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The energetics of point defects in oxide materials plays a major role in determining their high-temperature
properties, but experimental measurements are difficult, and calculations based on density functional theory
sDFTd are not necessarily reliable. We report quantum Monte Carlo calculations of the formation energyES of
Schottky defects in MgO, which demonstrate the feasibility of using this approach to overcome the deficiencies
of DFT. In order to investigate system-size errors, we also report DFT calculations ofES on repeating cells of
up to ,1000 atoms, which indicate that QMC calculations on systems of only 54 atoms should yield high
precision. The DFT calculations also provide the relaxed structures used in the variational and diffusion Monte
Carlo calculations. For MgO, we findES to be in close agreement with results from DFT and from model
interaction potentials, and consistent with the scattered experimental values. The prospects for applying the
same approach to transition metal oxides such as FeO are indicated.
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The quantum Monte CarlosQMCd technique1,2 is impor-
tant in condensed matter science, because it is generally
much more accurate than density functional theorysDFTd
and allows one to make accurate predictions for problems
where DFT fails.3–7 It is usually competitive in accuracy with
high-level quantum chemistry methods, but it has the advan-
tage of being practicable for large systems containing hun-
dreds of atoms. Recently, efforts have been made to apply
QMC to oxide systems, including transition metal oxides,8,9

for which DFT gives poor predictions for magnetic proper-
ties, phonon frequencies, and other properties.10 We have
recently reported11 a QMC study of bulk MgO for which we
find excellent agreement with experiments for the bulk lat-
tice parameter and bulk modulus, provided appropriate cor-
rections are made. We report here on a QMC calculation of
an oxide lattice defect energy, namely the Schottky forma-
tion energyES in MgO. Defect energies in oxide materials
are technologically important for applications ranging from
high-temperature superconductors to radioactive waste dis-
posal, but are also very difficult to measure experimentally.
We shall show that our results forES in MgO are consistent
with available experimental data, as well as supporting ear-
lier DFT predictions.12

The Schottky energyES is the energy required to form a
cation and anion vacancy pair, and governs the thermal equi-
librium concentration of vacancies.13 The calculation ofES
in ionic materials has a very long history, going back to the
very early work of Mott and Littleton.14–16DFT calculations
on defect formation and migration energies in oxides first
became possible in the early 1990s, and are now routinely
performed. However, particularly in transition metal oxides,
the reliability of DFT calculations is questionable.

QMC calculations are usually performed in two stages.1

In the first, known as variational Monte CarlosVMCd, a trial
many-body wave function is constructed as a product of a
Slater determinant of single-electron orbitals and the so-
called Jastrow factor that explicitly accounts for electronic
correlation. Since VMC by itself is not usually accurate
enough, the second stage is to use the many electron wave

function produced by VMC in diffusion Monte Carlo
sDMCd, which improves the ground-state estimate by per-
forming an evolution in imaginary time. This would yield the
exact ground-state energy but for the fact that the trial wave
function fixes the nodes of the many-body wave function.
Because of this, the DMC energy is an upper bound to the
true ground-state energy, but for systems with a large band
gap the difference is expected to be very small.

QMC calculations of defect energies in any material are
challenging, and their feasibility is not obvious, for several
reasons. First, it is not yet routinely possible to perform
structural relaxation with QMC, and relaxation around de-
fects produces a very large energy lowering in ionic
materials.14–16Second, defect energies must be obtained as a
difference of two large energies, both of which suffer the
statistical errors inevitable with Monte Carlo methods. Third,
there is a system size error associated with the limited size of
the periodically repeated cell used in condensed-matter QMC
calculations, and the difficulty of going to very large cell
sizes makes it difficult to assess the error. To overcome these
problems, we employ DFT calculations in tandem with
QMC. In particular, the relaxed ionic positions used for
QMC calculations on the defective crystals are taken from
DFT calculations.

The overall strategy for our calculations is as follows: The
Schottky energyES is defined to be the energy change when
a Mg2+ ion and an O2− ion are removed from the MgO per-
fect crystal, the resulting defective crystal is allowed to relax,
and the removed ions are replaced to form a new perfect
crystal. The two vacancies formed in this process are sup-
posed to be very far apart, so that there is no interaction
between them. In calculatingES, either by DFT or by QMC,
it is preferable to perform calculations in which no more than
a single vacancy, either a Mg2+ vacancy or an O2− vacancy,
is present. We avoid doing calculations with both vacancies
present in the same system, because with the cell sizes that
can be achieved in practice, such calculations would suffer
from a large unwanted interaction between the vacancies.
Denoting byENsn+,n−d the relaxed total energy of a crystal
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containingN cation lattice sites andN anion lattice sites, and
with n+ cation vacancies andn− anion vacancies, we there-
fore express the Schottky energy asES=ENs1,0d+ENs0,1d
−f2sN−1d /NgENs0,0d.

The energiesENs1,0d andENs0,1d both refer to periodic
systems in which the supercell has a net charge. To make
these energies well defined, we must assume that the systems
have been rendered electrically neutral by the introduction of
a uniform background charge, as described in earlier
papers.12,17,18The effect of the background charge densities
is to make the zero-wave-vector terms in the Coulomb en-
ergy finite rather than infinite, but these charge densities do
not appear explicitly in any other way in either DFT or
QMC.

In this way of doing the calculations, the interaction of the
charged vacancies with their periodic images gives finite-size
correctionsDE to the total energy, which scale asL−1, where
the lengthL characterises the dimensions of the supercell. As
is well known,12,17 these corrections can be quite accurately
approximated by the formulaDE.aq2/e0L, wheree0 is the
static dielectric constant of the material,q is the net charge
of the vacancy, anda is the appropriate Madelung constant.
Using this formula, we can subtract off the leading finite-size
corrections, and greatly accelerate the convergence with re-
spect to supercell size. In applying this correction procedure
in the present paper, we takee0 for bulk MgO from
experiment.21

The present DFT calculations are performed using the
VASP code22 on a wide range of periodic cell sizes, as de-
scribed above. These calculations allow us to determine the
cell size needed to obtain converged results. The calculations
employ the projector augmented wave method23,24 for the
interactions between the valence electrons and the ions, and
the local-density approximationsLDA d for electronic ex-
change and correlation. In all the DFT calculations, the entire
system is fully relaxed, so that the maximum force on any
ionic core is less than 4310−4 eV Å−1.

Detailed descriptions of VMC and DMC and of theCA-

SINO code used for all the QMC calculations have been re-
ported elsewhere.1,25 Our trial wave functionsCT have the
usual Slater-Jastrow formCT=D↑D↓expsJd, where D↑ and
D↓ are Slater determinants of up- and down-spin single-
electron orbitals, and expsJd is the Jastrow factor describing
correlations between electrons. The functionJ is a sum of
parametrized one- and two-body terms, the latter being de-
signed to satisfy the cusp conditions. The free parameters in
J are determined by requiring that the variance of the local
energy in VMC be as small as possible. The many-body
wave function represents explicitly only valence electrons,
whose interactions with the ionic cores are described by
pseudopotentials. The Hartree-Fock pseudopotentials used
here are the same as those used in our recent QMC work on
bulk MgO.11 The single-particle orbitals have been taken
from DFT-LDA calculations with the same pseudopotentials
using thePWSCFcode.19 The basis set used for the represen-
tation of the single-particle orbitals in QMC is the recently
describedB spline or blip-function basis,26 which is closely
related to plane waves, but is computationally far more effi-
cient for QMC. Since we cannot perform structural relax-

ations with QMC, the relaxed ionic positions used in our
QMC calculations on the defective systems are taken from
our DFT calculations.

In order to suppress statistical bias, QMC calculations
need to be run with a large population of “walkers,” and this
makes it efficient to run them on large parallel machines. The
present calculations were performed on the HPCx machine at
Daresbury using between 128 and 320 processors, with a
target number of 640 walkers. One DMC step took about 7 s
on 128 processors.

In Fig. 1 we display the value of Schottky energy calcu-
lated using DFT on various cell sizes, going up to 1024
atoms.20 The results include the Coulomb correction men-
tioned above.17 Two sets of calculations are reported in the
figure: one performed by sampling the Brillouin ZonesBZd
at the G point only, and the second using a 23232
Monkhorst-Pack27 grid. The two sets of results become es-
sentially indistinguishable for cells containing 128 atoms or
more, and converge very quickly to the value of 6.76 eV. The
error in the Schottky energy obtained from calculations on
cells containing only 54 atoms is somewhat less than 0.2 eV,
but we note that cancellation of BZ errors makes the results
obtained with 54 atoms andG point only sampling already
converged to within,0.07 eV.

DMC calculations have been performed on cells contain-
ing 54 atoms, using a time step of 0.005 a.u. for over 50 000
steps. With this length of simulations, total energies for the
perfect MgO crystal and the crystals with one Mg2+ or one
O2− vacancy were obtained with statistical errors of,0.23,
,0.32, and ,0.27 eV, respectively. The value of the
Schottky energy with the error bar obtained by combining
the errors on the various components is 7.5±0.53 eV. For
completeness, we also report the value of the Schottky en-
ergy of 6.99 eV obtained using DFT-LDA with the same
pseudopotentials used in the DMC calculations. Although
there are accurate experimental data for the migration ener-
gies of cation and anion vacancies in MgO, the Schottky
energy itself is experimentally uncertain, with measured val-
ues spanning the range 4–7 eV.28 Our QMC value is consis-

FIG. 1. Schottky vacancy formation energyseVd in MgO calcu-
lated in the local density approximation of DFT for repeating cells
containing different numbers of atoms. The filled circles connected
by solid linessfilled squares conected by dotted linesd show results
obtained withG-point s23232 Monkhorst-Packd Brillouin zone
sampling.
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tent with this, and also with earlier predictions forES from
both DFT sRef. 12d and calculations based on interaction
models,29,30all of which give values in the range 6.5–7.5 eV.

These results demonstrate the technical feasibility of us-
ing high-precision QMC calculations to study the energetics
of defects in oxide materials. This is encouraging, because it
suggests the possibility of using QMC to calculate the for-
mation, association, and migration energies of other kinds of
defects, including impurities in oxide materials. In the
present paper, the QMC result for the Schottky energy agrees
with the DFT predictions to within the QMC statistical error,
but this is expected because DFT is known to give a good
description of most properties of MgO. However, this will
not be true of strongly correlated materials such as transition
metal oxides, for which DFT predictions are often poor. We
are currently attempting to extend our QMC calculations to
the important oxide FeO.

A technical difficulty that is clear from the present paper
is that very long QMC runs are needed to reduce the statis-

tical error on the defect energy to an acceptable level. This
difficulty can be mitigated by improving the quality of the
trial wave function. In the present case, we might do this by
allowing the Jastrow factor to be different in the vacancy
region. The use of recently developed methods for improving
the scaling of the computer effort with system size31–33 fso-
called OsNd QMCg will also help in future work. But the
fundamental problem is that there is no cancellation of sta-
tistical noise on the large energies that are subtracted. Corre-
lated sampling may perhaps help with this, but the solution
may lie also in the close connection between OsNd and
embedding34 that has already explored within tight-binding
and DFT methods.
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