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Abstract

We perform first principles molecular dynamics simulations of Mg2SiO4 liquid and crystalline forsterite. On compression
by a factor of two, we find that the Grüneisen parameter of the liquid increases linearly from 0.6 to 1.2. Comparison of liquid
and forsterite equations of state reveals a temperature-dependent density crossover at pressures of �12–17 GPa. Along the
melting curve, which we calculate by integration of the Clapeyron equation, the density crossover occurs within the forsterite
stability field at P = 13 GPa and T = 2550 K. The melting curve obtained from the root mean-square atomic displacement in
forsterite using the Lindemann law fails to match experimental or calculated melting curves. We attribute this failure to the
liquid structure that differs significantly from that of forsterite, and which changes markedly upon compression, with increases
in the degree of polymerization and coordination. The mean Si coordination increases from 4 in the uncompressed system to 6
upon twofold compression. The self-diffusion coefficients increase with temperature and decrease monotonically with pres-
sure, and are well described by the Arrhenian relation. We compare our equation of state to the available highpressure shock
wave data for forsterite and wadsleyite. Our theoretical liquid Hugoniot is consistent with partial melting along the forsterite
Hugoniot at pressures 150–170 GPa, and complete melting at 170 GPa. The wadsleyite Hugoniot is likely sub-liquidus at the
highest experimental pressure to date (200 GPa).
� 2008 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

The Earth’s mantle is almost entirely solid, yet liquids
play a disproportionately large role in our understanding
of terrestrial chemical and thermal evolution. Silicates melt
incongruently, and in the shallow mantle, the partial melt is
readily separated from the residuum as a result of the large
density contrast and low viscosity of the liquid. To accu-
rately describe these processes, knowledge of the changes
in liquid physical properties with pressure and temperature
is needed, especially the density, Grüneisen parameter,
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chemical diffusivity and melting temperature. Furthermore,
an understanding of liquid structure that ultimately governs
these physical properties is key to predicting properties at
conditions previously unexplored, and also offers deep in-
sight into the physics of the liquid state.

Olivine and its polymorphs of dominantly Mg2SiO4

composition make up approximately 60% of the upper
mantle and transition zone. With increasing pressure, the
eutectic composition on the MgO–SiO2 join moves toward
Mg2SiO4 (Ohtani and Kumazawa, 1981; Kato and Kumaz-
awa, 1985; Presnall and Gasparik, 1990). The properties of
Mg2SiO4 liquid are thus crucial to deep earth studies
involving a liquid phase. These include magma ocean
dynamics, lunar formation, and mantle melting as the
source for komatiitic and basaltic magmas. Buoyantly sta-
ble partial melt has been proposed to exist atop the
410 km discontinuity on the basis of seismic observations
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(Revenaugh and Sipkin, 1994; Song et al., 2004). In addi-
tion, the discovery of an ultra-low-velocity zone (ULVZ)
at the core–mantle boundary (CMB) (Garnero and Helm-
berger, 1995; Williams and Garnero, 1996) has lead to the
speculation of the presence of partial melt in the bottom
most part of the mantle. Indeed, estimates of the mantle
geotherm in the lowermost mantle are similar to estimates
of the lower mantle solidus (Holland and Ahrens, 1997;
Luo et al., 2004; Stixrude and Karki, 2005).

The high melting temperature of forsterite (2163 ± 25 K;
Bowen and Andersen, 1914) has made accurate in situ

experimental measurement of Mg2SiO4 liquid properties
difficult. The volume at ambient pressure and its pressure
and temperature derivatives are estimated from experimen-
tal measurements at lower temperature and more silica-rich
compositions, combined with the assumption of linear
additivity of partial molar properties (Lange and Carmi-
chael, 1987; Lange, 1997; Ai and Lange, in press), or from
fusion curve analysis and calorimetric data (Bottinga,
1985). The value of CP measured for the supercooled liquid
(225 J mol�1 K�1; Tangeman et al., 2001) differs signifi-
cantly from the model value calculated from partial molar
heat capacities (285–295 J mol�1 K�1; Stebbins et al.,
1984; Lange and Navrotsky, 1992). Studies of non-crystal-
line structure have been limited to Mg2SiO4 glass (Cooney
and Sharma, 1990; Kohara et al., 2004).

Here we apply first principles molecular dynamics to
simulate Mg2SiO4 liquid and forsterite at pressures and
temperatures relevant to the mantle. We investigate the
equation of state, liquid structure, and transport properties
and compare with experiments and previous results based
on semi-empirical inter atomic force models. By combining
the liquid equation of state with that of forsterite, calcu-
lated using the same method, we integrate the Clapeyron
equation to obtain the forsterite melting curve.
2. COMPUTATIONAL TECHNIQUE

The power and robustness of density functional theory
(DFT) as a tool for determining the properties of earth
materials at conditions relevant to planetary interiors have
been extensively explored (Stixrude, 2001; Gillan et al.,
2006). DFT was recently applied in combination with
Born–Oppenheimer molecular dynamics to the simulation
of silicate liquids over the entire mantle pressure–tempera-
ture regime (Stixrude and Karki, 2005; Karki et al., 2007).

DFT is based on the Hohenberg–Kohn theorem
(Hohenberg and Kohn, 1964; Kohn and Sham, 1965),
through which the wave function and total energy may be
expressed as a unique functional of the ground state elec-
tron density. Although the theorem is exact, approxima-
tions are needed to account for the unknown exchange-
correlation functional. In this study we adopt the most
widely tested approximation, the local density approxima-
tion (LDA, Ceperley and Alder, 1980).

The influence of the core electronic wave functions of
Mg, Si and O is approximated using ultrasoft pseudopoten-
tials with core radii of 1.06, 0.95 and 0.82 Å, and valence
shells representing the 3s2, 3s23p2 and 2s22p4 electrons,
respectively (Kresse and Hafner, 1994), as implemented in
the VASP code (Kresse and Furthmüller, 1996). We per-
form molecular dynamics in the canonical ensemble (con-
stant NVT), via a thermostat (Nosé, 1984). In order to
make simulation with systems of sufficient size computa-
tionally feasible, the size of the plane-wave basis set is lim-
ited to a cutoff energy Ecut = 400 eV, for which we account
by applying a finite basis set (Pulay) correction (Gomes
Dacosta et al., 1986; Francis and Payne, 1990) to the calcu-
lated pressures (see below).

Simulations contain 112 atoms (16 formula units) with
periodic boundary conditions (Fig. 1). The initial condition
is a 2 � 1 � 2 supercell of forsterite homogeneously
strained to a cubic cell shape and the desired volume. The
Brillouin zone is sampled at the gamma point only. We sim-
ulate the liquid at volumes of V/VX = 1.2, 1.1, 1.0, 0.9, 0.8,
0.7, 0.6 and 0.5 where VX = 52.36 cm3/mol is an estimate of
the volume of Mg2SiO4 liquid at the ambient melting point
(Lange and Carmichael, 1987). The initial configuration is
melted at 6000 K, and then cooled isochorically to 3000
and 4000 K. We also perform simulations of crystalline
forsterite at 1000, 2000 and 3000 K, and at volumes
V/VX = 1.0, 0.9, 0.8 and 0.7. We initiate crystalline simula-
tions with the cell shape obtained by static structural relax-
ation at each volume, and then adjust cell parameters until
the stress tensor is hydrostatic to within statistical uncer-
tainty (Oganov et al., 2001). The phase present in the sim-
ulation (crystal or liquid) is verified by inspection of the
radial distribution function and the mean-square displace-
ment. Simulations of both liquid and solid are performed
using a time step Dt = 1 fs, with each simulation running
for at least 3000 time steps. The first 600 steps allow the sys-
tem to converge, with equilibrium properties calculated
over the remaining time. We estimate the uncertainty in
the energy (E) and pressure (P) by applying the blocking
method (Flyvberg and Petersen, 1989). Tests of conver-
gence with respect to system size (70 and 336 atom super-
cells), run duration (6 ps), initial configuration (strained
ringwoodite) and k-point sampling (2 � 2 � 2 Monkhorst
and Pack (1976) grid) show that variations are well within
the mean statistical uncertainty of the simulations
(rE = 8.8 kJ/mol; rP = 1.5 GPa). Slow cooling over
3000 fs from 6000 to 3000 K showed no cooling rate depen-
dence of the thermodynamic or structural properties.

Two corrections are applied to the pressures calculated
in the simulations as follows:

P ðV Þ ¼ P MDðV Þ þ P PulayðV Þ þ P empðV Þ: ð1Þ

We compute the Pulay correction as

P PulayðV Þ ¼ P SðV ; Ecut ¼ 600 eVÞ � P SðV ; Ecut

¼ 400 eVÞ; ð2Þ

where PS is the static pressure of the fully relaxed structure
of forsterite computed with a 2 � 2 � 2 Monkhorst Pack k-
point mesh, and 600 eV as has been found in previous
studies to yield fully converged results (Karki et al.,
2001). We find that PPulay increases monotonically from
2.6 GPa at V/VX = 1.0–5.1 GPa at V/VX = 0.5. Values cal-
culated for different atomic configurations obtained from
the simulations, as well as for wadsleyite and ringwoodite,
differ from the forsterite value by less than 0.2 GPa. The



Fig. 1. Snapshots of the simulated liquid at 3000 K, for volumes V/VX = 1.0 and V/VX = 0.5. The uncompressed structure is very open, with
Si almost entirely fourfold coordinated. Tetrahedra are mostly free-floating, with dimers and a four-membered chain also visible. The
compressed structure is more densely packed, with Si mostly sixfold coordinated. Polyhedra are highly polymerized, some sharing edges. Free
oxygen atoms (red spheres) are less abundant at higher pressures. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this paper.)
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empirical correction accounts for the well known and sys-
tematic over-binding of LDA (Karki et al., 2001; Oganov
et al., 2001) and is computed as

P emp ¼ �P SðV exp; Ecut ¼ 600 eVÞ; ð3Þ

where Vexp is the experimental zero-pressure volume of for-
sterite at static conditions computed via the thermodynamic
model of Stixrude and Lithgow-Bertelloni (2005). For for-
sterite we find Pemp = 1.6 GPa. Values calculated for wads-
leyite and ringwoodite are 1.4 and 1.7 GPa, respectively.

We fit the simulation pressure and internal energy results
to the Mie-Grüneisen equation of state,

P ðV ; T Þ ¼ P CðV ; T 0Þ þ
cðV ÞCV ðV Þ

V
T � T 0½ �; ð4Þ

EðV ; T Þ ¼ E0 þ ECðV ; T 0Þ þ CV ðV Þ T � T 0½ �; ð5Þ
P CðV ; T 0Þ ¼ 3K0f ð1þ 2f Þ5=2 1þ a1f þ � � �½ �; ð6Þ

ECðV ; T 0Þ ¼ T 0

Z V

V 0

cðV 0ÞCV ðV 0Þ
V 0

dV 0

þ 9K0V 0f 2 1

2
þ a1

3
f þ � � �

� �
; ð7Þ

a1 ¼
3

2
K 00 � 4
� �

; ð8Þ

f ¼ 1

2

V 0

V

� �2=3

� 1

$ %
; ð9Þ

where the expression for the internal energy follows from
the Eulerian finite strain expansion of the Helmholz free en-
ergy, F, (Birch, 1952; Stixrude and Bukowinski, 1990), the
Euler relation, E = F + TS, and the Maxwell identity (oS/
oV)T = (oP/oT)V. E0, V0, K0, and K 00 are, respectively, the
internal energy, volume, isothermal bulk modulus (KT),
and its first pressure derivative at zero pressure and temper-
ature T0. The isochoric heat capacity (CV) and Grüneisen
parameter (c), are determined from our simulations as the
dependence of internal energy and pressure on temperature
at constant volume, and are found to be linear to within our
resolution:

CV ¼
oE
oT

� �
V

; ð10Þ

c
V
¼ oP

oE

� �
V

: ð11Þ

The volume dependence of CV and c are described accu-
rately as

CV ðV Þ ¼ CV ðV X Þ þ C0V
V

V X
� 1

� 	
þ � � � ; ð12Þ

cðV Þ ¼ cðV X Þ þ c0
V

V X
� 1

� 	
þ � � � : ð13Þ

We estimate the uncertainty in a thermodynamic quantity
at a given volume and temperature by repeated fitting of
the equation of state to a Monte-Carlo sampling of the sim-
ulation data within its error estimates (values converge after
about 104 iterations).

The melting curve is computed via the Clausius–Clapey-
ron relation

oT M

oP
¼ DV

DH=T M

; ð14Þ

where the volume and enthalpy differences are taken from
our simulations, and the integration constant is set to the
experimental melting point at ambient conditions
(2163 ± 25 K; Bowen and Andersen, 1914). This hybrid ap-
proach, in which we take only the initial melting tempera-
ture from experiment, and compute the melting
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Fig. 2. Equation of state of liquid Mg2SiO4. FPMD results are
shown by the blue (3000 K), green (4000 K) and red (6000 K)
circles, with the Mie-Grüneisen equation fit to these results shown
by the colored lines. Note that the V/VX = 0.5; 3000 K point is a
glass not included in the fit. A thermal pressure coefficient that
increases on compression results in isotherms diverging upon
compression. (Inset) FPMD equation of state of forsterite at 1000,
2000 and 3000 K, results shown by squares, Mie-Grüneisen fit by
solid blue lines. The broken line is the 3000 K liquid isotherm,
which crosses the 3000 K forsterite isotherm close to V/VX = 0.8.
The uncertainty in the pressure is similar to the size of the symbols.
(For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this paper.)
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temperature at all other pressures from our simulations is
much more efficient than the fully first principles determina-
tion of melting temperatures (Sugino and Car, 1995; Alfe,
2005). Moreover, our approach is justified by the good
agreement with experimental melting temperatures found
in extremely demanding fully first principles computations
of melting, which have not yet been attempted on systems
as complex as forsterite. In order to compute the melting
curve, we compare the properties of the liquid and the solid
at constant pressure. This is accomplished via interpolation,
and the error in the volume is estimated from that in the
pressure as

rV ¼
oV
oP

� �
T

rP : ð15Þ

Our forsterite simulations allow the determination of the
mean-square displacement of all the atoms (hurmsi) as a
function of pressure and temperature. Together with the
mean inter-atomic distance (a), the Lindemann law melting
curve can be calculated in its original formulation (Linde-
mann, 1910)

fc ¼
hurmsi

a
; ð16Þ

by determining the value of the constant critical fraction (fc)
at the experimental ambient melting point (Gilvarry, 1956).

We calculate the theoretical Hugoniot pressure (PH),
temperature (TH) and internal energy (EH) at a given vol-
ume (VH) by iteratively solving Eqs. (4) and (5) to satisfy
the Rankine–Hugoniot relation,

EH � ERð Þ ¼ � 1

2
P H þ P Rð Þ V H � V Rð Þ; ð17Þ

where ER and VR is the internal energy and volume of the
unshocked sample at reference pressure PR and tempera-
ture TR.

The self-diffusion coefficient DN for the N-particle peri-
odic system is computed via

DN ¼ lim
t!1

½rðtÞ�2
D E

6t
; ð18Þ

where h[r(t)]2i is the mean-square displacement. The pres-
sure and temperature dependence of DN is described by
the Arrhenius relation,

DN ðP ; T Þ ¼ D0
N exp �Ea þ PV a

RT

� 	
; ð19Þ

where Ea and Va are the activation energy and volume. We
account for finite size effects in the periodic system by
applying a correction based on the Kirkwood–Riseman the-
ory of polymer diffusion (Yeh and Hummer, 2004; Zhang
et al., 2004). The diffusivity for an infinitely large system
is calculated as

D1 ¼ DN þ
kBT n
6pgL

; ð20Þ

where DN is the diffusivity from the N-particle simulation, n
is a constant (�2.837297), L is the size of the box and g is
the viscosity of the liquid. The viscosity is estimated by the
Eyring relation
g ¼ kBT
D1k

; ð21Þ

where k was found by Lacks et al. (2007) to have a value of
16 RO for Mg2SiO4 liquid, RO = 1.4 Å being a canonical va-
lue for the ionic radius of oxygen.

3. RESULTS

3.1. Equation of state

We find the third order expansion in f (Eqs. (4) and (5))
to be sufficient to represent the equation of state results
(Fig. 2), with the isochoric heat capacity (CV) and Grünei-
sen parameter (c) as linear functions of volume (Eqs. (12)
and (13); Fig. 3). Values of the parameters in Eqs. (4)–
(13) for liquid and forsterite are reported in Table 1. Tables
2 and 3 compare theoretical and experimental values for li-
quid and solid, respectively.

Our computed values of the physical properties of the li-
quid at the ambient melting point are consistent with previ-
ous experimental data (Stebbins et al., 1984; Bottinga, 1985;
Lange and Carmichael, 1987; Rivers and Carmichael, 1987;
Rigden et al., 1989; Lange, 1997; Tangeman et al., 2001; Ai
and Lange, in press). Agreement with the volume, thermal
expansivity and bulk modulus is excellent. The computed
value of K 00 is much larger than a previous estimate based
on fusion curve analysis, and more similar to values found
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with the values calculated from experimental data (dashed line;
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rude and Lithgow-Bertelloni, 2005) is higher by a value similar to
the increasing trend in the liquid. (For interpretation of the
references to color in this figure legend, the reader is referred to the
web version of this paper.)

Table 1
Equation of state fit parameters for Eqs. (4)–(13)

Mg2SiO4 liquid Forsterite

T0 (K) 3000 1000
V0 (cm3/mol) 57.8 (3) 44.8 (2)
K0 (GPa) 19 (3) 101 (7)
K 00 6.2 (5) 5.4 (7)
CV (VX) (NkB) 4.29 (3) 3.10 (2)
CV
0 0.68 (16) 0.05 (8)

c(VX) 0.64 (6) 1.4 (2)
c
0 �1.2 (2) 1.8 (1.2)

Table 2
Comparison of liquid equation of state to experimental data, at
T = 2163 K and P = 0 GPa (except heat capacity values, refer to
references in footnote)

LDA Experiment

V 0 (cm3/mol) 53.55 53.5 (2)a

52.4 (2)b

K0 (GPa) 23 (8) 9.5 (4)b

24.3 (1)c

27(1)d,*

59e

K 00 7 (1) 3.75e

6.9f,�

a (10�6 K�1) 121 (50) 122 (7)a

105 (5)b

CV (NkB) 4.4 (5) 3.7 (4)b,g,�

4.9 (3)b,h,e

c 0.6 (1) 0.22 (4)a,b,h

0.56 (3)a,c,h

0.74 (4)a,c,g

aLange (1997); bLange and Carmichael (1987); cAi and Lange (in
press); dRivers and Carmichael (1987) (*KS); eBottinga (1985);
fRigden et al. (1989); (�K 00 for CaMgSi2O6 liquid); gTangeman et al.
(2001) (�Supercooled liquid at 1040–1773 K); hStebbins et al. (1984)
(e1200–1850 K.)

Table 3
Comparison of crystalline equation of state with experimental
values computed from the model of Stixrude and Lithgow-
Bertelloni (2005) at T = 1000 K and P = 0 GPa

LDA Experiment

V0 (cm3/mol) 44.8 (2) 44.5
K0 (GPa) 101 (7) 113.4 (2)
K 00 5.4 (7) 4.6 (2)
a (10�6 K�1) 44 (10) 35 (1)
CV (NkB) 3.10 (3) 2.92 (3)
c 1.1 (3) 1.0 (3)
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for other silicate liquids by direct measurement of the equa-
tion of state (Rigden et al., 1989). Our value of the heat
capacity lies between two previous experimental estimates.
Our value of V0 is very similar to that (57.9 cm3/mol) found
by Lacks et al. (2007) using empirical potentials. However,
with compression their computed pressure deviates system-
atically and increasingly from our predictions, being
1.4 GPa less at the smallest volume of their study
(33.5 cm3/mol) and 3000 K.

We find that liquid state isotherms diverge upon com-
pression: the thermal pressure coefficient B ¼ oP

oT


 �
V
¼ cCV

V
increases as the volume decreases. The isochoric heat
capacity decreases from 4.4NkB at V/VX = 1.0–3.7NkB at
V/VX = 0.5, and the Grüneisen parameter of the liquid in-
creases from 0.6 to 1.2 over the same range of compression
(Fig. 3), in contrast to the behavior of crystalline forsterite
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for which CV remains essentially constant at a value of
about 3.1NkB and the Grüneisen parameter decreases on
compression. Along the 3000 K isotherm, the enthalpy dif-
ference between liquid and solid decreases steadily, while
the difference in volume reveals a density crossover at
16 ± 3 GPa (Fig. 2, inset). The pressure of the density
crossover decreases with decreasing temperature.

3.2. Melting curve

We find that the melting temperature reaches a maxi-
mum of T = 2550 K at P = 13 GPa, well within the forste-
rite stability field (Akaogi et al., 1989), and has a negative
slope at higher pressures as a result of a density crossover
(Fig. 4). The entropy and volume of fusion at ambient con-
ditions (DH/TM = 0.95 ± 0.04NkB, DV = 5.7 ± 0.1 cm3/
mol) agree with experimental estimates (DH/TM = 0.91 ±
0.16NkB, Navrotsky et al., 1989; DV = 5.2 ± 0.6 cm3/mol,
Lange and Carmichael, 1987, Lange, 1997). The entropy
of fusion (DH/TM) along the melting curve decreases to
0.75NkB at 20 GPa, significantly lower than the entropy
of melting of MgSiO3 perovskite (�1.5NkB) found in a pre-
vious simulation study (Stixrude and Karki, 2005).
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(A89). The Lindemann law melting curve obtained from the root
mean square displacement hurmsi in solid forsterite is also shown
(dashed line). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this
paper.)

density of anhydrous B is estimated by ideal mixing of periclase
(Karki et al., 2000) and forsterite.
Experimentally determined melting curves of forsterite
disagree with one another above 10 GPa (Ohtani and
Kumazawa, 1981; Presnall and Walter, 1993). At high pres-
sures, our melting curve is in excellent agreement with the
measurements of Presnall and Walter (1993), while at lower
pressures it is slightly higher than the experimental mea-
surements of both Davis and England (1964) and Ohtani
and Kumazawa (1981).

Experimental evidence shows that, towards the high
pressure end of the forsterite stability field, forsterite melts
incongruently to a more silica-rich liquid (Ohtani and
Kumazawa, 1981; Kato and Kumazawa, 1985; Presnall
and Gasparik, 1990) and either anhydrous B or periclase.
Fig. 5 illustrates that a more silica-rich liquid is denser than
both forsterite and Mg2SiO4 liquid, though less dense than
crystalline anhydrous B and periclase (Karki et al., 2000).
Therefore partial melting of forsterite at high-pressure pro-
duces a liquid denser than crystalline forsterite. The liqui-
dus phases on Mg2SiO4 composition at the base of the
upper mantle (periclase and anhydrous B) are denser than
the liquid.

The mean hurmsi in forsterite varies between 0.05 Å2 at
1000 K and 0.3 Å2 at 3000 K, with a weak volume depen-
dence of about 0.0065 Å2 mol cm�3. Our Lindemann melt-
ing curve computed from interpolated values of hurmsi
(Fig. 4), shows poor agreement with experimental data
and fails to capture the slope as well as its change with pres-
sure (curvature) seen in both our FPMD results as well as
the experimental data (Presnall and Walter, 1993).

3.3. Mg2SiO4 Hugoniot

We compare our theoretical Hugoniot for Mg2SiO4 li-
quid, together with Hugoniots for a partially molten sample
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of periclase + MgSiO3 liquid (Stixrude and Karki, 2005),
and solid phase assemblages perovskite + periclase
(Pv + Pe), post-perovskite + periclase (PPv + Pe) and sti-
shovite + periclase (St + Pe) (Stixrude and Lithgow-Bertel-
loni, 2005), to the published high-pressure shock data for
forsterite and wadsleyite (Jackson and Ahrens, 1979; Watt
and Ahrens, 1983; Brown et al., 1987a,b; Luo et al., 2004;
Mosenfelder et al., 2007) (Fig. 6).

Pressure–density and temperature measurements on
the forsterite Hugoniot agree well with our computed
Hugoniots of the sub-solidus assemblage (PPv + Pe) at
pressures below 150 GPa, a mixture of periclase and
Wa
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Fig. 6. Hugoniot curves calculated using the thermodynamic model
assemblages (Pv, perovskite; PPv, post-perovskite; Pe, periclase; St, stisho
mixture of Pe and MgSiO3 liquid (Stixrude and Karki, 2005), compared
wadsleyite (Wa) (WA83, Watt and Ahrens, 1983; JA79, Jackson and
temperature shock measurements of forsterite and olivine (Fo90) (Luo et
Mosenfelder et al. (2007).
MgSiO3 liquid between 150 and 170 GPa, and with pure
Mg2SiO4 liquid at higher pressures. We find that the
pressure–volume relation on the wadsleyite Hugoniot
(there are no temperature measurements) is consistent
with the sub-solidus assemblage at 140 GPa, and pure li-
quid or a mixture of periclase and MgSiO3 liquid at
200 GPa. Shot #349 on wadsleyite is not consistent with
any of our computed Hugoniots. The discrepancy with
Mg2SiO4 liquid for wadsleyite shot #349 (almost
50 GPa) is much larger than the uncertainty in the simu-
lated pressure (1.4 GPa), which includes the uncertainty
estimates for PPulay and Pemp (Eq. (1)).
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of Stixrude and Lithgow-Bertelloni (2005) for crystalline phase
vite), as well as Mg2SiO4 liquid (this study) and a partially molten

to the pressure-volume shock measurements for forsterite (Fo) and
Ahrens, 1979; M07, Mosenfelder et al., 2007), and to pressure–
al., 2004). Data point labels refer to the shot numbers assigned by
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3.4. Liquid structure

We define the bond length as the mode of the first peak
in the partial radial distribution function (RDF) (McQuar-
rie, 2000). Upon compression, the Si–O bond length in-
creases initially from a value of 1.63 Å (Fig. 8) to 1.64 Å
at V/VX = 0.7 and then decreases to 1.62 Å at 3000 K
and the highest compression considered. Over the same
compression interval the Mg–O bond length decreases from
1.97 to 1.83 Å. The mode and median of the first peak di-
verge, as the radial distribution function broadens with
increasing distortion of the polyhedra on compression.
Si–O and Mg–O bond lengths and coordination numbers
at low pressure compare very well with experimental data
(Kohara et al., 2004) on the structure of Mg2SiO4 glasses
(Table 4).

The coordination number (Zab) is computed as the inte-
gral of the radial distribution function gab(r)

Zab ¼ 4pq
Z rcut

0

gabðrÞr2 dr; ð22Þ
Table 4
Comparison of simulated liquid structure to experimental data
(Kohara et al., 2004)

LDA (V/VX = 1.0;
T = 3000 K)

Experiment (P = 0GPa;
T = 300 K glass)

dMg–O 1.97 Å 2.00 Å
dSi–O 1.63 Å 1.63 Å
ZMg–O 5.1 5.0
ZSi–O 4.1 4.1

[4]Si0 22% � 50%

[4]Si1 38% � 50%

[4]Si2 21% —

[4]Si3 10% —
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Fig. 7. (a) ZSi–O (squares) and ZMg–O (circles) increase continuously as
compression whereas Mg–O bond lengths decrease monotonically. Tem
4000 K (green) and 6000 K (red). (For interpretation of the references to c
this paper.)
where q is the density and rcut is the position of the first
minimum in gab. ZSi–O increases from 4.1 to 6.0, while
ZMg–O increases from 5.1 to 7.7 (Fig. 7) on twofold com-
pression. The smooth and nearly linear increase on com-
pression is facilitated by gradual changes in the
abundances of the various coordination species, of which
a mixture is present at all conditions studied (Fig. 8). The
variety of local coordination environments may also be
characterized by the O–Si coordination number (ZO–Si),
which shows relative abundances changing upon compres-
sion (Fig. 9). At low pressure, the liquid has �15% (or
0.6 O per Si) bridging oxygens (OB; ZO–Si = 2) and �70%
(2.8 O per Si) non-bridging oxygens (ON; ZO–Si = 1). The
remaining 15% of O atoms are not bound to Si (OF; ZO–

Si = 0), and are hence referred to as ‘free oxygens’ (Hess,
1980) (red spheres in Fig. 1). Changes in the concentrations
of the various O and Si coordination species with pressure
are associated with increased polymerization and Si
coordination.

Analysis of atomic trajectories reveals that coordination
increases through the following two reactions:

ONþ½Z�SiOB $ ½Zþ1�SiOBþ1; ð23Þ
OFþ½Z�SiOB $ ½Zþ1�SiOB : ð24Þ

We describe the local structure about Si atoms as ½Z�SiOB ,
with [Z] the coordination number and OB the number of
bridging oxygens. Our notation is a generalization of the
commonly used QOB notation, which specifies the number
of bridging oxygens in systems for which Z = 4. Reactions
(23) and (24) are illustrated by the increase in the propor-
tion of bridging oxygens as the proportion of free oxygens
decreases on compression (Fig. 9). Bridging oxygens are al-
most never added to the coordination shell of another sili-
con and therefore do not contribute significantly to the
coordination increase, consistent with Raman, infrared,
Mg

Si

b
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a function of volume. (b) Si–O bond lengths initially increase on
perature is indicated by the color of the symbols: 3000 K (blue),
olor in this figure legend, the reader is referred to the web version of
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and nuclear magnetic resonance spectroscopic observations
in alkali-silicate glasses (Wolf et al., 1990; Xue et al., 1991)
showing coordination increases primarily at the expense of
non-bridging oxygens. Examples of reactions (23) and (24)
are illustrated in Fig. 10 in which [4]Si1 is shown transform-
ing into [4]Si0 (top panel), and [4]Si3 to [3]Si2 and then to [5]Si4

(bottom panel).

3.5. Transport properties

Characteristic bond lifetimes calculated from the bond
breaking rate (Kubicki and Lasaga, 1991) reveal a strong
decrease in the average Si–O bond lifetime from 2000 fs
at ambient pressure and 3000 K to 500 fs at high-pressure.
Mg–O bond lifetimes increase only slightly over the same
pressure range from 300 to 400 fs. Over the same compres-
sion range, the long lifetimes of OF and ON at low pressure
(�1500 fs at 3000 K) decrease to values similar to that of
OB (500 fs at 3000 K) which remain essentially unchanged
as a function of volume.

Self-diffusion coefficients increase with temperature and
decrease with pressure (Fig. 12), and do not show the initial
increase with increasing pressure seen in more highly poly-
merized silicate liquids (Angell et al., 1982; Karki et al.,
2007): The pressure and temperature dependence is well de-
scribed by the Arrhenius relation. Fit parameters for Mg,
Si, O and total self-diffusion (Table 5) are found to be inde-
pendent of temperature over the range investigated.

By comparing with longer runs, we find 2400 ergodic time-
steps to be sufficient to determine robust values of the self-dif-
fusion coefficient values from the mean square displacement
h[r(t)]2i (Fig. 11), for all simulations except the V/VX = 0.5;
T = 4000 K and V/VX = 0.6; T = 3000 K points, for which
5000 timesteps are sufficient. The V/VX = 0.5; T = 3000 K
point is not included in the analysis of thermodynamic and
transport properties, because we find it to be a glass:
h[r(t)]2i flattens out at 0.25 Å2, similar to values found in
the solid at low pressure, though somewhat higher than solid
values extrapolated to V/VX = 0.5 (0.17 Å2).

Eq. (20) implies a N�1/3 dependence of diffusivity on sys-
tem size. The corrected total diffusivity at V/VX = 1.0;
T = 3000 K, (D1 = 6.13 ± 0.6 � 10�9 m2/s) calculated with
Eq. (20) is similar to the value (D1 = 6.7 ± 0.7 � 10�9 m2/s)
we find from the linear relation
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Table 5
Self-diffusion coefficient Arrhenius relation (Eq. (19)) fit parameters

D0
1 ð10�9m2=sÞ D0

N ð10�9m2=sÞ Ea (kJ/
mol)

Va (cm3/
mol)

Total 485 (70) 339 (49) 106 (5) 0.88 (7)
Si 476 (108) 332 (76) 124 (8) 0.76 (9)
Mg 359 (69) 251 (48) 87 (6) 1.00 (7)
O 560 (85) 391 (59) 113 (6) 0.87 (8)
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DN ¼ D1 þ aN�1=3 ð25Þ

fit to our results for 112 and 336 atoms.

4. DISCUSSION

The structure of Mg2SiO4 liquid differs markedly from
that of crystalline forsterite. Whereas in forsterite all O
are bound to Si, with SiO4 tetrahedra isolated from one an-
other (entirely Q0 or [4]Si0 in our notation), in the liquid free
oxygens and tetrahedral linkages (QP1or [4]SiP1) appear.
Free oxygens are also present in the high-pressure crystal-
line polymorph wadsleyite, in which all tetrahedra exist as
dimers (Si2O7). The difference in structure between
Mg2SiO4 liquid and forsterite is important as it accounts
for the very large enthalpy of vitrification of Mg2SiO4
e (fs)
0 250 300 350 400

here around a reference silicon atom (at 0 Å), illustrates dynamic
dicated by the color: free oxygen, purple; non-bridging oxygen, navy
sium, orange; silicon, red. In the top panel a free oxygen approaches

oxygen (Eq. (24)). Coincident with this process a bridging oxygen
me non-bridging (bound to a different silicon) (reverse of Eq. (23)).
sform between bridging and non-bridging. Also note the coupled
ns with the reference silicon. (For interpretation of the references to
is paper.)
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(Kohara et al., 2004) and the failure of the Lindemann law
in this system. Evidence of dimers in amorphous Mg2SiO4

had previously been obtained only for the glass, via vibra-
tional spectroscopy, nuclear magnetic resonance, and X-
ray diffraction (McMillan, 1984; Williams et al., 1989; Coo-
ney and Sharma, 1990; Williams, 1990; Kohara et al.,
2004). While experimental studies have found evidence only
for Q0 and Q1 species, we also find a substantial number of
Q2 and Q3. We find that the abundance of Q2 and Q3 spe-
cies decreases with decreasing temperature so that they may
not be detectable in the glass. The liquid also differs from
the structure of crystalline phases in having ZMg–O = 5.1,
substantially less than that in the tetrahedrally coordinated
crystalline polymorphs (ZMg–O = 6), which accounts for the
volume of melting.
The structure of the liquid remains distinct from that of
crystalline phases at elevated pressure. The Si–O (and Mg–
O) coordination number of the liquid increases monotoni-
cally with compression over the entire range studied, in
sharp contrast to that of the crystalline phases in which
the coordination number remains ZSi–O = 4 up to the trans-
formation of ringwoodite to perovskite and periclase near
24 GPa, where it increases to ZSi–O = 6. Liquid structure
is also distinct in that it shows an initial increase in Si–O
bond length on compression, which we attribute to the in-
crease in coordination number.

We suggest an alternative interpretation of the dynamic
compression of forsterite that is consistent with our com-
puted Hugoniots, the shock temperature measurements of
Luo et al. (2004) and the pressure–volume data of Mosenf-
elder et al. (2007) except the wadsleyite portion of shot
#349. Dynamic loading of forsterite produces incongruent
melting to periclase and a more silica-rich liquid at 150–
170 GPa. At higher pressures, pure Mg2SiO4 liquid is pres-
ent on the forsterite Hugoniot, while at lower pressures,
sub-solidus assemblages (PPv + Pe) are present on the
Hugoniot.

This picture has important implications for the inter-
pretation of the wadsleyite Hugoniot (Mosenfelder
et al., 2007) and of sound speed data (Brown et al.,
1987a,b). We find the wadsleyite Hugoniot to be 1000–
1400 K colder than that of forsterite at 150–200 GPa. It
is therefore likely that even the highest pressure wadsley-
ite point of Mosenfelder et al. (2007) (shot #350) is either
sub-solidus or only partially molten. We therefore suggest
that determination of a liquid phase value of the Grünei-
sen parameter based on these data should be treated with
caution. While Mosenfelder et al. (2007) find that the
Grüneisen parameter increases on compression in the li-
quid, in general agreement with the trend that we find,
their value (2.6) is much higher than our predictions.
This discrepancy is explained if the measured portion of
the wadsleyite Hugoniot is less than completely molten.
Our interpretation cannot account for shot #349 on
wadsleyite of Mosenfelder et al. (2007) which lies at
much lower pressures than all our computed Hugoniots.
Sound speed measurements have been interpreted to indi-
cate melting on the forsterite Hugoniot above 150 GPa.
The measured value of the sound speed at 168 GPa
(10.8 km/s) is considerably less than what we find at
the same pressure: 11.5 km/s varying little with tempera-
ture from 3000 to 6000 K. The smaller experimental value
may be due to incongruent melting: a solid–liquid mix-
ture with proportions varying as the shock front passes.
Because the experimental sample may be only partially
molten, the value of the Grüneisen parameter determined
(2.1), which is substantially higher than our predicted va-
lue, may not be representative of the liquid state. Indeed,
at higher pressures (195 GPa) the experimental sound
velocity (12.2 km/s Brown et al., 1987a) agrees well with
extrapolation of our results (12.4 ± 0.2 km/s), consistent
with complete melting in the shocked sample.

The behavior of the Grüneisen parameter that we calcu-
late in the liquid—increasing on compression—is contrary
to that of all mantle crystalline phases, for which the
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Grüneisen parameter decreases with compression (Fig. 3).
This behavior was first recognized in silicate liquids by Stix-
rude and Karki (2005), and has also been found in studies
of non-silicate liquids (Davis and Gordon, 1967; Knopoff
and Shapiro, 1970; Boehler and Kennedy, 1977; Vocadlo
et al., 2003; Karki et al., 2006). The increase of the Grünei-
sen parameter on compression in the liquid can be under-
stood as follows. While c decreases with compression in
crystalline phases, it increases across pressure induced
phase transitions associated with an increase in Si coordina-
tion (Jeanloz and Roufosse, 1982) (Fig. 3). Since the coor-
dination number increases gradually and continuously in
the liquid, we expect the Grüneisen parameter also to in-
crease on compression as it adopts values characteristic of
higher coordinated states.

Increasing coordination is further expressed as a density
crossover, providing fundamental insight into the contrast-
ing behavior of complex liquids and solids upon compres-
sion. Our results reveal the origin of olivine flotation in
compositions thought to be representative of an initial mag-
ma ocean (Stolper et al., 1981; Agee and Walker, 1988;
Ohtani, 1988; Trønnes and Frost, 2002). The density cross-
over originates primarily in the structure of the liquid and
occurs, even in forsterite composition, at 13 GPa along
the solidus, where the Si–O coordination number of the li-
quid is 4.4, greater than that in the crystal. In natural com-
positions the density of the liquid will be further enhanced
relative to that of coexisting solids by the incompatibility of
abundant heavy elements, such as Fe and Ca. The isochem-
ical density crossover that we find supports the notion that
buoyantly stable silicate melt may exist at the base of the
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Fig. 12. Self-diffusion coefficient (DN) of Mg2SiO4 liquid, fit with an Ar
Gray lines indicate the Arrhenius fit to diffusivities corrected for finite
empirical potential calculation results of Lacks et al. (2007) (L07).
olivine stability field in the mantle at 410 km depth (Reve-
naugh and Sipkin, 1994).

The discrepancy between our melting curve and experi-
mental data at low pressures may be related to uncertainty
in the ambient melting point of forsterite. To illustrate, also
shown in Fig. 4 is an alternative melting curve obtained by
using T M0

¼ 2140 K, which represents the lower bound of
the quoted uncertainty for the ambient melting temperature
determined by Bowen and Andersen (1914). Integration of
the Clausius–Clapeyron Eq. (14) based on our results and
this value of T M0

improves agreement with the data of Da-
vis and England (1964), while maintaining agreement at
high pressure with the data of Presnall and Walter (1993).

The failure of the Lindemann law to capture the change
in slope of the melting curve with pressure is not surprising,
since it assumes that the structure of the liquid remains con-
stant along the melting curve (Ross, 1969). The changes in
liquid structure that we find reduce the volume of the liquid
relative to the Lindemann picture, causing the melting slope
to decrease rapidly with pressure. We thus reinforce the
overall conclusion of Wolf and Jeanloz (1984) that the
Lindemann criterion should not be used to extrapolate
melting temperatures of mantle phases, although those
authors found good agreement in the case of forsterite be-
tween the Lindemann law and the data of Ohtani and
Kumazawa (1981), in notable contrast to other minerals
considered in their study, and with our findings.

The short lifetime of the Mg–O bond relative to that of the
Si–O bond is consistent with the smaller activation energy
and higher self-diffusion coefficients found for Mg compared
to Si (Table 5). While our activation energy values are similar
Mg

O

0 50 100 150 200
Pressure (GPa)

00

L07

rhenius relation (Eq. (19)). Fit parameters are reported in Table 5.
system size through Eqs. (20) and (21). Open diamonds show the
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to those obtained by Kubicki and Lasaga (1991), our finite
size-corrected self-diffusion coefficients are much larger.
Conversely, our low-pressure self-diffusion coefficients are
similar to results of Lacks et al. (2007), but the pressure
dependence of their results implies a higher activation vol-
ume (Fig. 12). These previous simulations are based on
semi-empirical interatomic potentials, and differences likely
reflect uncertainties related to the construction of inter atom-
ic force models in the earlier studies, emphasizing the impor-
tance of our parameter free first principles simulations. No
experimental values of self-diffusion in forsterite liquid exist;
data that have been obtained are on more silica-rich compo-
sitions. For example, the experimental value of the activation
energy for diffusion of Silicon and Oxygen in CaMgSi2O6

melt (Kubicki et al., 1990; Reid et al., 2001), is much greater
than our value for forsterite. This difference may reflect the
difference in silica content, and therefore fragility (Angell,
1995) of forsterite versus diopside composition melts, as well
as the lower temperature range over which the experimental
value is obtained.

5. CONCLUSIONS

Our first principles molecular dynamics calculations for
Mg2SiO4 liquid show the Grüneisen parameter and thermal
pressure coefficient increasing upon compression. Compar-
ison of the liquid equation of state to that which we calcu-
late for forsterite shows the presence of a density crossover
at pressures of 12–17 GPa and temperatures of 2000–
3500 K. Along the melting curve we determine by integra-
tion of the Clausius–Clapeyron equation, the density cross-
over is found at 13 GPa, within the stability field of
forsterite. Comparison of our melting curve to an extrapo-
lation of the ambient melting temperature through the
Lindemann law indicates that such extrapolations for sili-
cates cannot yield accurate results, due to significant differ-
ences in structure between the liquid and the solid, and
significant changes in liquid structure on compression, pri-
marily expressed as a continuous increase in coordination
and polymerization. Comparison of the liquid equation of
state to the available high-pressure shock wave data is con-
sistent with partial melting along the forsterite Hugoniot at
pressures above 150 GPa, and complete melting at pres-
sures above 170 GPa; and sub-liquidus conditions on the
wadsleyite Hugoniot up to the highest pressures measured
to date (200 GPa). Liquid diffusivities increase with temper-
ature and decrease monotonically with pressure, and are
found to be well described by the Arrhenian relation.
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