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Tight-binding computations of elastic anisotropy of Fe, Xe, and Si under compression
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A tight-binding total-energy model parametrized to first-principles linearized augmented plane-wave com-
putations is applied to study elasticity and elastic anisotropy in Fe, Xe, and Si at high pressures. We find that
the model works well in reproducing the compression, electronic structure, phase relations, and elasticity in
these diverse materials. In Xe, for example, the same parametrization works well over a fivefold compression
range from a van der Waals solid to a dense metal. We find that the cubic close-packed structures are all more
anisotropic than hexagonal close packed and that at high pressures the elastic anisotropy approaches that of any
central force nearest-neighbor model. We find that long-range, nonorthogonal parametrizations are necessary
for greatest accuracy.@S0163-1829~97!04738-3#
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INTRODUCTION

In spite of great strides in applying self-consistent el
tronic structure and total-energy methods within dens
functional theory~DFT! to real problems in materials rang
ing from phase diagrams to melting to mapping of phon
potential surfaces, a faster but still reliable method is hig
desirable to explore dynamical properties of materials ra
ing from elasticity to phase transitions, and to simulate la
systems. Much progress has been made in developing t
binding total-energy methods~TBTE! that differ from self-
consistent calculations in that a model is developed for
bonding interactions in terms of site centered atomiclike
bitals. Here we further develop and describe a model p
sented by Cohen, Mehl, and Papaconstantopoulos1,2 ~CMP!
that has an accuracy comparable to self-consistent calc
tions, but at greatly enhanced speed so that complex p
lems and materials may be studied. Here we show that
method is general for arbitrary elements by giving resu
and predictions over large ranges of compression for F
transition-metal, Si, which changes from a covalent semic
ductor to a close-packed metal with pressure, and Xe, wh
changes from an atomiclike rare gas to a wide-band m
with pressure.

Elastic properties are important in fields ranging fro
geophysics3 to materials research, chemistry, and physi
Elastic anisotropy, characterized, for example, by the diff
ences in sound speed in various directions through diffe
crystals, has not been systematically studied, especially
regard to changes with compression. The strain energ
important in the development of textures and characte
phase transitions,4 in transition temperatures,5 and for the
ground state.6 We compare our results with those obtain
from a simple nearest-neighbor central forces model, wh
the elastic anisotropy is dependent only on structure and
on the force constants at low pressures.7

I. TIGHT-BINDING TOTAL-ENERGY METHOD

In tight-binding methods, the radial parts of the Ham
tonian and overlap matrices are parametrized. In the t
560163-1829/97/56~14!/8575~15!/$10.00
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center approximation,8 which is followed here, only integrals
between pairs of atoms are included, integrals that involv
potential on one atom and orbitals on two others are
glected, and the potentialVKS is assumed spherically sym
metric around each atom. The Hamiltonian and overlap m
trices can be written as

Hi j ab5(
l

exp@ ik–~Rj l2Ri !#hi j ab lE dVf iaf j b ,

~1!

Oi j ab5(
l

exp@ ik–~Rj l2Ri !#oi j ab lE dVf iaf j b ,

where the integrals are the angular integration for orbitaa
on atomi with orbital b on atomj l ~i and j indicate the atom
in the primitive cell andl is a lattice vector!. Angular mo-
mentum is quantized alongz, the vector from atomj l to
atom i , so that the indicesab are contracted to a total of te
bonding states up tod states,sss, sps, pps, ppp, sds,
pds, pdp, dds, ddp, and ddd. For unlike atoms, addi-
tional termspss, dss, dps, and dpp must also be in-
cluded.

In most tight-binding models the parametersh ando are
fit to results of first-principles band structures9 or are fit
empirically10 for individual interactions in a given crysta
structure. In TBTE methods the total energyE as a function
of the atomic or nuclear positionsr is represented as a sum
of the band-structure termEbs and additional structure
dependent term~s! F:

E@r #5Ebs1F@r #, ~2!

which are often represented as a pair potential plus struct
dependent terms that depend, for example, on lo
coordination.11

In most tight-binding models the eigenvalues are obtain
by solving the secular equation with H and O obtained fro
the parametersh and o. The energy termF is usually ob-
tained by fitting first-principles equations of state and/or e
8575 © 1997 The American Physical Society
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periment. Although there are tight-binding models that
similar in some ways with the present model11–20 there are
significant differences between the present model and pr
ous nonempirical tight-binding total-energy models:~1! there
are no explicit structure-dependent terms;~2! interactions are
only distance dependent—there is no division between
and second neighbors, etc.;~3! parameters are fit simulta
neously to accurate@linearized augmented plane-wav
~LAPW!# electronic structure eigenvalues and total energ
~4! over a range of structures and volumes; and~5! there is
no explicit pair potential here.

A problem arises whenEbs is fit separately from the func
tion F @Eq. ~2!#. The zero of energy,V0 , for a band structure
is arbitrary, so thatEbs contains an unknown structure
dependent term, which arises from theG50 term in the
Fourier expansion of the Coulomb potential, and is cance
by an identical contribution inF@n(r )# in self-consistent cal-
culations. To illustrate the severity of the problem, Fig.
shows the LAPW band-structure energyEbs obtained for hcp
Fe as a function of compression for different choices ofV0 .
If V0 is chosen to be equal to the Fermi levelEF , Ebs is
strongly attractive and the functionF(r ) must be repulsive.
If V0 is equated with the LAPW muffin-tin zero,Vmtz, the
average interstitial potential,Ebs is strongly repulsive and
F(r ) must be strongly attractive. We also found it impossib
to obtain a pair potential that gave the correct ordering
the energies of nonmagnetic bcc, fcc, and hcp iron with
choice thatV05EF .

The band-structure energy thus behaves radically dif
ently with compression depending on the choice ofV0 . The
large differences are illustrated by the third curve in Fig.
which shows the LAPW total energyEtot . The third curve
also represents choosingV0 such thatEbs5Etot , and this is
the most important innovation in the current method. T
choice gives a well-defined energy zero that contains no
bitrary constant.

FIG. 1. LAPW band-structure energy,Ebs, obtained for hcp Fe
as a function of compression for three different choices ofV0 , the
Fermi level EF , the LAPW muffin-tin zeroVmtz, or the value
needed so thatEbs5Etotal1C whereC is a constant. HereC is set
so thatE(P50)50.
e
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Thus we have for the total energy

Etot~r !5(
i

« i8 f @« i8~k!2«F8 ,T#, ~3!

where

« i85« i1$F@n~r !#1C%/Ne , ~4!

and« i are the band eigenvalues,f is the Fermi distribution,
with «F chosen to give the correct number of electronsNe .
The constantC is chosen for convenience so that the ne
band-structure energies are not hugely different from
self-consistent ones.~All physical results are completely in
dependent ofC.! This procedure has the added utility o
eliminating the structure-dependent potentialF@r #, usually a
pair potential plus other terms, from the problem. Inste
one takes the input band structure and shifts the eigenva
by Eq. ~4! so that

Etot5Ebs2C. ~5!

The problem is then reduced to finding a parametrizat
that accurately reproduces not only the band structure,
resented by the« i8 , but also the total energies. Such a p
rametrization was found and tested for several transition
noble metals.1 The hopping Hamiltonianh and overlapo
parameters were parametrized as a function of distance:

Pi5~ai1bir !exp@2ci
2r #j~r !, ~6!

wherei labels each interactions~sss, etc.! and

j~r !5$exp@~r 2r 0!/l #11%21 ~7!

is a universal cutoff function to guarantee that interactio
vanish smoothly at not too greats-distance. We generally
take r 0516.5 bohrs andl 50.5 bohr. Short-range model
are also possible, though less accurate. Here we includes, p,
and d interactions in the two-center approximation, so th
there are 60 parametersai , bi , and ci for the ten Hamil-
tonian and ten overlap Slater-Koster parameters for a m
atomic system.

The treatment of the on-site terms is crucial to obtain
good fits to the shifted eigenvalues. Two different metho
were used. In the first parametrization, which was presen
in Ref. 1 the on-site terms vary as a function of a loc
‘‘density’’ around each atom, given by

rk5(
j

exp@2d
j̃ k̃

2
r #j~r !, ~8!

whered j̃ k̃ depends on atom typesk̃ and j̃ ~ j̃ symbolizes the
type of atomj !. The on-site termsDak for a5s, p, andd
for each atomk were then fitted to a finite strain polynomia

Dak5ea k̃1ga k̃rk
2/31ha k̃rk

4/3. ~9!

This parametrization worked very well for the transition a
noble metals studied in Ref. 1 and worked here as well
Xe and Fe. However, for Si it was difficult to obtain a
accurate fit using this parametrization. This may be due
the fact that we were attempting to fit a very large range
structures for Si, ranging from 4-coordinated Si in the d
mond structure to close-packed metallic structures ove
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56 8577TIGHT-BINDING COMPUTATIONS OF ELASTIC . . .
wide range of compression, whereas the transition me
and Xe were studied primarily for close-packed structure

We have found a parametrization that works well for
and works as well as the previous parametrization for
transition metals and Xe. In this parametrization, we follo
Mercer and Chou12 and Chadi21 and the on-site terms in th
Hamiltonian are given by

Dambm8k5qambm8 k̃1(
j

I ambm8 k̃ j̃ ~r jk!Yam~ r̂ jk!Ybm8~ r̂ jk!.

~10!

This form arises from considering on-site integra
^C i lmuVj uC i l 8m8& for interactions of an orbital on atomi
with the same or another orbital oni with a spherical poten-
tial on atomj . According to Chadi21 these can be contracte
similar to the hopping terms. For example, forpp on-site
terms, Eq.~10! reduces to12,21

Dpzk
5qp k̃1(

j
l jk
2 ~ r̂ jk!I pps~r jk!1@12 l jk

2 ~ r̂ jk!#I ppp~r jk!,

~11!

where l jk
2 ( r̂ jk)5z2/r 2, and I pps(r jk) and I ppp(r jk) are the

distance-dependent terms, represented in our mode
(si j k̃1t i j k̃ r jk)exp@2uijk̃

2 r jk#, where i labels each interaction
type ~sss, etc.!.

A full set of such parameters would give forty on-si
parameters for a monatomic system. We have found ex
lent fits for Si, for which we includeds, p, andd interac-
tions ~see below! using only the diagonal terms correspon
ing to sss, pps, and dds, giving instead twelve on-site
parameters. We found thatpps and ppp were perfectly
anticorrelated leading to instabilities in the least-squares
ting, even though our structure set could in principle dist
guish between these interactions. We thus removedppp
from the on-site parameter set. So our on-site terms are
resented as

Ds5qs1I sss ,

Dpx
5qp1

x2

r 2 I pps ,

Dpy
5qp1

y2

r 2 I pps ,

Dpz
5qp1

z2

r 2 I pps ,

Ddxz
5qd1

x2z2

r 2 I dds ,

Ddyz
5qd1

y2z2

r 2 I dds ,

Ddxy
5qd1

x2y2

r 2 I dds ,

Dd~x22y2!
5qd1

~x22y2!

r 2 I dds ,
ls

,
e

by

l-

t-
-

p-

Dd~3z22r 2!
5qd1

3z22r 2

r 2 I dds . ~12!

The two types of on-site treatments are referred to as on
model I for Eq.~9!, and on-site model II for Eq.~12! below.

Since the parameters are correlated and there are mu
minima in the nonlinear least-squares fit of the eigenval
« i8 , we found it very important to simultaneously fit a set
structures to a single set of parameters, rather than to
form separate fits to different structures and then fit the
havior of the parameters with distance as was done in R
11. We also found it important to fit both the bands and
energies, so that the bands and energies can be individu
weighted. The choice of weights was important in obtaini
a good fit, and energies were weighted 10–200 times
weighting of an individual band. We fit up to 20 000 inp
data ~eigenvalues and energies! so that the parameters ar
well constrained. We programmed analytic derivatives
that the Jacobian was obtained analytically; this also
creased the stability of the fitting procedure as well as s
up the fitting process by orders of magnitude~see Appendix!.

II. LAPW COMPUTATIONS AND TIGHT-BINDING
PARAMETRIZATIONS

Linearized augmented plane-wave22,23 computations were
performed to obtain the band structures~eigenvalues« i! and
total energies over a wide range of compression and for
ferent crystal structures. For the self-consistent calculatio
specialk-point sets were used and were carefully checked
convergence in the total-energy differences between diffe
structures. Extra local orbitals22 (LAPW1LO) were in-
cluded in the LAPW computations so that only one ene
window could be used and still treat the semicore states
curately, and in order to relax the valence states. S
consistent total energies and densities were obtained
very densek-point meshes~16316316 for Fe!. Uniform
regular k-point sets were generated on a coarser grid
used in the least-squares fits; we found it important to c
strain the eigenvalues at high symmetry points in order
obtain proper ordering of the bands in the tight-binding fi
Different uniform meshes were tested and those used
amply converged. Table I summarizes the nonlinear le
squares fits. States up to 2–5 Ry aboveEF were included in
the fits in order to better constrain the individual paramet
of the fits. Since the Hamiltonian includes only 9 states
atom for ans, p, andd state parametrization, and 4 stat
per atom for ans and ap parametrization, it was necessa
to discard states that are not in the domain of the Ham
tonian. This was done using the maximuml character in the
muffin tin for each state from the LAPW computations.

For Fe, nonmagnetic computations were performed,
that the ground state is hcp rather than bcc. The pre
tight-binding model has not yet been generalized to han
magnetic systems. A first-order generalization could be d
similar to the tight-binding model of Zhonget al.24 for Fe.
Our primary interests are in the behavior of Fe at very h
pressures in the non-magnetic fcc and hcp phases, bu
understand Fe at low pressures the nonmagnetic m
would not be sufficient. We used the generalized gradi
approximation25 ~GGA! for Fe since it has been demon
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TABLE I. Summary of self-consistent input and quality of fits. For each structure type is shown the number of structures~e.g., volumes!,
the maximum number of bands fit, the number ofk points, and the volume range. The number in parentheses is the parametri
identification.

Fe ~8014! Fe ~7! Xe ~62! Si ~8014! Si ~10001!
Nonorthogonal Orthogonal Nonorthogonal Nonorthogonal Orthogonal

xc GGA GGA LDA LDA LDA
No. of residuals 9743 11377 6798 32841 32841
No. of parameters 73 (s,p,d) 42 (s,p,d) 73 (s,p,d) 72 (s,p,d) 42 (s,p)
No. of structures 27 32 15 33 33
Structures:
fcc 7, 9, 29 12, 10, 29, 30–90 5, 9, 29, 100–500 7, 4, 72, 60–120 7, 4, 72, 60–120
bcc 7, 9, 29 7, 9, 29, 40–90 5, 9, 29, 100–500 7, 4, 72, 60–120 7, 4, 72, 60–120
bct 6, 9, 59 6, 9, 59, 50
hcp 7, 12, 50 7, 12,50, 40–90 5, 9, 50, 100–500 7, 8, 133, 60–120 7, 8, 133, 60–12
sc 3, 4, 84, 70–120 3, 4, 84, 70–120
Diamond 7, 8, 29, 100–160 7, 8, 29, 100–160
Diamond Raman 2, 8, 65, 110–140 2, 8, 65, 110–140
rms occupied 8 40 21 14 58
Bands~mRyd!
rms energy mRyd 0.63 0.37 0.17 0.23 1.1
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strated to give much more accurate results for Fe than l
density approximation~LDA !,3,26,27including the correct bcc
ground state and an accurate phase transition pressure
bcc to hcp in spin polarized calculations.

Figure 2 shows the GGA LAPW and tight-binding ban
structures of hcp Fe at210 GPa (V580 bohrs3) and at 530
GPa (V540 bohrs3). The same parameter set does a go
job over an extreme range of compression. Figure 3 sh
the total energies for bcc, fcc, and hcp Fe as a function
compression and the energy versus tetragonal strain.
band structures and energies are included in the fit, so Fig
and 3 show the quality of the fit.

Figure 4 shows the LAPW and tight-binding band stru
tures for hcp Xe over a fivefold range of compression. T
same parameter set works well for the occupied states f
low-pressure atomiclike xenon all the way to highly com
pressed metallic state. Figure 5 shows the metallization
havior of hcp Xe from the tight-binding fit compared wit
LAPW. Without spin orbit, LDA gives a metallization pres
sure of;90 GPa, in quite good agreement with experime
However, with spin orbit this agreement worsens28 and it is
necessary to go beyond LDA to regain an accurate met
zation pressure.28,29 However, LDA gives reasonable ene
getics~i.e., compression and elasticity! for Xe, and given the
importance of spin orbit in Xe for metallization, which we d
not include, we have made no attempt to go beyond L
here.

The tight-binding fit somewhat overestimates the dir
gap in Xe; for a detailed study of metallization the ban
could be weighted higher in the fit, probably leading to so
decrease in the quality of the total energies but improvem
in the details of band-gap closure. Figure 6 shows the ene
versus volume for bcc, hcp, and fcc xenon. The agreem
between the LAPW and tight-binding fit spans 3 orders
magnitude of energy scales, from the 15-eV energy sc
over a fivefold compression, to 5-meV structural energy d
ferences atP50. Figure 7 shows pressure versus volum
compared with experiment. We obtained excellent agreem
with the experimental equation of state. We found a ph
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FIG. 2. GGA band structures for hcp Fe at~a! 210 GPa,V
580 bohr3/atom, and~b! 530 GPa,V540 bohrs3. The solid lines
are the LAPW band structure and the dashed are from the no
thogonal tight-binding fit.
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56 8579TIGHT-BINDING COMPUTATIONS OF ELASTIC . . .
transition from hcp to bcc at very high pressures~450 GPa!
previously predicted by McMahan.30

Good fits for Fe and Xe were obtained using on-s
model I @Eq. ~9!#, but in spite of much effort we were no
able to fit Si simultaneously for structures ranging from d
mond to close-packed structures fcc and hcp using this
rametrization. An accurates, p, andd fit was obtained using
on-site model II@Eq. ~10!#. This fit was not as accurate a
those obtained for Fe and Xe probably due to the much m
extended range of structures and compressions studied fo
We also found it difficult to obtain an accurate Raman f
quency for Si, and had to include the Raman distortion in
fit. Still, getting an accurate Raman frequency as well
accurate phase transition pressures was difficult, and it
necessary to adjust the weights repeatedly until an accep
fit resulted. Figure 8 shows the band structures for Si for
diamond structure at low pressures for both nonorthogo
and orthogonal fits compared with LAPW. Agreement is n
as good as for Fe and Xe due to the higher weighting of
total energies for Si. Figure 9 shows the high-pressure
band structures for Si. Although the fit is not as good as
Fe or Xe, it is reasonable and more accurate than prev
tight-binding models for Si over such a large range of co
pression. Better band structures could be obtained if g
accuracy in total energies were not required to give the c
rect phase diagram.

Figure 10 shows the energy versus volume for Si in
number of different structures. The points are the LAP
total energies and the curves are from the tight-binding
The agreement with the tight-binding models among the
ted structures is excellent. The nonorthogonal equation
state and phase diagram are in quite good agreement wit
self-consistent calculations, including theb-tin and simple
hexagonal~SH! structures that were not included in the fi
Although the orthogonal fit gives good equations of state
the fitted structures, it is less accurate withb-tin and SH, and
gives a transition from diamond to SH rather than tob-tin.

FIG. 3. GGA total energies for nonmagnetic bcc, fcc, and h
Fe. Solid lines are LAPW; dashed are the nonorthogonal tig
binding fit. The dashed lines are practically superimposed on
solid lines.
-
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Figure 11 shows the Raman frequency for Si in the diamo
structure as a function of compression compared with exp
ment. The frequency, which was constrained in the fit by t
points, is in excellent agreement with experiment. Again,
nonorthogonal fit is more accurate than the orthogonal o
Table II summarizes the transition pressures obtained for

p
t-
e

FIG. 4. LDA band structures for hcp Xe at~a! 0 GPa, V
5500 bohr3/atom, ~b! 20 GPa,V5200 bohr3/atom, and~c! 250
GPa, V5100 bohr3/atom. Solid lines are LAPW band structure
dashed are tight-binding fit.
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8580 56RONALD E. COHEN, L. STIXRUDE, AND EVGENY WASSERMAN
The resulting Si parametrization seems to have the
behavior of any Si parametrization to date over a wide co
pression range, in that the same parameters accurately r
duce properties of tetrahedrally coordinated diamond
close-packed structures fcc and hcp. Other models for Si
behaved well for diamond are less accurate for the clo
packed structures.11,15,17,19 Also, other models require ex
plicit structure-dependent terms or pair potentials that
absent in the present treatment. One of the best tight-bin
models for the energetics of Si, a third-neighbor orthogons
and p model,31 fit only energetic properties~including em-
pirical data! and not band structures. The predicted ph

FIG. 5. Band gap vs volume in Xe. Lines are from tight-bindi
fit; labels refer to the direct gap at zone center~G!, and indirect gaps
K22G2

2 andM1
12G2

2 . Crosses are experimental results~Refs. 39
and 40!. Other symbols are LAPW results: direct gap~d!, G2K
~s!, andG2M ~h!.

FIG. 6. LDA total energy of bcc, fcc, and hcp phases of X
Tight-binding results~solid lines! are compared with LAPW calcu
lations ~symbols!: bcc ~s!, fcc ~h!, hcp ~n!.
st
-
ro-
d
at
e-

e
ng

e

diagram of Ref. 31, although encouraging, shows ma
problems such as a large difference in the zero pressure
ume for bcc and fcc compared with LDA computations32

The authors also pointed out that their band structures, wh
were not fit, were not accurate. Here we have found a n
orthogonals, p, andd model that works well for the band
structure and total energies of close-packed and open s
tures.

We have demonstrated that this tight-binding model
general, and works for transition and noble metals, a r
gas, and a semiconductor, over very large ranges of comp
sion and structure. We now proceed to obtain results
constrained directly in the fits, and study the elasticity a
elastic anisotropy of Fe, Xe, and Si.

III. ELASTICITY

A. Elastic constants

Before considering elasticityper sewe considerc/a in
hcp versus pressure for Fe, Si, and Xe~Fig. 12!. We find that
the c/a ratios of Xe and Fe are smaller than the ideal va
(A8/3) while that of Si is greater. Thec/a ratio of Fe and Si
increases slightly with pressure~by 0.02 between 0 and 10
GPa!, while that of Xe decreases by a similar amount. On
ideal hcp structures were included in the fits, and predicti
for c/a and the elastic constantCs that correspond toc/a
strains agree well with LAPW computations not included
the fit ~Fig. 13!. This is evidence that the TBTE model
predictive and not simply an interpolation tool.

We obtained the elastic constants as a function of volu
for various phases of Fe, Xe, and Si by straining the latt
and allowing the symmetry allowed internal coordinates
relax. In other words, the total energy was minimized w
respect to the atomic positions for each increment of str
The total energy was calculated in the strained lattice
several values of the magnitude of the strain,d. The new

.

FIG. 7. Pressure vs volume for Xe from the tight-binding mod
~solid lines! compared with experiment~Refs. 41–43! ~fcc: dia-
mond; hcp: other symbols!. The theoretical curves are nearly coin
cident for fcc, hcp, and bcc phases, except at the highest pres
where bcc becomes slightly denser than fcc and hcp.
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56 8581TIGHT-BINDING COMPUTATIONS OF ELASTIC . . .
lattice vectors P8 are related to the unstrainedP by
P85@ I 1«(d)#P, where « is the strain matrix. Generally
5–6 values ofd were chosen, ranging in magnitude from 0
0.1. We fit a polynomial to the total energy as a function
d, from which the elastic constant is given by the coefficie
of the quadratic term. Very densek-point meshes~up to 24
324324 k points in the full Brillouin zone! were used to
ensure sufficient convergence of strain energies. All ela
constants were obtained about the equilibrium relaxed st
ture at a given volume~pressure!.

For cubic crystals, the bulk modulus,K5(C111C12)/3
was obtained by differentiating the equation of state. T
shear elastic constant,CS5C112C12, was obtained by ap
plying the volume conserving strain

«5S d 0 0

0 d 0

0 0 ~11d!2221
D . ~13!

The value ofCS is then determined by the variation of th
total energy,E, with respect to magnitude of the strain,d :

FIG. 8. Band structure of Si in the cubic diamond structu
Solid lines are LAPW band structure, dashed are tight-binding
~a! Nonorthogonal model,~b! orthogonal model.
f
t

ic
c-

e

E~d!5E~0!13~C112C12!Vd21O~d3!. ~14!

For the elastic constantC44, we applied the volume conserv
ing strain

«5S 0 d 0

d 0 0

0 0 d2/~12d2!
D , ~15!

which produces a change in the total energy

E~d!5E~0!12C44Vd21O@d4#. ~16!

In the diamond structure, there is one atom located at p
tion (x,x,x); in the unstrained lattice,x51/8. In the diamond
lattice strained according to Eq.~15!; the equilibrium value
of x differs from 1/8. For each value ofd, we redetermined
the minimum energy value ofx.

For hexagonal crystals, the bulk modulus yields the co
bination of elastic constants

K5@C33~C111C12!22C13
2 #/CS , ~17!

where the shear elastic modulus

.
t.

FIG. 9. Band structure of fcc Si. Solid lines are LAPW ban
structure, dashed are tight-binding fit.~a! Nonorthogonal model,~b!
orthogonal model.
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CS5C111C1212C3324C13. ~18!

The pressure dependence of thec/a ratio is also related to
a combination of elastic constants. The dimensionless qu
tity R is defined as

R5K
] ln~c/a!

]P
52

] ln~c/a!

] lnV
5K~ka2kc!, ~19!

whereka andkc are the linear compressibilities, so that

R5~C332C112C121C13!/CS . ~20!

We determinedR by fitting a polynomial in finite strain to
the volume dependence ofc/a. The shear elastic modulu
CS is determined by applying the strain@Eq. ~13!# to the
lattice. This yields a variation in total energy

E~d!5E~0!1CSVd21O@d3#. ~21!

FIG. 10. Total energy of Si in various structures vs volum
Solid lines are tight-binding results, points are LAPW compu
tions: cubic diamond~L!, simple cubic~h!, hcp ~d!, fcc ~s!, bcc
~%!. Curves with no points were not constrained in the fits.~a!
Nonorthogonal model,~b! orthogonal model.
n-

In the combinations of elastic constantsCS , R, and K,
C11 andC12 always appear asC111C12. To determine these
two constants individually, we determined the difference b
tween them; in hexagonal crystals, 2C665(C112C12). We
found thatC66 can be efficiently determined by applying
strain to an equivalent orthorhombic lattice, space gro
Cmcm with the conventional unit cellaW 5(ahex,0,0),

bW 5(0,)ahex,0), cW5(0,0,chex), whereahex and chex are the

.
-

FIG. 11. Raman frequency vs pressure in diamond-structure
from the tight-binding models~solid lines! and experiment~Ref.
44!.

TABLE II. PressuresPt of transitions I→II in Si and the corre-
sponding volumes of each phase,Vt

I , Vt
II ~as fractions of the mea

sured equilibrium volume, 135 bohrs3! for orthogonal and nonor-
thogonal tight-binding models, compared with experiment and ot
theory.

Transition Pt Vt
I Vt

II

cd→b-Sn
Orthogonal 11.7 0.901 0.626
Nonorthogonal 4.5 0.949 0.698
Experimenta 12 0.911 0.706
LDAb 7.8 0.931 0.701

b-Sn→sh
Orthogonal 25 0.589 0.631
Nonorthogonal 83 0.528 0.512
Experimenta 16 0.673
LDAb 10.2 0.690 0.679

sh→hcp
Orthogonal 28 0.620 0.572
Nonorthogonal 45 0.572 0.535
Experimenta 42 0.615 0.570
LDAb 37.7 0.594 0.550

hcp→fcc
Orthogonal 46 0.533 0.528
Nonorthogonal 81 0.479 0.472
Experimentc 79 0.481 0.478
LDAb 84.3 0.477 0.470
LAPWd 78 0.484 0.476

aReference 46;bReference 32;cReference 47;dThis work.
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hcp lattice parameters. The four atoms in the unit cell
located at Wyckoff position 4c with coordinates (0,y,1/4).
The conventionalc-centered unit cell is doubled with respe
to the primitive cell. We used the two-atom primitive un
cell in all calculations. We applied the strain matrix

«5S d 0 0

0 2d 0

0 0 d2/~12d2!
D ~22!

to this lattice, leading to a change in the total energy:

E~d!5E~0!12C66Vd21O@d4#. ~23!

The atomic coordinatey52/3 in the unstrained lattice, bu
varies when the lattice is subjected to this shear.33 We rede-
termined the minimum energy value ofy for each value of
strain.

Finally, to determineC44, we used a monoclinic cell

FIG. 12. Thec/a ratios of hcp Xe, Fe, Si as functions of pre
sure from the nonorthogonal tight-binding models. The dashed
is the idealc/a for hexagonal close packing.
e

space groupC2/m, with lattice vectorsaW 5(0,)ahex,0),

bW 5(ahex,0,0), cW5(0,0,chex). The four atoms in the conven
tional unit cell are on Wyckoff position 4i (x,0,z) with x
51/6 andz51/4. The two-atom primitive cell was used i
all calculations. We applied the strain

e

FIG. 13. Comparison of~a! minimum energyc/a and~b! effec-
tive elastic constant CS for c/a strains
(CS5C111C1212C3324C13) in hcp Fe from LAPW~dots! and
the tight-binding model~lines!.
fitting

TABLE III. Elastic constants~GPa! and their pressure derivatives~in parentheses! at zero pressure of the tight-binding model~TB!

compared to available experimental data~expt!. Zero pressure elastic constants and their pressure derivatives were determined by
appropriate finite strain expansions to the tight-binding results~Ref. 48! CD: cubic diamond.

Material C11 C12 C44 C33 C13

Fe fcc 448 ~6.0! 209 ~3.5! 212 ~2.2!

Fe hcp 504~6.7! 179 ~3.2! 159 ~1.6! 542 ~7.0! 183 ~3.0!

Si CD ~TBa! 183 ~0.2! 64 ~4.8! 104 ~0.2!

Si CD ~TBb! 173 ~4.1! 58 ~3.9! 104 ~0.2!

Si CD ~exptc! 166 ~4.3! 64 ~4.2! 80 ~0.8!

Si fcc ~TBa,d! 58 ~7.8! 106 ~2.7! 49 ~25.1!

Si fcc ~TBb,d! 75 ~5.0! 102 ~3.5! 6.7 ~1.8!

Si hcp ~TBb,d! 135 ~7.5! 87 ~2.7! 27.9 ~3.1! 165 ~9.1! 55 ~2.6!

Xe fcc ~TB! 7.50 ~8.5! 5.75 ~6.4! 1.71 ~3.4!

Xe fcc ~expte! 5.3 ~6.0! 2.8 ~3.4! 3.0 ~3.0!

Xe hcp ~TB! 8.5 ~10.1! 5.4 ~5.8! 1.1 ~1.5! 8.8 ~10.5! 5.1 ~5.3!

aOrthogonal model.
bNonorthogonal model.
cReference 45.
dViolates Born stability criteria at low pressure.
eReference 36.
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«5S 0 0 d

0 d2/~12d2! 0

d 0 0
D , ~24!

which yields the variation in total energy

E~d!5E~0!12C44d
21O@d4#. ~25!

The equilibrium positions of the atoms are unaffected by t
strain, and do not need to be redetermined in the stra
lattice.33 The elastic constants of Xe, Fe, and Si at zero pr
sure are compared in Table III.

The predicted elastic constants for hcp Fe versus pres
are shown in Fig. 14. Our predicted fcc and hcp elastic c
stants are in generally good agreement with linear muffin
orbital ~LMTO! results;34 the rms difference between the tw
sets of predictions is 70 GPa. The largest difference occu
C12 of hcp. Whereas we find thatC12 and C13 are similar,
differing by no more than 6%, the LMTO study finds th
C12 is more than 50% smaller thanC13 at inner core densi-
ties. While the cause of this discrepancy is unclear, we n

FIG. 14. Predicted elastic constants of~a! hcp and~b! fcc iron vs
pressure from the nonorthogonal tight-binding model compa
with LMTO results~Ref. 34! ~symbols!: hcpC11 ~d!, C33 ~s!, C12

~j!, C13 ~h!, C44 ~^!; fcc C11 ~s!, C12 ~d!, C44 ~h!.
s
ed
s-

re
-

n

in

te

that experimental data on other hcp transition metals35 show
C12'C13, consistent with our results. Moreover, the elas
constants in Ref. 34 were obtained using the ideal, ra
than the equilibrium value ofc/a. We speculate that this
may have biased their results.

Figure 15 shows the elastic constants of fcc Xe as a fu
tion of pressure compared with experiment.36 Agreement is
excellent and the elastic constants vary by an order of m
nitude over this pressure range. No strained distortions
Xe were included in the fit, so this result indicates clea
that the model is predictive.

Figure 16 shows elastic constants for Si compared w
experiment or LAPW for the nonorthogonal parametrizatio
Both parametrizations give reasonable zero-pressure el
constants forC12 andC11 but are worse forC44. The pres-
sure dependencies in the nonorthogonal fit compare q
well with experiment, whereas the orthogonal fit gives
incorrect prediction for the pressure dependence ofC11. It is
clear that a nonorthogonal model is needed to give adeq
properties for Si over this range of compressions and st
tures. It is quite probable that a model for diamond struct
alone could be much more accurate, especially if the ela
and Raman response were constrained in the fit. Howe
such a model would not likely give an accurate phase d
gram or description of close-packed phases such as the li
state. Since there are no experimental data for fcc or hc
elastic constants we compare with elastic constants der
from LAPW computations and see that agreement is q
good again for the nonorthogonal model. Agreement with
orthogonal model is less good.

B. Acoustic anisotropy

Acoustic velocities are related to the elastic constants
the Christoffel equation,

~Cjklmnknl2Md jm!uj50, ~26!

where Cjklm is the effective elastic constant relative to
reference state under isotropic pressure,n is the wave nor-

d

FIG. 15. LDA fcc elastic constants for Xe computed using t
tight-binding model~solid lines! and compared with experimen
~dashed lines!. No strained configurations were used in the fit–on
fcc, hcp, and bcc Xe as functions ofP.
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mal, u is the polarization~displacement! vector,M5rv2 is
the modulus of propagation,r is the density, andv is the
velocity.

Figure 17 shows the elastic anisotropy calculated us
Eq. ~26! for fcc and hcp Fe, Xe, and Si. The anisotro

FIG. 16. Elastic constants of Si computed with the nonortho
nal model~solid lines! in various structures:~a! diamond-structured
compared with experiment~Ref. 45! ~symbols and dashed line! ~b!
fcc compared with LAPW computations~symbols!. The LAPW
computations were not used in the fit.~c! hcp.
g

Dp5(M p@nX#2M p@100#)/C11, where nX is the extremal
propagation direction other than@100# andp is an index that
runs over the three types of elastic waves~one longitudinal,
two shear!. For cubic crystals, the anisotropy is unique
defined by

-
FIG. 17. Amplitude of~a! longitudinal (DP) and~b! shear (DS1)

anisotropy in Fe, Xe, and Si. For each material, results for fcc
hcp are shown. Solid lines are the tight-binding results, dashed l
represent the CNNF model.
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A5~2C441C12!/C1121, ~27!

which vanishes for an isotropic material. The anisotrop
are

DP5 2
3 A, DS152 1

2 A, DS252 3
8 A, ~28!

whereS1 is polarized in the (2110) plane andS2 is ~001!
polarized. Another way of characterizing anisotropy is
compare it to that of a crystal interacting with centr
nearest-neighbor forces~CNNF!. It has been shown7 that
elastic anisotropy in this case is independent of the in
atomic potential to lowest order inP/c11, which is typically
less than 0.1. For an fcc lattice,

ACNNF5
1
2 ~12P/C11!

21. ~29!

For hexagonal crystals, the anisotropy is

DP5B, DS15B/42C/2, DS25A/2, ~30!

where S1 is ~010! polarized andS2 is ~001! polarized,
B5C33/C1121 andC5(C1312C44)/C1121. For an ideal
hcp crystal interacting with central near-neighbor forces~ne-
glecting terms of orderP/C11!

ACNNF522/29, BCNNF53/29, CCNNF525/29.
~31!

In spite of the fact that our tight-binding models are n
CNNF, we find that at high pressures the elastic anisotr
tends roughly towards the CNNF values. Figure 18 sho
the amplitude of the anisotropy as a function of press
compared with the CNNF. At high pressures Si is closes
the CNNF model in fcc. In fcc Xe is the most noncentr
and/or longest ranged at both low and high pressures, w
makes sense since nonpairwise overlaps are important
hcp Xe has quite constant anisotropy. This is a puzzling
sult since ideal fcc and hcp have the same first- and sec
neighbor distances. The anisotropy of Fe does not cha

FIG. 18. The quantityA5(2C441C12)/C1121, which defines
the anisotropy in the fcc structure. The dashed line is the CN
result.
s

l

r-

t
y
s
e
o
l
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ut
-
d-
ge

much with pressure in fcc or hcp. In all three materials
find that fcc is more anisotropic than hcp, in agreement w
CNNF. Anisotropy at high pressure in Fe is of particul
importance in geophysics due to the seismically obser
anisotropy in the Earth’s inner core. The magnitude a
symmetry of the observed anisotropy are very similar to t
of hcp Fe, suggesting that the inner core may be a la
oriented single crystal of hcp iron3 or be composed of large
oriented crystals. The anisotropy of the Earth’s inner c
has recently led to the detection of its differential rotation38

IV. CONCLUSIONS

We have further developed the tight-binding total-ener
model of Ref. 1. A large number of LAPW computation
were performed for different crystal structures of Fe, Xe, a
Si and the TBTE was parametrized successfully for a la
compression range for each. We find that the model wo
well not only for transition metals such as Fe, but also for
rare gas Xe over a fivefold compression range from Van
Waals insulator to high-density metal, and elemental Si fr
the open diamond structure to close-packed metallic st
tures. Using the parametrizations we have computed the e
tic constants and anisotropy versus pressure for Fe, Xe,
Si. We find in each case that fcc is more anisotropic th
hcp. At high pressures the anisotropy is close to what wo
be predicted from a nearest-neighbor central force inte
tions.
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APPENDIX: ANALYTICAL EXPRESSION FOR THE
FORCES ACTING ON ATOMS AND DERIVATIVES OF

THE TOTAL ENERGY WITH RESPECT TO THE
PARAMETERS OF THE TBTE FIT

The starting point for this derivation is the expression
the total energy~3!. To simplify the notation, the primes
denoting shifted eigenvalues are omitted below. As us
Eq. ~3! implies Brillouin zone integration that is performe
numerically. The factor of 2 that stems from spin degener
of the calculations is not included also. The eigenstates
populated according to the finite-temperature Fermi-Di
function. The calculations described here were perform
with kBT55 mRy. The Fermi level«F is determined by
solving the particle conservation equation

(
i

f S « i2«F

kBT D5Nel , ~A1!

where Nel is the number of electrons in the system. O
calculations differ from the previous work~e.g., Ref. 37! in
that we do not make an assumption of«F being independen
on atomic positions or parameters of the fit. Therefore we
able to perform molecular-dynamics simulations of meta
systems in the NVE~constant number of particles, total en
ergy, and volume! ensemble rather than NmV ensemble. The

F
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56 8587TIGHT-BINDING COMPUTATIONS OF ELASTIC . . .
dependence of the Fermi level on the parameters of
TBTE fit was found to be significant in most cases.

For clarity, we define here

f ~X!5$11exp~X!%21,

which has the derivative

] f /]X5 f ~ f 21!,

and the notation

f i5 f S « i2«F

kBT D .

In the several equations below,a denotes either a compone
of the radius vector of an atom or a fit parameter. The d
ference between these two cases will be pointed out la
Differentiation of Eq.~3! with respect toa yields

]Etot

]a
5(

i
F]« i

]a
f i1« i

f i~ f i21!

kBT S ]« i

]a
2

]«F

]a D G . ~A2!

For the case ofT50 ~this calculation is useful for a wide
gap insulator, but not for a metal! this expression reduces t

]Etot

]a
5 (

all « i,«F

]« i

]a
. ~A3!

The derivative of the eigenvalue]« i /]a is obtained through
the Hellmann-Feynman theorem,

]« i

]a
5

K C iU ]H

]a
2« i

]O

]a UC i L
^C i uOuC i&

, ~A4!

where uC i& is the eigenvector corresponding to the eige
value« i . In order to obtain the derivative of the Fermi lev
with respect toa, we differentiate Eq.~A1!. This yields

(
i

f i~ f i21!S 1

kBTD S ]« i

]a
2

]«F

]a D50. ~A5!

Solving this equation for]«F /]a, one obtains

]«F

]a
5

( i f i~ f i21!
]« i

]a

( i f i~ f i21!
. ~A6!

Substituting Eq.~A6! and Eq.~A4! into Eq. ~A2! solves the
problem in principle.

The calculation as outlined here is a computationally
tensive task in terms of both the number of floating po
operations and the memory usage. Therefore we desc
here the ways we found to optimize these calculations. F
the denominator in the Eq.~A4! is equal to 1 since all known
generalized eigensolver routines~e.g.,DSYEV from LAPACK!
normalize the eigenvectors.

In the calculation of forces acting on atoms, the on-s
and hopping terms need to be treated separately. Then
adds together the contributions to]« i /]a from the on-site
and hopping terms. It is important to take advantage of
two-center approximation for the hopping terms of t
Hamiltonian and overlap matrix. Formally,]Hi j ab /]Rl is a
e

-
r.

-

-
t
be
t,

e
ne

e

tensor with one extra index. The on-site terms indeed h
nonzero derivative with respect to the radius vector of e
particle in the system. However, since they are located on
diagonal of the Hamiltonian, the matrix-vector multiplica
tions in Eq. ~A4! are reduced to a single sum. Within th
framework of the two-center approximation, the hoppi
matrix elementsHi j ab and Oi j ab corresponding to atomsi
and j ~i , j 51, . . . ,Natoms, iÞ j ! and orbitalsa and b are
constructed as

Hi j ab5(
n

exp@ ik•~Rj2Ri1n!#gab~Rj2Ri1n!,

~A7!

whereRj is the radius vector of the atomj , n is the direct
lattice vector, andgab is a function of the separation vecto
Therefore,

]Hia, j b

]Rl
5

]Hia, j b

]Rj
d j l 1

]H j b,ia

]Ri
d i l , ~A8!

whered j l is the Kroneker symbol. Taking into consideratio
that

]H j b,ia

]Ri
52

]H j b,ia

]Rj
~A9!

and the Hermitian symmetry of the Hamiltonian~and over-
lap! matrices we arrive at

]Hia, j b

]Rl
5

]Hia, j b

]Rj
d j l 2

]Hia, j b*

]Rj
d i l . ~A10!

Equations~A7!–~A10! are applicable to the elements of th
overlap matrix if one replacesH by O. Therefore we con-
struct arrays Ḣ ia, j b5]Hia, j b /]Rj and also Ȯia, j b
5]Oia, j b /]Rj ~note that there is no extra inde
l 51, . . . ,Natoms!. Denoting for clarity
Mia, j b5Ḣ ia, j b2«Ȯia, j b ~the eigenvalue label is supressed!,
we can write, using Eq.~A2! and Eq.~A10!,

]«

]Rl
5 (

ia, j b
C ia* S ]Hia, j b

]Rl
2«

]Oia, j b

]Rl
DC j b

5 (
ia, j b

C ia* ~Mia, j bd j l 2Mia, j b* d i l !C j b . ~A11!

Finally, one gets

]«

]Rl
5(

ia
(
b

C ia* Mia,lbC lb2(
j b

(
b

C la* Mla, j b* C j b .

~A12!

Further simplification is possible for the case of thek50
calculation. Substituting this result into Eq.~A2!, one obtains
the gradient of the total energy with respect to the rad
vector of an atom. Treating gradients of the hopping a
on-site terms separately saves both memory~for eachk point
one needs to store only 3M2 values, rather than 3M2Natoms
numbers for the perturbation matrices! and computational
time. We found from experience that due to memory acc
considerations, it is best to calculate the quadratic form
Eq. ~A4! using matrix-matrix multiplication~so that the re-
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sult for all eigenstates is obtained simultaneously! rather than
matrix-vector multiplications. It is essential to use vend
supplied routines for that rather than try to write such a r
tine in FORTRAN since they are optimized for a particula
processor architecture. For example, on IBM RISC/60
workstations and IBM SP2 we used theESSL set of routines
and found a speedup of a factor of 4.

Calculation of the derivatives of the total energy with r
spect to the parameters of the TBTE fit differs from the c
culation of forces in the following ways. First, a given p
rameter of the fit@such asai , bi andci in Eq. ~6!# influences
either elements of the Hamiltonian or the overlap matrix,
not both at the same time. Therefore ifa is a parameter of
the Hamiltonian, Eq.~A4! becomes

]« i

]a
5^C i u]H/]auC i&. ~A13!

If it is a parameter of the overlap matrix element,
n

r

y

-

:

-
-

0

-

t

]« i

]a
52« i^C i u]O/]auC i&. ~A14!

As the four-index notation suggests, bothH andO matrices
can be considered as block matrices with 939 blocks~9 is
the number of orbitals on each atom we used!. Therefore a
given parameter of the TBTE fit controls only a submatrix
each 939 block. Moreover, even though each submat
~denoted ashab! is not symmetric, it has the symmetry prop
erties:

hba5papbhab . ~A15!

where p is a vector with integer component
p5(1,21,21,21,1,1,1,1,1). This property of sparsene
along with the fact that positions of nonzero elements
known was used extensively to speed up the calculatio
Apart from this, the calculation of the derivatives of the e
genvalues and the total energy with respect to the parame
of the TBTE fit is a straightforward but tedious applicatio
of Eq. ~A6!, Eq. ~A4!, and Eq.~A2!.
*Present address: Dept. Geological Sciences, Univ. Michigan, A
Arbor, MI 48109-1063.
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