 1026

Kliq
s (GPa) 1267 1566 1093 1409 951 1283 791 1125 615 966

vxtl
p (km s−1)a 17.22 18.20 16.57 17.71 15.94 17.29 15.14 16.70 14.08 16.02

vxtl
b (km s−1) 14.45 15.37 13.61 14.91 13.26 14.51 12.53 13.95 11.58 13.32

vliq
p (km s−1) 14.29 15.33 13.82 14.80 12.99 14.35 12.21 13.74 11.22 13.06

Notes: init denotes the point along the Hugoniot where melting initiates, while compl denotes the point where melting is complete.
aCalculated using experimental shear modulus from Stixrude & Lithgow-Bertelloni (2005).

Table 10. Shock melting elastic properties of MgO periclase shocked from porous periclase at 0 GPa, 300 K.

Porosity 0 per cent 5 per cent 10 per cent 20 per cent 30 per cent
ρ0(g cm−3) 3.58 3.40 3.22 2.86 2.51

init compl init compl init compl init compl init compl

P(GPa) 375 470 315 410 260 350 175 255 115 180
T (K) 9580 9870 9320 9700 9000 9480 8290 8970 7500 8340
ρxtl (g cm−3) 6.28 6.72 5.97 6.45 5.66 6.16 5.10 5.63 4.60 5.13
ρliq (g cm−3) 6.21 6.67 5.88 6.38 5.54 6.07 4.93 5.51 4.38 4.97
Kxtl

s (GPa) 1312 1588 1132 1415 964 1238 695 948 496 711

Kliq
s (GPa) 1267 1566 1077 1377 903 1188 631 887 437 647

vxtl
p (km s−1)a 17.22 18.19 16.50 17.61 15.72 16.94 14.18 15.64 12.64 14.29

vxtl
b (km s−1) 14.45 15.37 13.77 14.81 13.05 14.18 11.68 12.98 10.34 11.77

vliq
p (km s−1) 14.29 15.33 13.54 14.69 12.77 13.99 11.31 12.69 9.98 11.41

aCalculated using experimental shear modulus from Stixrude & Lithgow-Bertelloni (2005).

Table 11. Shock melting elastic properties of MgSiO3 perovskite, shocked
from orthoenstatite pre-heated to T 0 at 0 GPa.

T 0(K) 300 1000 1500
init compl init compl init compl

P(GPa) 150 220 120 190 100 165
T (K) 5190 5520 4870 5390 4780 5270
ρxtl (g cm−3) 5.35 6.33 5.10 5.65 4.92 5.47
ρliq (g cm−3) 5.23 6.26 4.96 5.55 4.75 5.36
Kxtl

s (GPa) 696 1169 599 824 535 744

Kliq
s (GPa) 621 1183 507 772 431 678

vxtl
p (km s−1)a 13.96 15.83 13.37 14.65 12.93 14.22

vxtl
b (km s−1) 11.41 13.59 10.84 12.08 10.42 11.67

vliq
p (km s−1) 10.90 13.75 10.12 11.79 9.53 11.25

Note: Orthoenstatite is metastable relative to protoenstatite above 1258 K
(Atlas 1952).
aCalculated using experimental shear modulus from Stixrude &
Lithgow-Bertelloni (2005).

importance of determining the interatomic forces in situ from the
electronic structure of the liquid.

In total, our formulation of the excess free energy requires the
determination of eight free parameters for Oθ = 1,O f = 3: the
relationships between the coefficients a00, a10, a20, a30, a01, a11, a21

and m (eq. 16), and the thermodynamic properties F 0, V 0, K 0, K ′
0,

S0, αK T 0 and (dαK T 0/dV )T,0 are presented in the Appendix. While
we have chosen to constrain parameters with the values of E and P
computed from FPMD simulations, we note that experimental data
could also be used to constrain the fundamental relation. Indeed, the

procedure for constraining parameters using dynamic compression
experimental data would be very similar to what we have outlined
here as the measured quantities on the Hugoniot are also E and
P. Hugoniot data could be supplemented by precise measurements
at low pressure, and thermochemical measurements of the heat
capacity and entropy of the liquid at the ambient melting point
might be used to constrain the value of m via

m = CV xs0

Sxs0
+ 1, (63)

which follows directly from eq. (A10) and the condition a02 = 0
for Oθ = 1. We further note that the constraints on the value of m
dictates that Sxs0 < 0, that is, the total entropy of the liquid is less
than that of the ideal gas. This order of fit appears to be sufficient
for the silicate liquids we have studied to date with the exception
of pure silica liquid. For pure silica liquid, Oθ = 1,O f = 3 may
be adequate for many applications, but is not sufficient to represent
our FPMD results over the entire volume–temperature range that
we have explored. We have found that fits with Oθ = 2, which
contain a much larger number of free parameters, appear to produce
unphysical extrapolation outside of the fitted range, unlike those
with Oθ = 1, which extrapolate physically to well beyond the fitted
range.

The theoretical suitability of a Eulerian finite strain expansion
for use with highly compressible materials such as silicate liq-
uids has been questioned (Ghiorso et al. 2002; Ghiorso 2004;
Hofmeister 1993). The two main concerns that have been cited, are
firstly that analytical interatomic potentials derived from the Birch–
Murnaghan equation of state predict non-physical effects for K ′

0 > 6
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Table 12. Shock melting elastic properties of MgSiO3 perovskite, shocked from porous orthoenstatite at 0 GPa, 300 K.

Porosity 0 per cent 5 per cent 10 per cent 20 per cent 30 per cent
ρ0(g cm−3) 3.20 3.04 2.88 2.56 2.24

init compl init compl init compl init compl init compl

P(GPa) 150 220 125 190 105 160 75 115 50 80
T (K) 5190 5520 5010 5390 4830 4250 4450 4930 3910 4530
ρxtl (g cm−3) 5.35 6.33 5.15 5.65 4.97 5.43 4.68 5.06 4.43 4.73
ρliq (g cm−3) 5.23 6.26 5.00 5.55 4.80 5.32 4.45 4.91 4.10 4.51
Kxtl

s (GPa) 696 1169 616 824 551 728 454 583 375 470

Kliq
s (GPa) 621 1183 526 772 450 659 335 488 238 354

vxtl
p (km s−1)a 13.96 15.83 13.46 14.65 13.03 14.14 12.33 13.27 11.65 12.45

vxtl
b (km s−1) 11.41 13.59 10.94 12.08 10.53 11.58 9.85 10.74 9.21 9.97

vliq
p (km s−1) 10.90 13.75 10.26 11.79 9.68 11.13 8.67 9.98 7.62 8.86

aCalculated using experimental shear modulus from Stixrude & Lithgow-Bertelloni (2005).

(Hofmeister 1993), and secondly that the equation allows liquid bulk
moduli to vanish at large volumes. Experimental and theoretical re-
sults for silicate liquids show K ′

0 values to vary from around 5 to as
high as 12 (Rigden et al. 1989; Lange 2003; Stixrude & Karki 2005;
Karki et al. 2007; Lange 2007; Ai & Lange 2008; De Koker et al.
2008; Sun 2008). These high values reflect the ability of silicate liq-
uids to access structural compression mechanisms not available to
solids, such as changes in coordination (Williams & Jeanloz 1988)
and ring statistics (Stixrude & Bukowinski 1990b), which enable
liquids to become very compressible at high temperature and low
density. The Hofmeister (1993) prediction only applies to simple
ionic compounds, in which only the bond length is altered upon
compression, and is therefore not relevant to silicate liquids. The
second concern cited is, in fact, an asset of the finite strain expan-
sion. When combined with an ideal gas term, as we have done, the
relation shows a Van der Waals loop (Fig. 5), and thus also captures
the thermodynamics of the liquid–vapour transition.

To the extent that the individual free energy contributions are
separable, any thermodynamic property A which is a direct free
energy derivative may be expressed as the sum of its individual
contributions

A = Aig + Ael + Axs, (64)

while other properties follow as rational combinations of the free
energy derivatives, such as the Grünesen parameter,

γ = (CV igγig + CV elγel + CV xsγxs)/(CV ig + CV el + CV xs). (65)

Values of the Grüneisen parameter obtained from the liquid fun-
damental relation therefore represent a weighted mean of the in-
dividual contributions. Because the thermo-electronic free energy
contribution is considered negligible for the solid of interest here,
the Grüneisen parameter calculated via the solid fundamental re-
lation represents that arising due to changes in lattice vibrational
frequencies with volume

γsolid = − (∂ ln ωD/∂ ln V )T , (66)

where ωD is the Debye frequency of the solid.
The relation for solids works well over the large range of pres-

sure and temperature we consider, though the absence of a quantum
correction requires caution in comparison with experimental equa-
tion of state data below the Debye temperature. The requirement
of a fourth-order finite strain expansion for periclase is primarily
due to the very large pressures attained in the smallest volume
considered (V /V X = 0.35). The relation requires only six (seven

for periclase) free parameters, and can therefore be extrapolated to
higher temperatures and pressures with reasonable confidence.

The agreement with experiment of the theoretical periclase Hugo-
niot derived from our fundamental relation is very encouraging, and
attests to the accuracy of FPMD at very high pressure and tempera-
ture, as well as to the utility of our method for modelling such infor-
mation self-consistently. Agreement with pressure–density Hugo-
niot data for perovskite is good (Akins et al. 2004; Luo et al. 2004;
Mosenfelder et al. 2009), but no comparison with shock temper-
ature measurements is possible as existing measurements are be-
lieved to correspond to the post-perovskite phase (Luo et al. 2004;
Mosenfelder et al. 2009). We note that a Hugoniot obtained us-
ing the thermodynamic model of Stixrude & Lithgow-Bertelloni
(2005), which is constrained by a variety of non-dynamic experi-
mental data is very similar to our FPMD Hugoniot. Furthermore, our
melting curve is consistent with shock temperature measurements
for MgSiO3 glasses, believed to correspond to the molten phase
(Luo et al. 2004; Mosenfelder et al. 2009). While the discrepancy
between the density increase along the Hugoniot upon melting pre-
dicted by theory and that observed in experiment (Akins et al. 2004;
Mosenfelder et al. 2009) is somewhat troubling, these three inferred
liquid points are at pressures smaller than that at which we find the
theoretical liquid Hugoniot to cross the melting curve, and are likely
only partially molten.

The fact that the liquid Hugoniot is at a larger density than that of
the solid in both periclase as well as perovskite should not be con-
fused with a density crossover. The larger liquid Hugoniot density
results simply due to thermal contraction as heat is absorbed during
melting. Indeed, along the melting curves the densities of periclase
and perovskite remain larger than that of the respective coexisting
liquids, as reflected by the positive Clapeyron slopes. Our analyses
show that computed Hugoniots and melting curves are insensitive
to the choice of the reference melting point. An error in the assumed
reference melting point translates into errors in computed high pres-
sure Hugoniot and melting temperatures that are almost identical
in magnitude. This is an important justification of our approach as
low pressure melting properties are almost always more precisely
known than the high pressure melting curves and Hugoniots that
are our primary interest.

9 C O N C LU S I O N

By extending the finite strain description of materials at high pres-
sure of Birch (1952, 1978) to account for the thermal free energy
contribution, we have constructed a thermodynamic description of
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silicate liquids that is self-consistent and requires relatively few free
parameters. Application of this relation to silicate liquids simulated
by FPMD reveals that the effect of excited electronic states cannot
be ignored in these materials at temperatures well above that of
melting, and that existing theoretical predictions for the tempera-
ture dependence of the liquid free energy fail for silicate liquids at
high temperature.

Of particular geophysical interest is the melting of mantle miner-
als at deep lower mantle pressures, most readily achieved in shock
loading experiments. Shock melting may be identified by large
changes in the temperature, discontinuities in density, and a marked
decrease in the sound velocity of the shocked state measured along
the Hugoniot. We are able to apply the thermodynamic description
to obtain melting curves and Hugoniot loci for perovskite and per-
iclase, compare to existing shock loading measurements and make
quantitative predictions of each of the melting criteria. The agree-
ment of the theoretical Hugoniots derived from our fundamental
relation attests both to the accuracy of FPMD at very high pressure
and temperature, and to the utility of our method for modelling such
information self-consistently.
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Vočadlo, L. & Price, G.D., 1996. The melting of MgO - computer calcula-
tions via molecular dynamics, Phys. Chem. Miner., 23, 42–49.

Wan, J.T.K., Duffy, T.S., Scandolo, S. & Car, R., 2007. First-principles
study of density, viscosity, and diffusion coefficients of liquid MgSiO3 at
conditions of the Earth’s deep mantle, J. geophys. Res., 112, B03208.

Watt, J.P., Davies, G.F. & O’Connel, R.J., 1976. The elastic properties of
composite materials, Rev. Geophyis. Space Phys., 14(4), 541–563.

Wigner, E., 1932. On the quantum correction for thermodynamic equilib-
rium, Phys. Rev., 40, 749–759.

Williams, Q. & Garnero, E.J., 1996. Seismic evidence for partial melt at the
base of Earth’s mantle, Science, 273, 1528–1530.

Williams, Q. & Jeanloz, R., 1988. Spectroscopic evidence for pressure-
induced coordination changes in silicate glasses and melts, Science, 239,
902–905.

Wolf, G.H. & Jeanloz, R., 1984. Lindemann melting law - anharmonic
correction and test of its validity for minerals, J. geophys. Res., 89, 7821–
7835.

Young, D.A. & Corey, E.M., 1995. A new global equation of state model
for hot, dense matter, J. Appl. Phys., 78(6), 3748–3755.

Zerr, A. & Boehler, R., 1993. Melting of (Mg,Fe)SiO3-perovskite to
625 Kilobars: Indication of a high melting temperature in the lower man-
tle, Science, 262, 553–555.

Zerr, A. & Boehler, R., 1994. Constraints on the melting temperature of
the lower mantle from high-pressure experiments on MgO and magne-
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A P P E N D I X A : C O E F F I C I E N T S O F FXS I N
T H E L I Q U I D F U N DA M E N TA L
R E L AT I O N

The excess free energy contribution to the liquid state fundamental
relation is given by

Fxs(V, T ) =
∑
i=0

∑
j=0
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f iθ j , (A1)
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By the assumption that the individual free energy contributions
can be separated, any excess thermodynamic property (Axs) which is
a direct free energy derivative (instead of following from reduction
of derivatives, such as the Grüneisen parameter) is obtained from
the total value (A) by removing the ideal gas and electronic terms

Axs = A − Aig − Ael. (A4)

The coefficients of the excess free energy expansion (ai j ) are
directly related to the excess thermodynamic properties of the liquid
at reference volume (V 0) and temperature (T 0) and follow from
taking the appropriate derivatives and substituting f 0 and θ 0. These
relations are

a00 = Fxs0, (A5)
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