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Tight-binding computations of elastic anisotropy of Fe, Xe, and Si under compression
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A tight-binding total-energy model parametrized to first-principles linearized augmented plane-wave com-
putations is applied to study elasticity and elastic anisotropy in Fe, Xe, and Si at high pressures. We find that
the model works well in reproducing the compression, electronic structure, phase relations, and elasticity in
these diverse materials. In Xe, for example, the same parametrization works well over a fivefold compression
range from a van der Waals solid to a dense metal. We find that the cubic close-packed structures are all more
anisotropic than hexagonal close packed and that at high pressures the elastic anisotropy approaches that of any
central force nearest-neighbor model. We find that long-range, nonorthogonal parametrizations are necessary
for greatest accuracyS0163-18207)04738-3

INTRODUCTION center approximatiofwhich is followed here, only integrals
between pairs of atoms are included, integrals that involve a
In spite of great strides in applying self-consistent elecpotential on one atom and orbitals on two others are ne-
tronic structure and total-energy methods within densityglected, and the potentidlks is assumed spherically sym-
functional theory(DFT) to real problems in materials rang- metric around each atom. The Hamiltonian and overlap ma-
ing from phase diagrams to melting to mapping of phononrices can be written as
potential surfaces, a faster but still reliable method is highly
desirable to explore dynamical properties of materials rang-
ing from elasticity to phase transitions, and to simulate large ~ Hijos=> exdik-(R;— Ri)]hijaﬁlf dQ i, g,
systems. Much progress has been made in developing tight- ! (1)
binding total-energy methodd BTE) that differ from self-
consistent calculations in that a model is developed for the _ - _
bonding interactions in terms of site centered atomiclike or- O”“'B—Z exilik-(R R‘)]O”“ﬁ'f A iadip
bitals. Here we further develop and describe a model pre-
sented by Cohen, Mehl, and Papaconstantopbal@@MP)  where the integrals are the angular integration for orhital
that has an accuracy comparable to self-consistent calculan atomi with orbital 8 on atomjl (i andj indicate the atom
tions, but at greatly enhanced speed so that complex prola the primitive cell and is a lattice vector Angular mo-
lems and materials may be studied. Here we show that theentum is quantized along, the vector from atonjl to
method is general for arbitrary elements by giving resultsatomi, so that the indices3 are contracted to a total of ten
and predictions over large ranges of compression for Fe, Bonding states up td statessso, spo, ppo, ppm, sdo,
transition-metal, Si, which changes from a covalent semiconp gy, pdsr, ddo, ddsr, anddds. For unlike atoms, addi-
ductor to a close-packed metal with pressure, and Xe, whicfjgng termspso, dso, dpo, and dp7 must also be in-
changes from an atomiclike rare gas to a wide-band metg) ,jeq.

with pressure. In most tight-binding models the parametérando are

Elastic properties are important in fields ranging fromfit to results of first-principles band structutesr are fit

geophysics to materials research, chemistry, and physics. - 0 . X . ) ;
Elastic anisotropy, characterized, for example, by the differ €MPirically® for individual interactions in a given crystal

ences in sound speed in various directions through differerittr ucture. 'n. TBTE methods Fhe to_tal energyas a function
crystals, has not been systematically studied, especially witR! the atomic or nuclear positiorsis reprgsented as asum
regard to changes with compression. The strain energy igf the band-structure tern,s and additional structure-
important in the development of textures and character oflependent terfs) F:

phase transitiond,in transition temperaturésand for the

ground staté.We compare our results with those obtained Elr]=EpstFlr], 2
from a simple nearest-neighbor central forces model, wher:
the elastic anisotropy is dependent only on structure and n
on the force constants at low pressufes.

fhich are often represented as a pair potential plus structure-
%tependent terms that depend, for example, on local
coordinationt!
In most tight-binding models the eigenvalues are obtained
by solving the secular equation with H and O obtained from
In tight-binding methods, the radial parts of the Hamil- the parameterd ando. The energy ternt is usually ob-
tonian and overlap matrices are parametrized. In the twotained by fitting first-principles equations of state and/or ex-

I. TIGHT-BINDING TOTAL-ENERGY METHOD
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Thus we have for the total energy

Em<r>=2 el fle](k)—ef,T], &)
where

gf =& +{F[n(r)]+C}/Ne, 4

ande; are the band eigenvalueijs the Fermi distribution,
with e chosen to give the correct number of electrohs
The constanC is chosen for convenience so that the new
band-structure energies are not hugely different from the
self-consistent onegAll physical results are completely in-
dependent ofC.) This procedure has the added utility of
eliminating the structure-dependent potenfigf ], usually a
pair potential plus other terms, from the problem. Instead,
' one takes the input band structure and shifts the eigenvalues
6 8 10 12 by Eq.(4) so that
v (R

) Etor= Eps—C. 6)
FIG. 1. LAPW band-structure energl,s, obtained for hcp Fe

as a function of compression for three different choice¥ gf the The problem is then reduced to finding a parametrization
Fermi level Eg, the LAPW muffin-tin zeroV,,,, or the value that accurately reproduces not only the band structure, rep-
needed so thap=E,+ C whereC is a constant. Her€ is set  resented by the/ , but also the total energies. Such a pa-
so thate(P=0)=0. rametrization was found and tested for several transition and
noble metalg. The hopping Hamiltoniarh and overlapo

periment. Although there are tight-binding models that Al arameters were parametrized as a function of distance:

similar in some ways with the present modef®there are
significant differences between the present model and previ- P,=(a+bir)exy —c?r]&(r), (6)
ous nonempirical tight-binding total-energy modéls:there _ ) )

are no explicit structure-dependent terrf®;interactions are  Wherei labels each interactionsso, etc) and

only distance dependent—there is no division between first _ 1

ang second neigphbors, et¢3) parameters are fit simulta- (N ={exd(r—ro)//]+1} @)
neously to accurateflinearized augmented plane-wave is a universal cutoff function to guarantee that interactions
(LAPW)] electronic structure eigenvalues and total energiesanish smoothly at not too greatdistance. We generally
(4) over a range of structures and volumes; @Bdthere is  take r,=16.5 bohrs and”=0.5 bohr. Short-range models
no explicit pair potential here. are also possible, though less accurate. Here we ingupe

A problem arises wheRis fit separately from the func- andd interactions in the two-center approximation, so that
tion F [Eq. (2)]. The zero of energy/,, for a band structure there are 60 parametess, b;, andc; for the ten Hamil-
is arbitrary, so thatE,s contains an unknown structure- tonian and ten overlap Slater-Koster parameters for a mon-
dependent term, which arises from te=0 term in the atomic system.

Fourier expansion of the Coulomb potential, and is canceled The treatment of the on-site terms is crucial to obtaining
by an identical contribution iff[n(r)] in self-consistent cal- good fits to the shifted eigenvalues. Two different methods
culations. To illustrate the severity of the problem, Fig. 1were used. In the first parametrization, which was presented
shows the LAPW band-structure enelfgy, obtained for hcp in Ref. 1 the on-site terms vary as a function of a local
Fe as a function of compression for different choice¥/pf  “density” around each atom, given by

If Vq is chosen to be equal to the Fermi lex®}, E,; is

strongly attractive and the functida(r) must be repulsive. _ _ 2.

If Vo is equated with the LAPW muffin-tin zerd/,, the Px ; exg —d3yrlé(r), (8)
average interstitial potentiak,s is strongly repulsive and . ~ o~ )

F(r) must be strongly attractive. We also found it impossible"Wn€redji depends on atom typésand] (j symbolizes the

to obtain a pair potential that gave the correct ordering fotYP€ Of atomj). The on-site term® , for a=s, p, andd
the energies of nonmagnetic bce, fec, and hep iron with thdor each atonk were then fitted to a finite strain polynomial
choice thatVy=Eg.

The band-structure energy thus behaves radically differ-
ently with compression depending on the choicd&/gf The  This parametrization worked very well for the transition and
large differences are illustrated by the third curve in Fig. 1,noble metals studied in Ref. 1 and worked here as well for
which shows the LAPW total energ¥,,. The third curve Xe and Fe. However, for Si it was difficult to obtain an
also represents choosing, such thatE,.=E,y, and this is  accurate fit using this parametrization. This may be due to
the most important innovation in the current method. Thisthe fact that we were attempting to fit a very large range of
choice gives a well-defined energy zero that contains no arstructures for Si, ranging from 4-coordinated Si in the dia-
bitrary constant. mond structure to close-packed metallic structures over a

—~ ~ 2/3 ~ 4/3
Dak:eak+gakpk +hakpk . (9)
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wide range of compression, whereas the transition metals 372—r2
and Xe were studied primarily for close-packed structures. Dage 2 =0+ — 2 lado- (12
We have found a parametrization that works well for Si,
and works as well as the previous parametrization for therhe two types of on-site treatments are referred to as on-site

transition metals and Xe. In this parametrization, we followmodel | for Eq.(9), and on-site model Il for Eq12) below.
1 H H . .
Mercer and Chotf and Chadi* and the on-site terms in the  Since the parameters are correlated and there are multiple

Hamiltonian are given by minima in the nonlinear least-squares fit of the eigenvalues
e{ , we found it very important to simultaneously fit a set of
Damﬁm,k=qamﬁm,;+2 Lamam KT (70 Y am(T 1) Y g (F i) - structures to a single set of parameters, rather than to per-
]

form separate fits to different structures and then fit the be-
(10 havior of the parameters with distance as was done in Ref.
This form arises from considering on-site integrals11l. We also found it important to fit both the bands and the
(Wil V| W) for interactions of an orbital on atorn ~ €nergies, so that the bands. and energies can bg |nd|v!dyally
with the same or another orbital érwith a spherical poten- Weighted. The choice of weights was important in obtaining
tial on atomj. According to Chadt these can be contracted & good fit, and energies were weighted 10-200 times the

terms, Eq.(10) reduces t&#2! data (eigenvalues and energjeso that the parameters are

well constrained. We programmed analytic derivatives so
N 2 a 2 a that the Jacobian was obtained analytically; this also in-
Dsz:qpk+z k(T ppor (M) + 11 = e (Tji) I ppe(T i) creased the stability of the fitting procedure as well as sped
i - ) ;
(11) up the fitting process by orders of magnitudee Appendix

where 17 (Fj) =2%/r?, and ,5,(rjk) and | (1) are the
distance-dependent terms, represented in our model by
(sifg+tifgrjk)exp[—u%ﬁrjk], wherei labels each interaction
type (sso, etc). Linearized augmented plane-wa%é* computations were

A full set of such parameters would give forty on-site performed to obtain the band structufeggenvalues;) and
parameters for a monatomic system. We have found excetotal energies over a wide range of compression and for dif-
lent fits for Si, for which we included, p, andd interac-  ferent crystal structures. For the self-consistent calculations,
tions (see below using only the diagonal terms correspond- specialk-point sets were used and were carefully checked for
ing to sso, ppo, andddo, giving instead twelve on-site convergence in the total-energy differences between different
parameters. We found thatpe and ppm were perfectly  structures. Extra local orbitas (LAPW+LO) were in-
anticorrelated leading to instabilities in the least-squares fiteluded in the LAPW computations so that only one energy
ting, even though our structure set could in principle distin-window could be used and still treat the semicore states ac-
guish between these interactions. We thus remoppar  curately, and in order to relax the valence states. Self-
from the on-site parameter set. So our on-site terms are regonsistent total energies and densities were obtained with

Il. LAPW COMPUTATIONS AND TIGHT-BINDING
PARAMETRIZATIONS

resented as very densek-point mesheg16x 16X 16 for Fe. Uniform
regular k-point sets were generated on a coarser grid and
Ds=0st 55, used in the least-squares fits; we found it important to con-
2 strain the eigenvalues at high symmetry points in order to

obtain proper ordering of the bands in the tight-binding fits.
Different uniform meshes were tested and those used are
amply converged. Table | summarizes the nonlinear least-
squares fits. States up to 2—5 Ry ab&ewere included in

the fits in order to better constrain the individual parameters
of the fits. Since the Hamiltonian includes only 9 states per

Dpx:qp+r_2|pp<r'

y2

Dp,=0pt 7zl pps

_ z? atom for ans, p, andd state parametrization, and 4 states
Dp,=qp+ r_2| ppo per atom for ars and ap parametrization, it was necessary
to discard states that are not in the domain of the Hamil-
x%z? tonian. This was done using the maximlimharacter in the
Dq,,=dat —2 lddo muffin tin for each state from the LAPW computations.
For Fe, nonmagnetic computations were performed, so
2,2 that the ground state is hcp rather than bcc. The present
Dy =04+ —7 ldde tight-binding model has not yet been generalized to handle
yz r . . f .
magnetic systems. A first-order generalization could be done
5 o similar to the tight-binding model of Zhonet al?* for Fe.
X7y

Our primary interests are in the behavior of Fe at very high

pressures in the non-magnetic fcc and hcp phases, but to
. understand Fe at low pressures the nonmagnetic model
(x*=y9) would not be sufficient. We used the generalized gradient

2 ddos approximatio”® (GGA) for Fe since it has been demon-

Dy, =dda+ <z lddo

Dd(xz,y2>: qd+
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TABLE |. Summary of self-consistent input and quality of fits. For each structure type is shown the number of stfeagureslumey
the maximum number of bands fit, the numberkopoints, and the volume range. The number in parentheses is the parametrization

identification.
Fe (8014 Fe (7) Xe (62 Si (8019 Si (10009
Nonorthogonal Orthogonal Nonorthogonal Nonorthogonal Orthogonal
XC GGA GGA LDA LDA LDA
No. of residuals 9743 11377 6798 32841 32841
No. of parameters 73s(p,d) 42 (s,p,d) 73 (s,p,d) 72 (s,p,d) 42 (s,p)
No. of structures 27 32 15 33 33
Structures:
fcc 7,9, 29 12, 10, 29, 30-90 5, 9, 29, 100-500 7,4, 72, 60-120 7,4,72,60-120
bce 7,9, 29 7,9, 29, 40-90 5, 9, 29, 100-500 7,4, 72, 60-120 7,4, 72, 60-120
bct 6, 9, 59 6, 9, 59, 50
hcp 7,12, 50 7, 12,50, 40-90 5, 9, 50, 100-500 7, 8, 133, 60-120 7, 8, 133, 60-120
sc 3, 4, 84, 70-120 3, 4, 84, 70-120
Diamond 7, 8, 29, 100-160 7, 8, 29, 100-160
Diamond Raman 2, 8, 65, 110-140 2, 8, 65, 110-140
rms occupied 8 40 21 14 58
Bands(mRyd)
rms energy mRyd 0.63 0.37 0.17 0.23 11

strated to give much more accurate results for Fe than local
density approximatiofLDA),32¢?’including the correct bcc
ground state and an accurate phase transition pressure fron
bcc to hep in spin polarized calculations.

Figure 2 shows the GGA LAPW and tight-binding band
structures of hcp Fe at 10 GPa /=80 bohrs) and at 530
GPa (V=40 bohr$). The same parameter set does a good
job over an extreme range of compression. Figure 3 shows
the total energies for bcc, fcc, and hcp Fe as a function of
compression and the energy versus tetragonal strain. The
band structures and energies are included in the fit, so Figs. 2
and 3 show the quality of the fit.

Figure 4 shows the LAPW and tight-binding band struc-
tures for hcp Xe over a fivefold range of compression. The
same parameter set works well for the occupied states from
low-pressure atomiclike xenon all the way to highly com-
pressed metallic state. Figure 5 shows the metallization be-
havior of hcp Xe from the tight-binding fit compared with
LAPW. Without spin orbit, LDA gives a metallization pres-
sure of~90 GPa, in quite good agreement with experiment.
However, with spin orbit this agreement wors&nsnd it is
necessary to go beyond LDA to regain an accurate metalli-
zation pressuré®?® However, LDA gives reasonable ener-
getics(i.e., compression and elasticitior Xe, and given the
importance of spin orbit in Xe for metallization, which we do
not include, we have made no attempt to go beyond LDA
here.

The tight-binding fit somewhat overestimates the direct
gap in Xe; for a detailed study of metallization the bands
could be weighted higher in the fit, probably leading to some
decrease in the quality of the total energies but improvement
in the details of band-gap closure. Figure 6 shows the energy
versus volume for bcc, hep, and fcc xenon. The agreement
between the LAPW and tight-binding fit spans 3 orders of
magnitude of energy scales, from the 15-eV energy scale
over a fivefold compression, to 5-meV structural energy dif-

10|

FIG. 2. GGA band structures for hcp Fe @ —10 GPa,V

ferences aPzO. Figgre 7 shows pressure versus volume= 80 bohf/atom, and(b) 530 GPa,V=40 bohrs. The solid lines
compared with experiment. We obtained excellent agreemenire the LAPW band structure and the dashed are from the nonor-
with the experimental equation of state. We found a phasenhogonal tight-binding fit.



56 TIGHT-BINDING COMPUTATIONS OF ELASTC. .. 8579

= “>—-—>:':v‘

EEE T N IR

e ‘:_,'2

02| 4 3 f\

= 1 1

c o
o P
01r 8 ]

hep

40 60 80
V(au)

FIG. 3. GGA total energies for nonmagnetic bcc, fcc, and hep
Fe. Solid lines are LAPW; dashed are the nonorthogonal tight-
binding fit. The dashed lines are practically superimposed on the
solid lines.

transition from hcp to bcc at very high pressutés0 GPa F
previously predicted by McMahafi. E ]

Good fits for Fe and Xe were obtained using on-site f 11
model I[Eq. (9)], but in spite of much effort we were not ' 1
able to fit Si simultaneously for structures ranging from dia- r L1
mond to close-packed structures fcc and hcp using this pa- . tof ;
rametrization. An accurat® p, andd fit was obtained using t (b) I .
on-site model II[Eg. (10)]. This fit was not as accurate as
those obtained for Fe and Xe probably due to the much more
extended range of structures and compressions studied for Si.
We also found it difficult to obtain an accurate Raman fre-
quency for Si, and had to include the Raman distortion in the
fit. Still, getting an accurate Raman frequency as well as
accurate phase transition pressures was difficult, and it was
necessary to adjust the weights repeatedly until an acceptable
fit resulted. Figure 8 shows the band structures for Si for the
diamond structure at low pressures for both nonorthogonal
and orthogonal fits compared with LAPW. Agreement is not
as good as for Fe and Xe due to the higher weighting of the
total energies for Si. Figure 9 shows the high-pressure fcc
band structures for Si. Although the fit is not as good as for
Fe or Xe, it is reasonable and more accurate than previous
tight-binding models for Si over such a large range of com-
pression. Better band structures could be obtained if great Eo] _ ]
accuracy in total energies were not required to give the cor- r MUL R A T 7 KPH s &
rect phase diagram.

Figure 10 shows the energy versus volume for Si in a FIG. 4. LDA band structures for hcp Xe 48 0 GPa,V
number of different structures. The points are the LAPW=500 bohf/atom, (b) 20 GPa, V=200 bohf/atom, and(c) 250
total energies and the curves are from the tight-binding fit ©P2 V=100 boh?/atom. Solid lines are LAPW band structure;
The agreement with the tight-binding models among the fitdashed are tight-binding fit.
ted structures is excellent. The nonorthogonal equations of
state and phase diagram are in quite good agreement with tiégure 11 shows the Raman frequency for Si in the diamond
self-consistent calculations, including thetin and simple  structure as a function of compression compared with experi-
hexagonalSH) structures that were not included in the fit. ment. The frequency, which was constrained in the fit by two
Although the orthogonal fit gives good equations of state fompoints, is in excellent agreement with experiment. Again, the
the fitted structures, it is less accurate witin and SH, and nonorthogonal fit is more accurate than the orthogonal one.
gives a transition from diamond to SH rather thangtin.  Table || summarizes the transition pressures obtained for Si.
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Volume (Bohr’) FIG. 7. Pressure vs volume for Xe from the tight-binding model

FIG. 5. Band gap vs volume in Xe. Lines are from tight-binding (solid liney compared with experimenRefs. 41-43 (fcc: dia-

fit; labels refer to the direct gap at zone ceriiéy;, and indirect gaps ”?O”d? hep: other symbisThe theoretical curves are nearly coin-
K,—T, andM{ —T), . Crosses are experimental resuRefs. 39 cident for fcc, hep, and bee phases, except at the highest pressures

and 40. Other symbols are LAPW results: direct gém), T —K where bcc becomes slightly denser than fcc and hcep.

(©), andI'—=M (O). . . .
diagram of Ref. 31, although encouraging, shows major
groblems such as a large difference in the zero pressure vol-

The_ resulting S.I parametrization seems to have_ the be Ume for bce and fcc compared with LDA computaticfs.
behavior of any Si parametrization to date over a wide coms=

pression range, in that the same parameters accurately repry—]e authors also pointed out that their band structures, which

duce properties of tetrahedrally coordinated diamond an ere not fit, were not accurate. Here we have found a non-

close-packed structures fcc and hcp. Other models for Si th thogonals, p, andd model that works well for the band

. Structure and total energies of close-packed and open struc-
behaved well for diamond are less accurate for the close- 9 P P

: tures.
packed structures:>171° Also, other models require ex- NN .
plicit structure-dependent terms or pair potentials that are er\:\é(realhaa\\/rf d dﬁgﬁgsftg?tﬁgnt:igg;h:ngg:;bﬁgn%l%agogeufe
absent in the present treatment. One of the best tight—bindingas ané a semiconductor. over very large randes of (;om res-
models for the energetics of Si, a third-neighbor orthogsnal ' ' ylarg 9 P

and p model®! fit only energetic propertie§including em- sion and structure. We now proceed to obtain results not

pirical data and not band structures. The predicted phaseconstramed directly in the fits, and study the elasticity and

elastic anisotropy of Fe, Xe, and Si.

0.0 T

lll. ELASTICITY

A. Elastic constants

Before considering elasticitper sewe considerc/a in
hcp versus pressure for Fe, Si, and (k&g. 12). We find that
the c/a ratios of Xe and Fe are smaller than the ideal value
(\/8/3) while that of Si is greater. The/a ratio of Fe and Si
increases slightly with pressutby 0.02 between 0 and 100
GP3, while that of Xe decreases by a similar amount. Only
ideal hcp structures were included in the fits, and predictions

Energy - Energy(fcc) (mRy)

Energy (Ry)
o
()]

I for c/a and the elastic constafig that correspond t@/a
10k | | ! | L] strains agree well with LAPW computations not included in
) 100 200Volumz0(gohr3) 400 500 the fit (Fig. 13. This is evidence that the TBTE model is

predictive and not simply an interpolation tool.

. — We obtained the elastic constants as a function of volume
= = for various phases of Fe, Xe, and Si by straining the lattice

100 200 300 400 500 ; . .
Volume (Bohr) and allowing the symmetry allowed internal c_oc_Jro_Ilnates_to
relax. In other words, the total energy was minimized with
FIG. 6. LDA total energy of bcc, fce, and hep phases of Xe.respect to the atomic positions for each increment of strain.
Tight-binding resultgsolid lines are compared with LAPW calcu- The total energy was calculated in the strained lattice for

lations (symbols: bce (O), fee (), hep (A). several values of the magnitude of the strath,The new
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FIG. 8. Band structure of Si in the cubic diamond structure. FIG. 9. Band structure of fcc Si. Solid lines are LAPW band
Solid lines are LAPW band structure, dashed are tight-binding fitStructure, dashed are tight-binding f#) Nonorthogonal modelb)
(a) Nonorthogonal modelb) orthogonal model. orthogonal model.

lattice vectors P’ are related to the unstraine® by E(8)=E(0)+3(C1;—~C1)V&+0(5°). (14)
P'=[1+£(6)]P, wheree is the strain matrix. Generally For the elastic constafit,,, we applied the volume conserv-
5—6 values o were chosen, ranging in magnitude from 0 to ing strain
0.1. We fit a polynomial to the total energy as a function of
8, from which the elastic constant is given by the coefficient 0 o6 0
of the quadratic term. Very dengepoint meshegup to 24 e=| 6 0 0 (15)
X 24X 24 k points in the full Brillouin zong were used to ) 5 '
ensure sufficient convergence of strain energies. All elastic 0 0 &7(1-969
constants were obtained about the equilibrium relaxed struGynich produces a change in the total energy
ture at a given volumépressurg

For cubic crystals, the bulk moduluk=(C;+C;,)/3 E(8)=E(0)+2C4V 82+ 0[ 6. (16
was obtained by differentiating the equation of state. Th
shear elastic constanf,s=C;—C,,, was obtained by ap-
plying the volume conserving strain

Sn the diamond structure, there is one atom located at posi-
tion (x,x,X); in the unstrained lattices=1/8. In the diamond
lattice strained according to E¢L5); the equilibrium value
of x differs from 1/8. For each value &f we redetermined

5 0 the minimum energy value of.
e=| 0 6 0 . (13 For hexagonal crystals, the bulk modulus yields the com-
0 0 (1+8)2-1 bination of elastic constants
K=[Csy(C11#C1p) —2CH/Cs, (7

The value ofCg is then determined by the variation of the
total energy E, with respect to magnitude of the straif, where the shear elastic modulus
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FIG. 10. Total energy of Si in various structures vs volume.
Solid lines are tight-binding results, points are LAPW computa-
tions: cubic diamond ¢ ), simple cubic((J), hcp (@), fcc (O), bee
(®). Curves with no points were not constrained in the figs.
Nonorthogonal modekb) orthogonal model.

CS: Cll+ ClZ+ 2C33_4C13. (18)

The pressure dependence of tiia ratio is also related to

a combination of elastic constants. The dimensionless quan-

tity R is defined as

aln(c/a)_ d In(c/a)
P dlnv

= =K(ka=ko), (19

wherek, andk, are the linear compressibilities, so that

R=(C33—C43;—C45+Cy3)/Cs. (20)

We determinedR by fitting a polynomial in finite strain to
the volume dependence ofa. The shear elastic modulus
Cs is determined by applying the strajieq. (13)] to the
lattice. This yields a variation in total energy

E(8)=E(0)+CgV&2+0[ &°]. (22)

E, AND EVGENY WASSERMAN

700
Orthogonal

< 650
£
KA
&
[
S 600
o
u.
c
g Nonorthogonal i
& 550 .

500 | | ] | ]

10 15 20
Pressure (GPa)

25 30

FIG. 11. Raman frequency vs pressure in diamond-structured Si
from the tight-binding modelgsolid lineg and experimentRef.
44).

In the combinations of elastic constarig, R, andK,
C,; andC,, always appear a8+ C4,. To determine these
two constants individually, we determined the difference be-
tween them; in hexagonal crystalsCg=(C1;—Cqy). We
found thatCgg can be efficiently determined by applying a
strain to an equivalent orthorhombic lattice, space group
Cmcm with the conventional unit celld=(ape,0,0),

b= (0,V384640), €=(0,0Cheyn, Whereaye, and ¢y, are the

TABLE II. Pressured; of transitions -1l in Si and the corre-
sponding volumes of each phas4,, V| (as fractions of the mea-
sured equilibrium volume, 135 bofjsfor orthogonal and nonor-
thogonal tight-binding models, compared with experiment and other
theory.

Transition P, VA vy
cd—B-Sn
Orthogonal 11.7 0.901 0.626
Nonorthogonal 4.5 0.949 0.698
Experiment 12 0.911 0.706
LDAP 7.8 0.931 0.701
B-Sn—sh
Orthogonal 25 0.589 0.631
Nonorthogonal 83 0.528 0.512
Experiment 16 0.673
LDAP 102 0690  0.679
sh—hcp
Orthogonal 28 0.620 0.572
Nonorthogonal 45 0.572 0.535
Experiment 42 0.615 0.570
LDAP 37.7 0.594 0.550
hcp—fcc
Orthogonal 46 0.533 0.528
Nonorthogonal 81 0.479 0.472
Experiment 79 0.481 0.478
LDAP 84.3 0.477 0.470
LAPW! 78 0.484  0.476

aReference 46°Reference 32°Reference 479This work.
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FIG. 12. Thec/a ratios of hcp Xe, Fe, Si as functions of pres-
sure from the nonorthogonal tight-binding models. The dashed line
is the idealc/a for hexagonal close packing.

3000

2000

hcp lattice parameters. The four atoms in the unit cell are
located at Wyckoff position @ with coordinates (§,,1/4).
The conventionat-centered unit cell is doubled with respect
to the primitive cell. We used the two-atom primitive unit
cell in all calculations. We applied the strain matrix

1000

Shear Elastic Constant C, (GPa)

0 | | | |

50 60 70 80
o 0 0 Volume (Bohra)
0 0 &1 FIG. 13. Comparison ofa) minimum energyc/a and(b) effec-
( ) tive elastic constant Cg for cla strains
to this lattice, leading to a change in the total energy: (Cs=Cy1+Cyp+2C33—4Cyy) in hep Fe from LAPW(dots and
the tight-binding mode(lines).
E(8)=E(0)+2CgV 52+ O[ 6. (23

The atomic coordinatgy=2/3 in the unstrained lattice, but
varies when the lattice is subjected to this shidane rede-
termined the minimum energy value pffor each value of
strain.

Finally, to determineC,,, we used a monoclinic cell,

space groupC2/m, with lattice vectorsa=(0,3apey0),

b= (aphex0,0), €=(0,0che. The four atoms in the conven-
tional unit cell are on Wyckoff position i4x,0,z) with x
=1/6 andz=1/4. The two-atom primitive cell was used in
all calculations. We applied the strain

TABLE lIl. Elastic constant§GP3g and their pressure derivativém parenthesesat zero pressure of the tight-binding modé&B)

compared to available experimental déxp?. Zero pressure elastic constants and their pressure derivatives were determined by fitting

appropriate finite strain expansions to the tight-binding resRe&f. 48 CD: cubic diamond.

Material Ci1 Cyo Cua Ca3 Ciz

Fe fcc 448(6.0 209 (3.5 212 (2.2)

Fe hcp 504(6.7) 179 (3.2) 159 (1.6) 542 (7.0) 183 (3.0)
Si CD (TB® 183 (0.2) 64 (4.8 104 (0.2)

Si CD (TBY) 173 (4.2 58 (3.9 104 (0.2)

Si CD (expf) 166 (4.3 64 (4.2 80 (0.9

Si fcc (TB*9) 58 (7.8 106 (2.7) 49 (-5.1)

Si fcc (TB™9) 75 (5.0 102 (3.5 6.7 (1.8

Si hep (TB?Y) 135 (7.5 87 (2.7) -7.9 (3.1 165 (9.1) 55 (2.6)
Xe fcc (TB) 7.50 (8.5 5.75 (6.4) 1.71 (3.4

Xe fcc (expf) 5.3 (6.0 2.8 (3.9 3.0 (3.0

Xe hcp(TB) 8.5 (10.1) 5.4 (5.9 1.1 (1.5 8.8 (10.5 5.1 (5.3

@rthogonal model.

®Nonorthogonal model.

‘Reference 45.

dViolates Born stability criteria at low pressure.
®Reference 36.
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FIG. 14. Predicted elastic constantg@afhcp and(b) fcc iron vs
pressure from the nonorthogonal tight-binding model compare
with LMTO results(Ref. 34 (symbol3: hcpC;; (@), C33(0), Cy,
(M), C15 (), Cyhy (®); fec Cyqy (O), Cy, (@), Cuy (D).

0 0 S
e=| 0 &1(1-6% O (24)
1) 0 0
which vyields the variation in total energy
E(8)=E(0)+ 2C4,8°+ O[ 6*]. (25)

The equilibrium positions of the atoms are unaffected by thisr
strain, and do not need to be redetermined in the straineg
lattice3® The elastic constants of Xe, Fe, and Si at zero pres

sure are compared in Table 11l

RONALD E. COHEN, L. STIXRUDE, AND EVGENY WASSERMAN

250 | |

200

150

100

Elastic Constant (GPa)

50

Pressure (GPa)

FIG. 15. LDA fcc elastic constants for Xe computed using the
tight-binding model(solid lineg and compared with experiment
(dashed lings No strained configurations were used in the fit—only
fce, hep, and bee Xe as functions Bt

that experimental data on other hcp transition métalkow
C,,~C,3, consistent with our results. Moreover, the elastic
constants in Ref. 34 were obtained using the ideal, rather
than the equilibrium value o€/a. We speculate that this
may have biased their results.

Figure 15 shows the elastic constants of fcc Xe as a func-
tion of pressure compared with experiméhAgreement is
excellent and the elastic constants vary by an order of mag-
nitude over this pressure range. No strained distortions for
Xe were included in the fit, so this result indicates clearly
that the model is predictive.

Figure 16 shows elastic constants for Si compared with
experiment or LAPW for the nonorthogonal parametrization.
Both parametrizations give reasonable zero-pressure elastic

gonstants folC,, andC44 but are worse foC,,. The pres-

sure dependencies in the nonorthogonal fit compare quite
well with experiment, whereas the orthogonal fit gives an
incorrect prediction for the pressure dependencé gf It is
clear that a nonorthogonal model is needed to give adequate
properties for Si over this range of compressions and struc-
tures. It is quite probable that a model for diamond structure
alone could be much more accurate, especially if the elastic
and Raman response were constrained in the fit. However,
such a model would not likely give an accurate phase dia-
gram or description of close-packed phases such as the liquid
state. Since there are no experimental data for fcc or hep Si
elastic constants we compare with elastic constants derived
rom LAPW computations and see that agreement is quite
ood again for the nonorthogonal model. Agreement with the
orthogonal model is less good.

The predicted elastic constants for hcp Fe versus pressure

are shown in Fig. 14. Our predicted fcc and hcp elastic con-

B. Acoustic anisotropy

stants are in generally good agreement with linear muffin-tin - Acoustic velocities are related to the elastic constants by

orbital (LMTO) results3* the rms difference between the two

the Christoffel equation,

sets of predictions is 70 GPa. The largest difference occurs in

C1, of hep. Whereas we find th&t,, and C5 are similar,
differing by no more than 6%, the LMTO study finds that

(CjkimNkN — M 6j)u; =0, (26)

Cy, is more than 50% smaller tha, 5 at inner core densi- where Cj,, is the effective elastic constant relative to a
ties. While the cause of this discrepancy is unclear, we noteeference state under isotropic pressurés the wave nor-
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FIG. 16. Elastic constants of Si computed with the nonorthogo-
nal model(solid lineg in various structureqa) diamond-structured
compared with experimeriRef. 45 (symbols and dashed linéb)
fcc compared with LAPW computationssymbols. The LAPW
computations were not used in the fit) hcp.

FIG. 17. Amplitude of(a) longitudinal (Ap) and(b) shear A ;)
anisotropy in Fe, Xe, and Si. For each material, results for fcc and
hcp are shown. Solid lines are the tight-binding results, dashed lines
represent the CNNF model.

Ap=(Mg[nx]—=M[100])/C4;, whereny is the extremal
the modulus of propagatiom is the density, and is the  propagation direction other th4h00] andp is an index that
velocity. runs over the three types of elastic wayese longitudinal,

Figure 17 shows the elastic anisotropy calculated usingwo shea). For cubic crystals, the anisotropy is uniquely
Eq. (26) for fcc and hcp Fe, Xe, and Si. The anisotropy defined by

mal, u is the polarizatior(displacementvector, M = pv? is
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much with pressure in fcc or hep. In all three materials we
find that fcc is more anisotropic than hcp, in agreement with
CNNF. Anisotropy at high pressure in Fe is of particular
importance in geophysics due to the seismically observed
anisotropy in the Earth’s inner core. The magnitude and
symmetry of the observed anisotropy are very similar to that
of hcp Fe, suggesting that the inner core may be a large
oriented single crystal of hcp irdror be composed of large
oriented crystals. The anisotropy of the Earth’'s inner core
has recently led to the detection of its differential rotation.

Anisotropy Factor A

02 IV. CONCLUSIONS

We have further developed the tight-binding total-energy
01 _ model of Ref. 1. A large number of LAPW computations
were performed for different crystal structures of Fe, Xe, and
| | | | Si and the TBTE was parametrized successfully for a large
0.0 - -
0 20 40 60 80 100 compression range for each. We find that the model works
Pressure (GPa) well not only for transition metals such as Fe, but also for the
rare gas Xe over a fivefold compression range from Van der
FIG. 18. The quantitydA=(2C,+ C1,)/Cq,— 1, which defines  Waals insulator to high-density metal, and elemental Si from
the anisotropy in the fcc structure. The dashed line is the CNNRhe open diamond structure to close-packed metallic struc-
result. tures. Using the parametrizations we have computed the elas-
tic constants and anisotropy versus pressure for Fe, Xe, and
A=(2C44+C1)/Cy—1, (27)  Si. We find in each case that fcc is more anisotropic than
hcp. At high pressures the anisotropy is close to what would
which vanishes for an isotropic material. The anisotropiege predicted from a nearest-neighbor central force interac-
are tions.

Ap=3A, Ag=-3A, Agp=—3A, (28)

whereS1 is polarized in the £ 110) plane and2 is (001 _
polarized. Another way of characterizing anisotropy is to Much thanks to I. Mazin and J. Mercer, Jr. for helpful
compare it to that of a crystal interacting with central discussions. This research was supported by NSF EAR-
nearest-neighbor force€CNNF). It has been shownthat ~ 9305060.
elastic anisotropy in this case is independent of the inter-
atomic potential to lowest order iR/c,;, which is typically APPENDIX: ANALYTICAL EXPRESSION FOR THE
less than 0.1. For an fcc lattice, FORCES ACTING ON ATOMS AND DERIVATIVES OF
_ THE TOTAL ENERGY WITH RESPECT TO THE
Acnne=3(1-P/Cy)~h (29

PARAMETERS OF THE TBTE FIT
For hexagonal crystals, the anisotropy is

ACKNOWLEDGMENTS

The starting point for this derivation is the expression for
Ap=B, Ag=Bl4—CI2, Agm=A2, (30) the to_tal en_ergy(3)_. To simplify the n_otation, the primes
denoting shifted eigenvalues are omitted below. As usual,
where S1 is (010 polarized andS2 is (001 polarized, Eq. (3) implies Brillouin zone integration that is performed
B=C33/Cy;—1 andC=(C,3+2C,)/Cy;—1. For an ideal numerically. The factor of 2 that stems from spin degeneracy
hcp crystal interacting with central near-neighbor for@es-  of the calculations is not included also. The eigenstates are
glecting terms of ordeP/C,) populated according to the finite-temperature Fermi-Dirac
function. The calculations described here were performed
Acnne= 2129, Benne=3/29,  Cenne= —5/29. with kgT=5mRy. The Fermi levek; is determined by
3D solving the particle conservation equation

In spite of the fact that our tight-binding models are not
CNNF, we find that at high pressures the elastic anisotropy 2 f<8i—8|=>
tends roughly towards the CNNF values. Figure 18 shows i kgT
the amplitude of the anisotropy as a function of pressure
compared with the CNNF. At high pressures Si is closest tavhere Ng, is the number of electrons in the system. Our
the CNNF model in fcc. In fcc Xe is the most noncentral calculations differ from the previous woie.g., Ref. 3Yin
and/or longest ranged at both low and high pressures, whictinat we do not make an assumptionsgf being independent
makes sense since nonpairwise overlaps are important, bat atomic positions or parameters of the fit. Therefore we are
hcp Xe has quite constant anisotropy. This is a puzzling reable to perform molecular-dynamics simulations of metallic
sult since ideal fcc and hcp have the same first- and secondystems in the NVEconstant number of particles, total en-
neighbor distances. The anisotropy of Fe does not changergy, and volumeensemble rather thand¥ ensemble. The

=N, (A1)
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dependence of the Fermi level on the parameters of theensor with one extra index. The on-site terms indeed have

TBTE fit was found to be significant in most cases. nonzero derivative with respect to the radius vector of each
For clarity, we define here particle in the system. However, since they are located on the
diagonal of the Hamiltonian, the matrix-vector multiplica-
f(X)={1+exp(X)} 74, tions in Eq.(A4) are reduced to a single sum. Within the
which has the derivative framework of the two-center approximation, the hopping
matrix elementsH;; .z and O;;,z corresponding to atomis
floX=F(f—1), andj (i,j=1,... Nyoms i#]) and orbitalsa and 8 are

. constructed as
and the notation

f__f(si—gF) Hijap= 2 exilik:(Rj=Ri+n)]gus(R—Ri+n),

In the several equations below denotes either a component whereR; is the radius vector of the atoin n is the direct

of the radius vector of an atom or a fit parameter. The dif5gice vector and,; is a function of the separation vector.
ference between these two cases will be pointed out latefrherefore,

Differentiation of Eq.(3) with respect toa yields

l where g, is the Kroneker symbol. Taking into consideration
For the case off =0 (this calculation is useful for a wide- that

gap insulator, but not for a mejahis expression reduces to

07H|oz],6_(9H|on,B(S aHj,B,ia(S

(A2) IR, IR it aR;

IE ot
Jda

9g; fi(fi—1)
Talite T T

dej defg (A8)

Mg Mg
J,B,la__ B«
Etot: Jei (A3) IR, IR; (A9)

oa all sj<ep da’ . . .
and the Hermitian symmetry of the Hamiltoniéand over-
The derivative of the eigenvalug; /da is obtained through lap) matrices we arrive at
the Hellmann-Feynman theorem,
Hinip MHiajp IH}

QB _ QB o _ “Miajp

Jej Ja 'ga

£= RAGED , (A4) Equations(A7)—(A10) are applicable to the elements of the
i i

overlap matrix if one replaced by O. Therefore we con-
where |¥;) is the eigenvector corresponding to the eigen-struct arrays Hi, s=dHi, z/dR; and also Oj, s
valueeg; . In order to obtain the derivative of the Fermi level =aom,m/aRj (note that there is no extra index

with respect toa, we differentiate Eq(Al). This yields I=1,... Naomg- Denoting for clarity
Mla is=Hiajs—€0ia,jg (the eigenvalue label is supresged
> fi(fi_l)<% 981 Jep -0 (A5) ~ Wecan write, using Ec(AZ) and Eq.(A10),
i B oa oa

P 5 e (Mhais_ Ouas
&R| i fa IR, IR,

Solving this equation fobeg/da, one obtains Vg

(98i
der D5 =2 VM8 = ME a8 V5. (ALY
da  Sf(fi-1) (A6) I

Substituting Eq(A6) and Eq.(A4) into Eq. (A2) solves the
problem in principle. de

The calculation as outlined here is a computationally in- ﬁ=2 > UMV~ 2 E VMY
tensive task in terms of both the number of floating point Lo B 18

: : (A12)

operations and the memory usage. Therefore we describe
here the ways we found to optimize these calculations. First-urther simplification is possible for the case of the 0
the denominator in the EGA4) is equal to 1 since all known calculation. Substituting this result into E¢\2), one obtains
generalized eigensolver routinésg.,DSYEV from LAPACK) the gradient of the total energy with respect to the radius
normalize the eigenvectors. vector of an atom. Treating gradients of the hopping and

In the calculation of forces acting on atoms, the on-siteon-site terms separately saves both mentgfoyeachk point
and hopping terms need to be treated separately. Then om@e needs to store onlyMs? values, rather thanN 2N oms
adds together the contributions &&;/da from the on-site numbers for the perturbation matrigeand computational
and hopping terms. It is important to take advantage of théime. We found from experience that due to memory access
two-center approximation for the hopping terms of theconsiderations, it is best to calculate the quadratic form in
Hamiltonian and overlap matrix. FormallyH;; .z/JdR is a  Ed. (A4) using matrix-matrix multiplicatior(so that the re-

Finally, one gets
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sult for all eigenstates is obtained simultaneousigher than

matrix-vector multiplications. It is essential to use vendor-

RONALD E. COHEN, L. STIXRUDE, AND EVGENY WASSERMAN

(98i
= —8i<\Pi|ﬁO/ﬁa|\I’i>.

= (A14)

supplied routines for that rather than try to write such a rou- _ _ _
tine in FORTRAN since they are optimized for a particular As the four-index notation suggests, b¢thand O matrices
processor architecture. For example, on IBM RISC/600ccan be considered as block matrices with @ blocks(9 is

workstations and IBM SP2 we used thssL set of routines
and found a speedup of a factor of 4.

Calculation of the derivatives of the total energy with re-

the number of orbitals on each atom we usékherefore a
given parameter of the TBTE fit controls only a submatrix of
each 99 block. Moreover, even though each submatrix

spect to the parameters of the TBTE fit differs from the cal-(denoted a$i,z) is not symmetric, it has the symmetry prop-

culation of forces in the following ways. First, a given pa-

rameter of the fifsuch as;, b; andc; in Eq. (6)] influences

either elements of the Hamiltonian or the overlap matrix, but

not both at the same time. Thereforeaifis a parameter of
the Hamiltonian, Eq(A4) becomes

& .
£=<\Ifi|aH/aa|\Ifi>. (A13)

If it is a parameter of the overlap matrix element,

erties:

hBa: pathaﬁ ' (A15)
where p is a vector with integer components
p=(1,-1-1,-1,1,1,1,1,1). This property of sparseness
along with the fact that positions of nonzero elements are
known was used extensively to speed up the calculations.
Apart from this, the calculation of the derivatives of the ei-
genvalues and the total energy with respect to the parameters
of the TBTE fit is a straightforward but tedious application
of Eq. (A6), Eq. (A4), and Eq.(A2).
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