GEOPHYSICS OF CHEMICAL HETEROGENEITY IN THE MANTLE

State State

Lars Stixrude University College London

Heterogeneity

Boundary Layers

and the second lie

Plate Tectonics

Smith & Sandwell (1997) Science

Rate of Production

- Amount of subducted crust
- Amount of subducted depleted
- Amount of mantle processed

 $\rho_m, h_m = \rho_c, h_c \sim 7 \text{ km}$ $\sim 60 \text{ km} = \rho_d, h_d \sim 53 \text{ km}$

 $C = \int \rho_c h_c S dt$ $D = \int \rho_d h_d S dt$ $M = \int \rho_m h_m S dt$

10

and the set is

- Heterogeneity is continuously generated in surface boundary layer
- Heterogeneity once produced is difficult to destroy
- Heterogeneity is returned to the mantle
- Subduction may be an ancient process (3 Ga; Shirey et al., 2011, Science)

and the second and

and the set in the

and the set in the

Probing Chemical Heterogeneity

- Tomographic models show lateral heterogeneity
- Broad agreement among models
- Limitations
 - Spatial resolution
 - Multiple sources of heterogeneity

Ritsema et al. (2011) GJI

Length Scales of Heterogeneity

Nico de Koker, Bayreuth

Length Scaling: Atom to Planet

and the set in the

and then said the said

all for and a stranger

Stixrude & Lithgow-Bertelloni (2012) AREPS

Stixrude & Lithgow-Bertelloni (2007) EPSL

Mantle Heterogeneity: Phase

and the set in it.

Stixrude & Lithgow-Bertelloni (2012) AREPS

Melting and differentiation

and the set in is

Melting and differentiation

The Allow and the Anticia I allow the	the second second second second	and the second of the second o	States and the second states and the
Oxide wt %	Mantle	Oceanic Crust	Continental Crus
SiO ₂	44.9	47.8	58.0
MgŌ	42.6	17.8	3.5
FeO	7.9	9.0	7.5
Al ₂ O ₃	1.4	12.1	18.0
CaO	0.8	11.2	7.5
Na ₂ O	0.11	1.31	3.5
K₂Ō	0.04	0.03	1.5
H ₂ O (ppm)	150	2,000	10,000
Mean			
Atomic	21.1	21.6	21.1
Mass			

Maaløe and Aoki (1977) Elthon (1979) Taylor and McLennan (1985) Hirschmann (2006) Wedepohl (1995)

Incompatibility

Ionic radius

- •e.g. alkalis are large
- •Structure of coexisting crystals

•e.g. garnet retains incompatibles much more completely than other phases

•Garnet signature of MORB

•MORB genesis begins at depths > 80 km

Lithologic Heterogeneity

- Origin in disequilibrium
- Details of melt extraction
- Stirring
- Diffusion
- Buoyancy

Frets et al. (2012) J. Struc. Geol.

Rate of Production

- Amount of subducted crust
- Amount of subducted depleted
- Amount of mantle processed

 $\rho_m, h_m = \rho_c, h_c \sim 7 \text{ km}$ $\sim 60 \text{ km} = \rho_d, h_d \sim 53 \text{ km}$

 $C = \int \rho_c h_c S dt$ $D = \int \rho_d h_d S dt$ $M = \int \rho_m h_m S dt$

10

Rate of production

- Amount of subducted crust ~ 12 % of mantle
- Ratio of crust to depleted
 - ~ 7/53~12 %
- Mass balance basalt and harzburgite (18 %)
- Amount of mantle processed ~ 100 %

Becker et al. (2009) EPSL Zhang et al. (2010) JGR Ulrich & Van der Voo (1981) Tectonophys. Conrad & Hager (1999) Stixrude & Lithgow-Bertelloni (2012) AREPS

Production

0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00 5.00

0_00

- Proterozoic rates a lower bound
- Plates with slabs attached tend to move faster
- Earth probably hotter in the past
- Were plate speeds greater?
- Product Sh_C may be more constant (Klein and Langmuir, 1987)
- Reprocessing

Conrad & Lithgow-Bertelloni (2004) JGR Herzberg et al. (2010) EPSL

Survival of Heterogeneity

and the section is

Survival of heterogeneity

Holzapfel et al. (2005) Science Spence et al. (1988) GJI Nakagawa et al. (2010) EPSL Pearson & Nowell (2004) J. Petrol. Stixrude & Lithgow-Bertelloni (2012) AREPS

Ammann et al. (2000) Science

Survival: Stirring

Survival: Stirring

- Rate depends on:
- Amount of pure vs. shear strain
- Amount of toroidal flow
- Chaotic vs. laminar
- Space
- Time

Late stage: forward advection (c)

Low Mormalized finite-time Lyapunov exponent

Farnetani & Samuel (2003) EPSL

Survival: Accumulation

Christensen & Hofmann (1994) JGR Nakagawa & Buffett (2005) EPSL Nakagawa et al. (2010) EPSL

Detecting Chemical Heterogeneity

- Lithologically heterogeneous mantle
 - Faster
 - Higher velocity gradient
 - agrees better with seismological models
- Why?
 - Olivine and stishovite faster than pyroxene/garnet

Xu et al. (2008) EPSL

Detecting Chemical Heterogeneity

Schematically $2MgSiO_3 = Mg_2SiO_4 + SiO_2$ EA Harz. Bas.

Xu et al. (2008) EPSL

Stixrude & Lithgow-Bertelloni (2012) AREPS

Detection: Reflectors

- Lithologic components show different mid-mantle reflectors
- Basalt: 310 km, 820 km
- Pyrolite/Harzburgite: 410 km, 660 km

Detection: Reflectors

- Post-perovskite
- Single crossing in homogeneous mantle
- Double crossing in heterogeneous mantle
- Experiment (Grocholski et al., 2012, PNAS)
 - No crossing in homogeneous mantle

Stixrude & Lithgow-Bertelloni (2012) AREPS

Detection: Scattering

Hedlin et al. (1997) Science Shearer & Earle (2008) Adv. Geophys. Kaneshima & Helffrich (1998) JGR Stixrude & Lithgow-Bertelloni (2012) AREPS

- Analyze in terms of distributed heterogeneity with a range of length scales
- Length scales 1-100 km; Velocity contrast 1-2 %

Detection: Scattering

- Scattering analyses agree with expected properties of heterogeneity
- Length scale; Velocity contrast

Stixrude & Lithgow-Bertelloni (2012) AREPS

MORB

Geochemical Evidence

- Recycled oceanic crust in source of lavas
- Consistent with pervasive heterogeneity
- Usually viewed in terms of plum pudding model, rather than pervasive heterogeneity
- Can a completely differentiated mantle make MORB?

Sobolev et al. (2007) Science

Future Outlook

- Mineral physics ties seismic observation to chemistry
- Reconcile geochemists and geophysicists views of heterogeneity
- Geophysical characterization of geometry and magnitude of heterogeneity
- Geochemical characterization of major element heterogeneity

Pervasive heterogeneity Mechanical mixture

