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Abstract

Atomic-scale materials modelling based on first-principles quantum mechanics is playing an
important role in the science of the Earth and the other planets. We outline the basic theory of
this kind of modelling and explain how it can be applied in a variety of different ways to probe
the thermodynamics, structure and transport properties of both solids and liquids under extreme
conditions. After a summary of the density functional formulation of quantum mechanics and
its practical implementation through pseudopotentials, we outline the simplest way of applying
first-principles modelling, namely static zero-temperature calculations. We show how calcu-
lations of this kind can be compared with static compression experiments to demonstrate the
accuracy of first-principles modelling at pressures reached in planetary interiors. Noting that
virtually all problems concerning planetary interiors require an understanding of materials
at high temperatures as well as high pressures, we then describe how first-principles lattice
dynamics gives a powerful way of investigating solids at temperatures not too close to the melt-
ing line. We show how such calculations have contributed to important progress, including the
recent discovery of the post-perovskite phase of MgSiO3 in the D′′ layer at the base of the Earth’s
mantle. A range of applications of first-principles molecular dynamics are then reviewed,
including the properties of metallic hydrogen in Jupiter and Saturn, of water, ammonia and
methane in Uranus and Neptune, and of oxides and silicates and solid and liquid iron and its
alloys in the Earth’s deep interior. Recognizing the importance of phase equilibria throughout
the planetary sciences, we review recently developed techniques for the first-principles calcula-
tion of solid and liquid free energies, melting curves and chemical potentials of alloys. We show
how such calculations have contributed to an improved understanding of the temperature dis-
tribution and the chemical composition throughout the Earth’s interior. The review concludes
with a summary of the present state of the field and with some ideas for future developments.
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1. Introduction

The evolution of the Earth and the other planets, as well as their present structure and dynamics,
depends on processes that take place in their deep interiors. To understand these processes,
we need to know at least the chemical composition, temperature and distribution of heat
sources throughout their interiors. Yet these interiors are inaccessible to direct observation.
For the Earth, fairly precise information about the density and elastic properties as a function
of depth has been deduced from seismic data, and there is detailed knowledge of its magnetic
field, which also gives information about the properties of the interior. Limited seismic data
are also available for the Moon. For the other planets, measurements of their gravitational
moments and their magnetic fields provide valuable constraints on models for their interiors.
But this information falls far short of what we need to know. Our present understanding of
planetary interiors has been patched together from many disciplines, including astronomy,
cosmochemistry, nuclear physics, meteoritics, materials science and crystallography, as well
as seismology [29, 79, 220, 264]. Laboratory experiments at high pressures and temperatures
provide invaluable information about the physical and chemical properties of the materials
that are believed to make up the planets. In the past 15 or years or so, a major new tool has
begun to play an important role in probing the planetary interiors: materials modelling based
on first-principles quantum mechanics. The aim of this review is to explain how this new tool
works and to show how it has already yielded insights that would have been hard to obtain in
any other way.

At first sight, it might seem surprising that quantum mechanics has anything to offer to
the earth and planetary sciences. After all, quantum mechanics is concerned with atomic and
sub-atomic processes on the very short length and time scales on which Newtonian physics
breaks down, whereas the physics and chemistry of the Earth and the planets involve long
length and time scales. The reason why quantum mechanics is relevant is that it gives a way of
calculating the properties of materials under extreme conditions, where laboratory experiments
may be difficult or even impossible. In order to provide a scientific framework for this review,
we shall give an overview of our current understanding of planetary interiors in section 2. It
will become clear there that the key to solving some of the outstanding problems is an accurate
knowledge of the thermodynamic, structural and transport properties of planetary materials
at pressures in the megabar region (1 Mbar = 100 GPa) and temperatures of several thousand
Kelvin. This is where first-principles modelling is now playing an indispensable role.

Throughout this review, we shall try to show the close interplay between first-principles
modelling and laboratory experiments. Techniques for performing experiments at pressures
and temperatures relevant to planetary interiors are described in a number of reviews,
for example Mao and Hemley [168]. There are three main methods for achieving these
thermodynamic conditions. Multi-anvil high-pressure cells, initially developed in Japan in the
1970s, enable pressures of 25–30 GPa and temperatures of up to 2000 K to be reached, and these
are ideal for crystal synthesis and the study of phase equilibria. To obtain higher pressures and
temperatures, diamond anvil cells (DACs) are required. The transparency of diamond means
that DACs can be coupled with laser heating of the sample to attain pressures of ca 200 GPa and
temperatures up to ∼ 6000 K. This enables the conditions within the Earth’s outer core to be
reproduced. Diamonds are also translucent to x-rays, so that laser-heated DACs can be used
with synchrotron x-ray radiation to determine the equations of state of planetary materials.
The challenge for such studies is the precision with which the pressure and temperature can
be measured. Temperature measurement requires fitting the grey-body spectrum of the laser-
heated sample, while pressure measurement requires the extrapolation of the ruby fluorescence
pressure standard or the use of a calibrated internal standard. A third approach for generating
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high pressures consists of shock experiments, in which a high-velocity projectile is fired into
a target, and the Rankine–Hugoniot relations are used to determine the shock pressure. Shock
experiments sample the Hugoniot trajectory through pressure–temperature space, and the
temperature of the sample can be estimated from the Mie–Grüneisen equation. This, however,
requires a knowledge of the high p–T heat capacity and Grüneisen parameter of the sample,
both of which may be poorly known. Although major advances have been made with all of
these techniques, the problem of determining p and T at extreme conditions has led in some
cases to considerable discrepancies between different experimental approaches. For example,
the estimated melting temperature of iron at 300 GPa as inferred by shock experiments and
by laser-heated DAC studies differs by some 2000 K [49, 57, 193]. Difficulties such as these
provide a strong incentive for developing accurate and reliable modelling methods for the
prediction of materials properties at high pressures and temperatures.

The ambition of deriving the macroscopic properties of materials from an atomic-level
description of their energetics began to take shape well over 100 years ago, early milestones
being the van der Waals theory of the phase diagram of fluids and Einstein’s theory of the
specific heat of crystals, later improved by Debye. The key idea of van der Waals was that the
energetics of matter on the atomic scale can be represented in terms of repulsions and attractions
between the molecules. This basic idea was elaborated and refined by many scientists in
the early decades of the twentieth century, including Mie, Born, Mayer and Lennard-Jones.
Well before the advent of computers, it had been shown that simple models for the atomic
interactions, designed using the basic insights given by quantum mechanics, were able to
account for quantities such as equilibrium lattice parameters, elastic and dielectric properties,
specific heats, lattice expansion and point defect energies.

The rapid growth in the availability of computers in the decades following the 1950s
gave an immense impetus to the quantitative atomic-scale modelling of materials. With
the development of the molecular dynamics [3, 106] and Monte Carlo [2, 179] simulation
techniques, it became possible to calculate from a given interaction model a very wide
range of physical properties of solids, liquids and vapours, such as thermodynamic functions,
structural and transport properties and dynamical reponse functions. Those years also saw
rapid improvements in the sophistication and realism of the atomic interaction models, with
successful models being developed for large classes of materials, including ionic and semi-
ionic compounds [60, 287], metals [119], molecular and polymeric materials [66], water and
aqueous solutions [223, 135]. The adjustable parameters in these models were determined by
the fitting of the predicted properties to selected experimental data, sometimes with a judicious
admixture of information from quantum chemistry calculations. It was realized that some of
these advances could be directly applied to the study of minerals, since many of the oxides and
silicates of interest for the terrestrial planets are exactly the semi-ionic materials for which the
atomic-scale models were known to be successful. Early successes in the modelling of minerals
include the prediction of the elastic constants of MgSiO3-perovskite [68], the calculation of
the heat capacity and entropy of the major mantle-forming phases [221], the prediction of
high-pressure phase transformations in simple oxides such as Al2O3 [171] and the analysis of
the diffusion mechanisms in a variety of oxides and silicates [134, 275].

The extensive work on the simulation of materials using empirical interactions, while
giving valuable new insights into a wide range of problems, also revealed the strong limitations
of this entire approach. There are several reasons why the empirical approach is limited. The
models are necessarily based on assumptions about the nature of the interactions, which, though
valid under some circumstances, may fail completely under others. One example of this is the
modelling of polymorphic phase transformations in which Si changes from four-fold to six-fold
coordination. In general, empirical models have grave difficulties with any problem in which
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chemical bonds are made or broken. The dissociation of molecular materials such as hydrogen
or methane under the high pressures found in the gaseous planets is an example where one
would not expect empirical models to be useful. Even when the form of the empirical model
is valid, the determination of the adjustable parameters may pose problems, which get worse
as the sophistication of the model and the number of its parameters increase. Sometimes, the
only option available is intelligent guesswork.

A major paradigm shift in the atomic-scale modelling of materials occurred with the
development of first-principles methods [58, 123, 152, 170]. Instead of treating a material
as an assembly of atoms, this approach regards it as consisting of nuclei and electrons.
The description is based from the start on the fundamental and essentially exact equations
of quantum mechanics. This gives the enormous advantage of liberating the modelling of
materials from adjustable parameters. In its purest form, the aim of the first-principles
approach is to provide a universal method, which can be applied without change to broad
classes of materials under wide ranges of conditions. The basic problem to be overcome in
this approach is that the equations of quantum mechanics, though essentially exact themselves,
cannot be solved exactly for complex systems containing many nuclei and electrons. An
outstandingly successful (partial) solution to the problem is given by density functional theory
(DFT) [123, 152, 170], a reformulation of the quantum mechanics of many-electron systems,
within which it has proved possible to find universal approximations which deliver very good
accuracy for the physical properties of wide ranges of materials, including the majority of those
of interest in the earth and planetary sciences. Remarkably, one and the same approximation
within DFT gives a similarly reliable account of problems that look completely unrelated, for
example the phase diagram of MgSiO3 at the conditions of the Earth’s lower mantle and the
vibrational density of states of iron under Earth’s core conditions, as we shall see later.

In the early days of first-principles modelling, computer power was enough to allow the
calculation only of rather simple, though still important, zero-temperature properties, such as
the relative enthalpies of different crystal structures as a function of pressure. However, the last
10 years have seen the development of robust first-principles techniques for the calculation of
high-temperature properties of solid and liquid materials, using the harmonic approximation
in the case of crystals, or the much more general, but also more expensive, technique of
first-principles molecular dynamics simulation. Our aim in this review is to describe in some
detail how all these first-principles methods work, how their reliability and accuracy have been
demonstrated by comparison with high-pressure and sometimes high-temperature experiments
and how the calculations are placing entirely new constraints on the physical and chemical
conditions that exist inside the Earth and the other planets.

Since we want to convey an understanding of the methodology, we place a strong emphasis
on the techniques themselves, starting with the fundamentals of density functional theory, and
then explaining how it is being used in the earth and planetary sciences, first for the simplest
kinds of calculation, and then for more complex kinds. However, to provide background to the
scientific work, we give in section 2 a brief summary of our present understanding of planetary
interiors, indicating some of the areas where first-principles modelling can contribute. Section 3
then outlines the foundations on which first-principles modelling rests. We particularly stress
the nature of the basic approximation that is made in all first-principles calculations. Those
who wish to pass over these theoretical matters by omitting section 3 should still find that
the rest of the review makes sense. In section 4, we then describe the use of DFT for the
simplest kinds of calculations: the energetics of crystals at zero temperature. One of the
important purposes of this section is to show by comparisons with experiment the level of
accuracy that can be expected of DFT for the simplest properties. We then progress in
section 5 to the calculation of vibrational frequencies of crystals and hence the calculation
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(a) (b) (c)

Figure 1. Structure of the Earth from seismic data: (a) velocities vP and vS of longitudinal (pressure)
and transverse (shear) seismic waves, (b) density and (c) pressure as function of depth.

of thermodynamic and other properties of crystals in the quasiharmonic approximation. This
gives further opportunities for comparisons with experiment as well as for predictions that
go beyond experiment. The technique of first-principles molecular dynamics simulation is
described in section 6, where we also illustrate how this technique can be used to study
solids and liquids at the extreme conditions relevant to planetary interiors. Because phase
equilibria are so important in this field, the first-principles calculation of free energies of solids
and liquids is described separately in section 7, and the calculation of high-pressure melting
properties, both by free-energy methods and by other approaches, is outlined in section 8.
We return to phase equilibria in section 9, describing how it has recently become possible to
calculate chemical potentials in solid and liquid mixtures using first-principles simulation.
A summary of the present state of the field and prospects for future progress conclude
the review.

2. The science of planetary interiors: a brief overview

2.1. The Earth and the terrestrial planets

The overall structure of the Earth as revealed by seismic measurements is summarized in
figure 1, showing the velocities of longitudinal (pressure) and transverse (shear) seismic waves,
the density and the pressure as a function of depth from the surface. The most striking feature
is a large discontinuity at a depth of 2880 km, which is about half-way to the centre. The
region above the discontinuity is the mantle—here we will not be concerned with the thin
layer of rock at the Earth’s surface known as the crust. The mantle itself consists of the upper
mantle, extending down to a depth of 400 km, and the lower mantle, which is the region below
a depth of 650 km; the two are separated by a 250 km thick ‘transition zone’. The variation
of properties through the lower mantle is relatively smooth, but detailed analysis reveals an
anomalous region of thickness ∼ 200 km at the base of the mantle, known as the D′′ zone.
This zone is seismically anisotropic—seismic velocities vary significantly with the direction
of propagation [211]. The region below the mantle is the Earth’s core. The data show that the
density in the core is much greater than that of the mantle. They also show that the core consists
of an outer part, in which transverse waves do not propagate, and an inner part having a radius
of 1220 km. The absence of transverse waves means that the outer part is liquid, but the inner
core can support a low frequency shear stress and is solid. At the boundary between the inner
and outer core, there is a clear discontinuity in the density; the solid core at this boundary is
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Table 1. Abundances of the major elements (number of atoms per atom of Si) in the Universe, the
Sun and the whole Earth.

Universea Sun Whole Earth

H 2.72 × 104 2.3 × 104 4 × 10−2 b

He 2.18 × 103 1.95 × 103 —
C 12.1 6.49 1 × 10−2 ? b

N 2.48 2.78 3 × 10−4 ? b

O 20.1 22.9 3.73a

Mg 1.08 1.09 1.06a

Si 1.00 1.00 1.00
S 0.52 0.46 3 × 10−2 ? b

Fe 0.90 1.27 0.90a

Ni 0.05 0.05 0.05 ? b

Note: References: a [29]; b [176].

6.5 ± 1.4% more dense than the liquid [174]. We shall see later that this density discontinuity
plays a key role in constraining the chemical composition of the core. Not shown in figure 1
is the fact that the inner core is seismically anisotropic: compressional waves travel some 3%
faster along the polar axis than in the equatorial plane [242, 260].

The chemistry of the Earth’s crust can be sampled directly, and information about the
upper mantle is available from the study of volcanic products and inclusions that are brought
to the surface by eruptions. However, our present understanding of the composition of the
deep interior is based mainly on meteoritics and cosmochemistry. A widely accepted first
approximation to the overall chemical composition of the Earth is the so-called ‘chondritic’
model, which assumes that it is essentially the same as that of chondritic meteorites [25,121].
This indicates that the composition is close to that of the universe as a whole, but with strong
depletion of volatile elements, such as hydrogen and helium (table 1). It follows from this that
the mineralogy of the mantle must be dominated by MgSiO3. High-pressure crystallography,
supported by first-principles calculations, shows that MgSiO3 in the lower mantle has the
perovskite crystal structure. However, more detailed analysis shows that the average atomic
number in the mantle (21.3) is significantly above that of MgSiO3 (20.1), and the difference
is accepted to be due to ∼10% substitution of Mg by Fe. In the lower mantle, there is a also
a minor mineral content of magnesiowüstite (MgO with ∼ 30% of Mg substituted by Fe; this
is also known as ‘ferropericlase’) and Ca-perovskite. The nature of the D′′ zone at the base of
the mantle was mysterious until very recently. The discovery that it is almost certainly a new
crystal structure of MgSiO3, in which first-principles calculations played an important role,
will be recounted later. Our understanding of the mineralogy of the mantle is summarized in
figure 2.

The Earth’s core has the density of a heavy metal. The metallic nature of the core is
also beyond doubt because the only credible mechanism for the generation of the Earth’s
magnetic field is based on convection-generated electric currents in the liquid outer core.
Cosmochemistry (table 1) and meteoritics indicate that the core must consist mainly of Fe,
though a Ni content of somewhat less than ∼10% is also implied. However, the density in
the core is ∼7% too low for a Fe/Ni alloy, and light impurities must be present. The leading
candidates are S, Si and O, though C and H have occasionally been suggested [25].

The picture we have sketched provides a good starting point for understanding the Earth,
but much more is needed. A crucial piece missing from the picture is the temperature
distribution throughout the Earth (the so-called geotherm), without which it is impossible
to understand convection and heat transport in the core and the mantle. In addition, to be able
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Figure 2. Mineralogy of Earth’s mantle: proportions of different minerals as function of depth.
Reproduced with permission from [210].

to constrain geochemical and dynamical evolution models of the Earth, we need to know more
about the chemical composition of both the core and the mantle. It is clear that further progress
depends on a more accurate knowledge of the materials making up the Earth.

A long-established strategy for estimating the geotherm is based on the fact that both the
lower mantle and the outer core are in a state of turbulent convection, which implies that the
dependence of temperature T on pressure p follows an adiabat. This leads to the following
equivalent expressions for the dependence of temperature T on radius r:

dT/dr = −(∂T /∂p)Sdp/dr = −ρg(∂T /∂p)S = −ρgT γ/KS, (1)

where p is pressure; the second equation follows from the first, since the variation of pressure
with radius is dp/dr = −ρg, with ρ the mass density and g the acceleration due to gravity
at radius r; the third equation expresses the adiabatic variation of T with p in terms of
the Grüneisen parameter γ and the adiabatic bulk modulus KS . Since KS and g can be
obtained from seismic measurements, the only unknown is γ , which can be calculated at
any thermodynamic state by first-principles methods, as we shall see. In the mantle, there
are widely accepted estimates for the temperature at the base of the transition zone [130],
from which equation (1) can be integrated to obtain T (r) throughout the lower mantle. The
same procedure can be followed to estimate the geotherm in the outer core, provided we can
obtain the temperature at the boundary between the inner and outer core. We shall see that first-
principles modelling provides a strategy for doing this. It should be noted that the temperatures
thus obtained for the mantle-side and core-side of the core-mantle boundary are not expected
to be the same. The reason for this is that the lowest 150 km of the mantle forms a thermal
boundary layer, in which conduction, rather than convection, is the mechanism of heat transfer.
The temperature difference across this boundary can be estimated from a knowledge of the
thermal conductivity in this region. The entire geotherm strategy thus depends on an accurate
knowledge of the properties of materials at high temperatures and pressures.

The outline we have given of the structure and chemical composition of the Earth also
applies with some changes to the terrestrial planets Mercury, Venus and Mars. However, we
are not aware of first-principles work on problems specific to these planets, so they will not
figure in this review.
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2.2. The gaseous planets

The giant planets Jupiter and Saturn consist mainly of H and He, though both planets
presumably have small rocky cores, about which nothing is known. Because they are almost
entirely gaseous, they do not have sharply defined surfaces, and they are not believed to have
internal surfaces either, except for the presumed core boundary. The measured mass fractions
of helium in their atmospheres are significantly lower than the initial solar abundance of
0.272 ± 0.005 [248]. For Jupiter, this mass fraction is 0.236 ± 0.004, and for Saturn it may be
even lower. This may be due to unmixing in the H–He mixture, because of He precipitation.
One reason for thinking this is that Saturn in particular has an unexpectedly high luminosity,
which would be explained by gravitational energy release due to the sinking of He. Both
planets have large magnetic fields, which can only be explained by electric currents generated
in their interiors by a convection-driven dynamo mechanism. The spatial distribution of these
fields revealed by the Pioneer 11 and Voyager 1 space probes indicates that the planets are
electrically conducting over most of their interiors. Models of their interiors based on estimated
equations of state of hydrogen–helium mixtures and the asssumption of adiabaticity predict
that the temperature and pressure in the central regions of Jupiter and Saturn are in the region
of 20 000 K, 4 TPa and 10 000 K, 1 TPa, respectively [62, 248].

Clearly, an understanding of Jupiter and Saturn depends heavily on an understanding of the
properties of H and H/He mixtures at pressures and temperatures up to those in the centres of the
planets. Since no laboratory experiments are currently able to reproduce the conditions in their
deep interiors, theory must play a key role. The prediction that H becomes a metal under high
compression was first made in a celebrated paper by Wigner and Huntington [284], in which
they estimated that the pressure of the transition to the metallic state would be at least 25 GPa.
Subsequently, it has become clear that the true transition pressure is far above this. Static com-
pression experiments on low-temperature solid hydrogen have been performed at pressures up
to over 300 GPa [165, 166, 188]. The evidence from these experiments is not entirely consis-
tent, with some measurements indicating that hydrogen is still transparent at 342 GPa [188],
while others appear to show that it becomes opaque at 320 GPa [166]. The experimental evi-
dence has been interpreted to suggest that solid hydrogen may become fully metallic at around
450 GPa [166]. Shock experiments [73, 125, 147, 189, 280] explore an entirely different part
of the phase diagram, since temperature increases rapidly along the Hugoniot. Experiments
performed with the ‘reverberating shock’ technique [280], which allows the exploration of
pressures and temperatures not too far from those in the outer regions of Jupiter and Saturn,
indicate that hydrogen becomes a poor metal at 140 GPa and 3000 K, corresponding to a com-
pression factor of about 9. The static compression and shock results can only be reconciled
by postulating that the metallization is strongly promoted by increased temperature.

We note some of the key issues [35, 248] which first-principles methods may be able to
help resolve. First, we want to know in more detail the insulator–metal transition line. A
second issue that may or may not be related to this is the transition from molecular to atomic
hydrogen and, in particular, the question whether this transition is intimately related to the
insulator–metal transition. A third issue concerns the question of whether either or both of
these transitions may be associated with a first-order phase transition in the fluid phase. The
important consequences of such a phase transition for both the nature of convection and the
temperature distribution inside the giant planets have been emphasized by Stevenson [248].
In addition to these questions, an understanding of the temperature distribution also depends
on an improved knowledge of the entropy and Grüneisen parameter as functions of p and T ,
while an understanding of the magnetic fields requires knowledge of the electrical conductivity.
Finally, the important issue of whether and how much helium precipitation contributes to energy
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release demands a much improved understanding of the thermodynamics of H/He mixtures
under planetary conditions.

Uranus and Neptune are believed to have similar structures, consisting of a small rock core,
an outer gaseous part and, between the two, a thick ‘ice layer’, consisting of water, methane
and ammonia in solar proportions, the approximate mole fractions being 56% H2O, 36% CH4

and 8% NH3 [61, 128]. (The commonly used phrase ‘ice layer’ is perhaps misleading, since
the layer is believed to be fluid.) The pressure and temperature in the ice layer are believed to
follow adiabats, spanning the range 20 GPa and 2000 K to 600 GPa and 7000 K in both planets.
In trying to understand the physical and chemical states of the material along this adiabat,
an important fact is the existence of the very anisotropic magnetic fields of the two planets
measured by the Voyager 2 spacecraft. The fields presumably must originate from electric
currents within the ice layer, which could be either ionic or electronic in origin or perhaps
both. In fact, there have been speculations for many years about high-pressure forms of ice
and about possible superionic conduction in high-pressure solid forms of ice (see, e.g. [83]).

There is now convincing experimental evidence of the pressure-induced transition in
water from a solid consisting of well-defined molecules to one consisting of hydrogen
and oxygen ions [34, 110, 255]. This transition is accompanied by so-called ‘hydrogen-
bond symmetrization’, in which the protons go from asymmetrical positions associated with
particular oxygens to symmetrical positions mid-way between two oxygens. Measurements
of the high-pressure melting curve of water [109, 235] agree in showing a strong break in
the melting slope in the region of p ∼ 45 GPa, indicating that the solid in coexistence
with the liquid at higher pressures has a high entropy, perhaps connected with superionic
conduction. There have been a number of dynamic compression experiments on water,
using both single-shock and reverberating shock techniques [65, 124]. Measurements of
electrical conductivity in these experiments show that the conductivity increases exponentially
up to pressures of ∼ 30 GPa, but above that has rather constant values of 10 �−1 cm−1,
typical of an ionically conducting liquid. There are also shock data [227] and static-
compression data [44] on methane, which have been interpreted as showing dissociation to
carbon and hydrogen at pressures and temperatures in the region 10–50 GPa and 2000–3000 K,
respectively.

Issues that might be clarified with the aid of first-principles simulation include the
following. First, one needs to know the p(T ) regions in which H2O, NH3 and CH4 go from
the molecular to the dissociated atomic state. Second, the ionic conductivity (if any) of the
dissociated materials is needed as a function of state. Third, for the purpose of understanding
convection, it is clearly vital to know whether the material is a fluid throughout the ice layer
or whether there is a possibility that it might be partially solid. Finally, one hopes that first-
principles simulation will be able to show whether the material might become an electronic
conductor in the lower regions of the ice layer, and if so what values of electrical conductivity
might be attained.

2.3. Moons

There are more than 120 moons in the solar system, and the vast majority contain a significant
amount of ice and other volatile solids, such as methane, ammonia and ammonia dihydrate;
typically, the objects are roughly half ‘ice’ and half ‘rock’. Yet for many of the planet-forming
ices, basic properties, such as thermal expansion and equation of state, are either poorly known
or not known at all. There has been a considerable amount of first-principles work on water
ice, some of it relevant to understanding the planetary moons. Recent work on this and on
ammonia dihydrate will be reviewed in section 4.1.6.
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3. First-principles techniques

Since the significance of the advances described in this review rests entirely on the validity of
the first-principles modelling techniques, we present here a summary of these techniques. We
shall not attempt to go into depth, because this would not be possible within the scope of a
brief review such as this. The reader who wants to achieve a detailed understanding of density
functional theory (DFT) will turn to papers and books [149, 170, 213]. The recent book by
Martin [170] is particularly thorough. A simplified (almost) non-mathematical explanation of
DFT has been given elsewhere by one of the present authors [107]. The summary presented
here is no more than a quick guided tour through the leading ideas. We have tried to make it
accessible both to those who plan to study the methods in greater depth and to those whose
interests may be mainly experimental. After a reminder of the quantum mechanics of many-
electron systems, we state the two fundamental theorems of DFT, outline the schemes that are
used to apply the theory, with a strong emphasis on pseudopotential methods, and give some
practical information about computer codes and the computational resources needed.

3.1. Why it is difficult to apply quantum theory to many-electron systems

The central aim of DFT is to calculate the ground-state total energy U(r1, . . . , rN) for a system
of interacting electrons in the electrostatic field of N nuclei at the positions ri (i = 1, 2, . . . , N).
From this total energy function, one can calculate a vast range of other quantities, including
all thermodynamic quantities. If the equations of quantum mechanics could be implemented
without any approximations, the function U(r1, . . . , rN) could be calculated exactly, and it
would be possible to compute the properties of materials more accurately than they could be
measured in any experiment. Unfortunately, there is a huge gulf between ‘in principle’ and
‘in practice’. The only systems of nuclei and electrons that can be treated exactly in practice
are those containing a single electron, examples of which include the hydrogen atom and the
H+

2 molecular ion. (The helium ion He+ and other single-electron ions such as Li2+ are also
examples.) To find the allowed energies En of the hydrogen atom and the corresponding
wavefunctions ψn(r) of the electron, one has to solve the Schrödinger equation, according to
which

− h̄2

2m
∇2ψn(r) + V (r)ψn(r) = Enψn(r). (2)

Here, h̄ is Planck’s constant h divided by 2π and V (r) represents the potential of the electron
in the electrostatic field of the proton:

V (r) = −e2/4πε0r, (3)

with r the distance between the electron and the proton (we use SI units). This problem can be
solved with pencil and paper, and there are well-known formulae for the ground-state energy
and the other energy eigenvalues En and associated eigenfunctions ψn(r).

As soon as one considers atoms with more than a single electron, it becomes impossible to
solve the equations of quantum mechanics exactly, and the problem is even worse for systems
containing many atoms. The helium atom is already non-trivial. Here, we have two electrons,
acted on by the electrostatic attraction of the nucleus and their own electrostatic repulsion. It
is this repulsion that causes all the trouble. If there were no repulsion, each electron would
behave as if the other were not there, and we would be back to a single-electron problem such
as equation (2), which is easy to solve. Without repulsion, the two electrons have their own
wavefunctions, and the wavefunction ψ(r1, r2) of the two-electron system can be expressed
in terms of the single-electron wavefunctions. In doing this, we have to respect the fact that
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electrons are fermions, which means that the total wavefunction must change its sign when the
two electrons are swapped. To express this requirement of ‘exchange symmetry’, we have to
bring in the spin of the electron. For example, if both electrons have spin up then ψ(r1, r2) for
the non-interacting electrons is given by

ψ(r1, r2) = ψa(r1)ψb(r2) − ψa(r2)ψb(r1), (4)

where ψa and ψb are the two spatial wavefunctions. This exchange symmetry is the origin of
the Pauli exclusion principle, which says that two electrons cannot be in the same quantum
state. It also implies that two electrons with the same spin cannot be in the same place: if
r1 = r2 in equation (4), then ψ(r1, r2) vanishes.

The repulsion between electrons completely spoils this simplicity. The true wavefunction,
instead of being expressible in the product form of equation (4), is some very complicated
function of the electron positions, which we can never hope to find exactly. This reflects the
fact that the electrons do not move independently: their motion is correlated. This is the
fundamental problem in doing quantum calculations on systems containing more than a single
electron.

3.2. Ignoring correlations: Hartree–Fock theory

We cannot simply ignore the repulsion between electrons. When the distance between two
electrons is 1 Å, their electrostatic interaction energy is roughly 14 eV, and if we ignored an
energy as large as this we would get completely wrong results. However, instead of ignoring
their interaction, as a first step we can ignore their correlation. Ignoring correlation means
assuming (incorrectly) that the overall wavefunction can be represented in an antisymmetrized
product form, such as that for a two-electron system is given in equation (4). We do the best job
we can using this product form. This idea leads to Hartree–Fock theory. One way of thinking
of this is in terms of the variational principle of quantum mechanics. This states that if the
total energy of the system is calculated using an approximate wavefunction, then the result is
guaranteed to be above the true ground-state energy. The equations of Hartree–Fock theory
yield the nearest approximation to the true ground-state energy that can be obtained within the
approximation that the wavefunction has the product form. These equations are very like the
Schrödinger equation for independently moving single electrons, but the potential V (r) that
appears in the normal single-electron Schödinger equation (2) now depends on the quantum
states occupied by the electrons.

Hartree–Fock theory works quite well for many-electron atoms and can also be used quite
successfully for some kinds of systems containing many atoms. But for most materials the
complete neglect of electron correlations is too drastic an approximation. For quantitative
quantum calculations on systems containing many atoms, more accurate approximations are
needed, and DFT provides the theoretical framework within which such approximations can
be formulated.

3.3. Density functional theory

DFT theory addresses the general problem of finding the ground-state energy Eg of a system
of interacting electrons acted on by a potential V (r). The interaction between the electrons
is, of course, the usual electrostatic potential e2/4πε0r , with r the distance between electrons.
Initially, V (r) is allowed to be completely arbitrary, though naturally when DFT is applied
in practice V (r) represents the field due to the atomic nuclei. The distinctive feature of the
DFT formulation of quantum mechanics is that it focuses on the density distribution n(r) of
electrons in the ground state, which depends on V (r). The meaning of n(r) is that at any
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position r in space, the probability of finding an electron in an infinitesimal volume dv at that
point is n(r) dv.

The whole of DFT rests on two exact fundamental theorems [123, 152]. The first
theorem concerns the relationship between the ground-state density n(r) and the potential V (r).
Assuming that the ground-state is non-degenerate, then clearly n(r) is uniquely determined by
V (r). It is straightforward to show that the converse is also true, so that we have the following
theorem.

• Theorem 1. It is impossible that two potentials V1(r) and V2(r) that differ by more than a
constant give rise to the same ground-state density n(r).

This implies that the ground-state energy Eg, which is obviously completely specified by V (r),
can also be thought of as completely speficied by n(r), since there is only one possible ground
state in which the density is n(r). We can say that Eg is a functional of n(r), a fact that is
usually expressed by writing it as Eg[n(r)].

It is convenient to separate the ground-state energy into two parts: the first is the interaction
energy of the electrons with the potential V (r), which is the integral of V (r)n(r) over the volume
of the system; the second, called F [n(r)], is the sum of the kinetic energy of the electrons and
their mutual interaction energy:

Eg[n(r)] =
∫

V (r)n(r) dv + F [n(r)]. (5)

Since Eg is uniquely determined by n(r), then so is F [n(r)]. The second theorem of DFT then
states the following.

• Theorem 2. The true ground-state energy of the system acted on by the given potential
V (r) is obtained by minimizing the right-hand side of equation (5) with respect to n(r),
subject to the condition that the total number of electrons is held fixed; the density n(r)
that yields this minimum is the ground-state density associated with the given V (r).

To explain how these two seemingly innocuous and abstract theorems have revolutionized
the modelling of materials, we need to separate the energy F [n(r)] of equation (5) into two
parts. The first part is the kinetic energy of a system of non-interacting electrons acted on by
an external potential which is adjusted so that the ground-state density of this non-interacting
system is n(r); we denote this by T [n(r)]. The second part is simply the part of F [n(r)] not
accounted for by T [n(r)], and is denoted by G[n(r)]. We note that if there were no interactions
between the electrons, then by definition G[n(r)] would be zero, so in that sense G[n(r)] is the
part of F [n(r)] due to the mutual interaction of the electrons. With this definition, the quantity
that has to be minimized to obtain the ground state, according to theorem 2, is

Etot[n(r)] =
∫

V (r)n(r) dv + T [n(r)] + G[n(r)]. (6)

In the ground state, Etot is stationary with respect to small variations δn(r) of n(r), so that∫
V (r)δn(r) dv +

∫
δT

δn(r)
δn(r) dv +

∫
δG

δn(r)
δn(r) dv = 0. (7)

However, we only allow variations δn(r) for which the total number of electrons is held fixed, so
we have to impose the constraint

∫
δn(r) dv = 0. This constraint is conveniently incorporated

using a Lagrange undetermined multiplier, and we then obtain

δT

δn(r)
+ V (r) +

δG

δn(r)
= µ, (8)

where the constant µ plays the role of the chemical potential of the electrons.
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Now here is the key point. For a system of non-interacting electrons, G = 0, so that the
third term on the left-hand side of equation (8) vanishes and the ground state is determined by

δT

δn(r)
+ V (r) = µ. (9)

But equation (8) has exactly the same form, provided we define an effective potential
Veff(r) = V (r)+δG/δn(r). The ground state of the system of interacting electrons is therefore
given by

δT

δn(r)
+ Veff(r) = µ. (10)

This means that the ground-state density n(r) of a system of interacting electrons acted on by
potential V (r) is exactly the same as that of a system of non-interacting electrons acted by the
effective potential Veff(r) = V (r) + δG/δn(r).

Now we know how to calculate the ground-state density n(r) of a system of non-interacting
electrons acted on by a potential Veff(r). To do this, we solve Schrödinger’s equation:

− h̄2

2m
∇2ψn + Veffψn = εnψn (11)

to find the eigenfunctions ψn(r) and the eigenvalues εn. The ground-state density is then
given by

n(r) = 2
∑

n

fn |ψn(r)|2 , (12)

where the occupation numbers fn are equal to 1 for states εn < µ below the Fermi energy and
0 for εn > µ; the factor of 2 is for spin. From what we have said, the n(r) calculated this way
is exactly the same as the ground-state density of the interacting electron system. The total
ground-state energy of the interacting system can then be obtained by substituting n(r) back
into equation (6).

The remarkable achievement of DFT is thus to map the system of interacting, correlated
electrons acted on by potential V (r) onto a system of independent non-interacting electrons
acted on by the ‘effective’ potential Veff(r). In this context, the basic equation (11) having
the form of a Schroedinger equation for non-interacting electrons is known as the Kohn–
Sham equation, and the potential Veff(r) is known as the Kohn–Sham potential. Note that the
Kohn–Sham equation has to be solved in a self-consistent manner. The Kohn–Sham potential
Veff(r) ≡ V (r) + δG/δn(r) depends on the electron density n(r), which itself depends on the
solutions of the Kohn–Sham equation via equation (12). The ground-state density is therefore
the n(r) such that the Veff(r) constructed from it yields solutions to the Kohn–Sham equation
which, when substituted into equation (12), reproduce the same n(r).

There is an important generalization of DFT to finite temperatures, in which the electron
system is in thermal equilibrium at a specified temperature [178]. The quantity of interest
is then the free energy of the system, rather than the ground-state energy. The two basic
theorems remain valid, and the form of the theory is also essentially unchanged, except that
the occupation numbers fn are now given by the Fermi–Dirac formula. This generalization is
relevant to the present review, because of the very high temperatures in planetary interiors.

To turn this formal scheme into a practical calculation tool, we need an expression for
G[n(r)]. We recognize in advance that an exact expression for G[n(r)] is unlikely to be
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accessible, since if we had this it would be tantamount to solving exactly the quantum mechanics
of many-electron systems. So in practice, we are talking about good approximate expressions
for G[n(r)]. We address this question next.

3.4. Approximations to the exchange-correlation energy

We already pointed out that G[n(r)] represents in some sense the mutual interaction energy of
a system of electrons whose density distribution is n(r). Now one large and important part of
this interaction energy is the electrostatic Coulomb energy of the charge distribution associated
with the electron density n(r). Since each electron has charge −e, the charge density ρ(r) is
equal to −en(r). So a key part of G[n(r)] is the Coulomb energy of the charge distribution
ρ(r). This energy, often called Hartree energy EHar, is given by

EHar = 1

2

∫
ρ(r)ρ(r′)

4πε0|r − r′| dr dr′. (13)

The energy G[n(r)] is not the same as EHar, for two reasons: first, because of quantum exchange
energy (see section 3.1) and, second, because the electrons are correlated. The difference
between G[n(r)] and EHar is called exchange-correlation energy, denoted by Exc:

G[n(r)] = EHar[n(r)] + Exc[n(r)]. (14)

This exchange-correlation energy Exc is the heart of DFT because it has been found that rather
simple approximations to Exc yield approximations to the ground-state density and total energy
which are accurate for large classes of materials.

The simplest approximation to Exc, and the one that first demonstrated the remarkable
capabilities of the DFT philosophy, is the so-called local density approximation (LDA) [152].
This says that at any position in space the density of exchange-correlation energy depends on
the electron density at that point in the same way as in a system of interacting electrons of
uniform density, otherwise known as ‘jellium’. The exchange-correlation energy per electron
εxc(n) in the uniform electron gas of density n is accurately known. The LDA then says that Exc

in a system of electrons acted on by a potential V (r) is given in terms of the jellium εxc(n) by

Exc �
∫

n(r)εxc(n(r)) dv. (15)

Practical experience accumulated by hundreds of research groups worldwide over the past
thirty years and more has demonstrated that this simple approximation already yields a fairly
accurate decription of the energetics of electrons in a wide variety of materials [170], including
many of geological interest.

Approximations to Exc that are considerably better than LDA for many purposes have been
discovered in the past 15–20 years. Perhaps the most widely used of these are the so-called
generalized gradient approximations (GGA) [215–217]. These recognize that the LDA must
be inadequate because it does not allow for the dependence of Exc on the rapidity of spatial
variations of n(r). To remedy this, GGAs include an explicit dependence on the gradient ∇n(r).
The physical arguments used to support proposed forms of this dependence are described in
the original papers.

A variety of examples of the accuracy of LDA and GGA for geological materials will
be given in the later sections of this review. However, before this, we need to indicate more
explicitly how it is possible to go from a given approximation for exchange-correlation energy
to practical computations on real materials. One of the powerful techniques that has proved
crucial here is the pseudopotential method, which we outline next.
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3.5. Pseudopotentials

Although DFT tells us in principle how to calculate the electron orbitals and eigenvalues,
the practical implementation of this general scheme poses many conceptual and technical
problems, which have been addressed by a variety of different approaches, some of which
predate DFT itself. One feature that must be addressed is that there are radically different
kinds of orbitals in real materials. There are core orbitals, which are strongly localized around
the nuclei and have very deep binding energies. At the other extreme, there are valence and
conduction orbitals (for brevity, we shall simply say valence orbitals in the following), which by
comparison are rather weakly bound and which extend throughout the material. Remarkably,
in some materials, particularly the s–p bonded metals and semi-conductors, the energies of
the valence bands strongly resemble those of free electrons [120].

Pseudopotential theory [67, 122, 170, 263] is a reformulation of DFT which exploits the
features that we have just mentioned to achieve major simplifications without significant loss
of accuracy. It recognizes first that the core electrons play little or no role in the energetics of
the material, which depends almost entirely on the valence electrons. It therefore sets out to
eliminate the explicit description of the core orbitals and to rewrite the Kohn–Sham equations
so that their lowest energy levels are the valence states. The way it does this is linked to
the similarity of the valence energies to free electron energies in s–p bonded materials. The
theory demonstrates that this can be understood in two complementary ways. The first way
recognizes that the manner in which valence electrons are scattered by the atomic cores can
be accurately mimicked by weak valence-core potentials—these are the ‘pseudopotentials’
created by the theory. The second way arrives at essentially the same concept of a weak
effective valence–core pseudopotential by showing the strong potential attracting the valence
electrons to the cores is largely cancelled by the effects of orthogonality between the valence
and the core states, which have the effect of a repulsive potential.

The net result is that the total energy of a material can be calculated by solving the
Kohn–Sham equations for the valence electrons alone, which interact with the atomic cores
via pseudopotentials. The modern versions of the theory provide procedures for constructing
these pseudopotentials by DFT calculations on free atoms.

In some versions of the pseudopotential method, the pseudopotentials have the property
of ‘norm conservation’, which is an expression of the ‘transferability’ of the pseudopotential,
i.e. the the maintenance of good accuracy when the atom is transferred from one environment
to another. However, over the past 10 years, there has been a steadily increasing tendency
to use so-called ‘ultra-soft’ pseudopotentials [263], which are considerably more efficient
and in practice are at least as transferable, if not more so. Closely related to the ultra-soft
pseudopotential technique is an all-electron technique known as the ‘projector augmented
wave (PAW)’ method [48, 156].

The pseudopotential implementation of DFT is the general approach used in the vast ma-
jority of the work we shall review. However, it is important to appreciate that there are a number
of important approaches in which the core orbitals are explicitly treated. A common feature of
these approaches is that the wavefunctions in the regions near the nuclei are treated by ‘atomic-
like’ methods, while in the regions between the atoms they are treated by ‘free-electron-like’
methods. An example is the augmented plane-wave (APW) technique, in which the eigen-
functions of the Kohn–Sham equation are represented within spheres surrounding the nuclei
by spherical harmonics multiplied by radial functions, and the region between the spheres by
plane waves. Somewhat similar in spirit is the Korringa–Kohn–Rostocker (KKR) method,
which regards the electronic structure as arising from the multiple scattering of plane waves by
the potentials within atom-centred spheres. These and other methods of implementing DFT
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in condensed matter, as well as a thorough exposition of pseudopotential theory, are provided
in the book by Martin [170].

3.6. Basis sets and periodic boundary conditions

A major issue in any quantum mechanical calculation is the representation of the wavefunctions,
which in the case of DFT means the Kohn–Sham single-electron orbitals ψn(r) (see section 3.3).
There are two schools of thought about how to do this. One school says that the orbitals of
electrons in an assembly of atoms are like the wavefunctions φα(r) of the isolated atoms, so
that the ψn can be represented as superposition of the φα:

ψn(r) =
∑

α

ciαφα(r). (16)

The determination of the ground state then means the determination of the coefficients ciα that
yield the lowest DFT total energy (recall theorem 2, section 3.3). The other school of thought
says that the valence or conduction electrons in condensed matter run rather freely, so that they
are like free particles. Now the wavefunction of a free electron is exp(ik · r), where k is the
momentum of the electron divided by h̄ (in other words, k is the wavevector of the de Broglie
wave). So the idea is to use these plane waves exp(ik · r) as basis functions:

ψn(r) =
∑

k

cnk exp(ik · r), (17)

and the coefficients that have to be varied in searching for the ground state are the cnk.
The majority of DFT codes designed for the kind of modelling of interest in this review

are based on the plane-wave approach, but there is an important minority based on atomic
basis sets (see, e.g. [241]), and these play a distinctive role. It should be stressed that it
would be completely impossible to use plane-wave basis sets were it not for pseudopotentials.
The point is that the core orbitals vary rapidly on an extremely short length scale, so that a
prohibitive number of plane waves would be needed to represent them. The representation of
valence and conduction orbitals would be equally impossible because orthogonality requires
these too to vary rapidly in the region of the atomic cores. Pseudopotentials solve both these
problems because the explicit representation of core orbitals becomes unnecessary and because
the smoothness of the pseudopotential in the core regions makes the pseudo-wavefunctions of
valence and conduction orbitals in these regions manageably smooth.

The use of plane-wave basis sets is closely linked to the question of boundary conditions. In
condensed matter modelling, we usually want to study macroscopic assemblies of atoms, but of
course the explicit calculations become extremely challenging for more than about a thousand
atoms. The standard technique for solving this problem is periodic boundary conditions (pbc).
The assembly of atoms on which the explicit calculations are performed is contained in a cell
having the shape of a parallelepiped. This cell is periodically repeated, so that it is surrounded
by exact images of itself. Another way of saying this is that the material, which may not have
any periodicity at all (amorphous or liquid systems are examples), is treated as though it were
a crystal having a large, complex unit cell. For this reason, the pbc method is sometimes called
the ‘supercell’ method. Naturally, the imposition of an artificial periodicity causes errors in
the calculated quantities, but for most quantities of interest these errors fall off quite rapidly
with the cell size—usually at least as rapidly as 1/Ncell, where Ncell is the number of atoms
in the repeating cell. This kind of error always needs to be tested for, and efforts should be
made to ensure that Ncell is large enough to make the size errors negligible. Examples will be
referred to in the later sections.

Plane-wave basis sets fit very nicely with pbc, because these boundary conditions make it
natural to restrict the wavevectors k in the representation of the orbitals (equation (17)) to those
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that are commensurate with the imposed periodicity. If this is done, so that the k are reciprocal
lattice vectors of the superlattice, then an error is made, which decreases with the size of the
repeated cell. The suppression of this error by so-called k-point sampling is a technical matter
which is discussed in depth elsewhere [170, 180].

Before leaving the discussion of basis sets, we mention that the use of atomic-like basis
functions φα(r), sometimes called pseudo-atomic orbitals (PAOs), has great advantages for
some purposes, the main advantage being that it is capable of giving much more rapid
calculations, though at the cost of some loss of accuracy. The design of accurate, flexible
and transferable PAOs has made important progress in recent years [241].

3.7. Atomic forces and stress tensor

A major advantage of the pseudopotential implementation of DFT is that the calculation of
the forces on the atoms is straightforward. To be more precise, we should say the forces on
the ionic cores, since pseudopotential theory regards the system as composed of a collection
of ionic cores and valence electrons.

There are two ways of thinking about the forces on the ions. The first way is to say that
the physical force on an ion is the sum of the electrostatic forces due to all the other ionic cores
plus the force exerted by the valence electrons. The calculation of the force due to the other
ions is straightforward, since it is just a matter of classical electrostatics. The force due to the
valence electrons comes from the interaction of the latter with the ionic pseudopotentials and
can be calculated from the occupied valence orbitals ψn(r). The second way of considering
the force on an ionic core is to say that it must be (minus) the gradient of the ground-state
energy with respect to the position of that ion. The equivalence of the two ways of obtaining
the forces is embodied in a statement known as the Hellmann–Feynman theorem [92].

The computation of ionic forces using the Hellmann–Feynman theorem is particularly
simple with plane-wave basis sets and adds very little cost to the computer effort required in
any case to calculate the ground-state energy. With atomic-like basis sets, forces are somewhat
more complicated to compute because the movement of the basis functions with the atoms
creates an additional contribution known as the Pulay correction [222]. Provided this is done
correctly, the resulting forces are still the exact derivatives of the ground-state energy with
respect to the ionic positions.

In the geological context, we often need to model materials under high pressures, so that
the pressure, or more generally the stress tensor, is an important quantity. Just as the ionic
forces are the derivative of the total energy with respect to the ionic positions, so the stress
tensor is the derivative of the total energy with respect to the strain. If we have a system in
which the ions have positions ri then the effect of a uniform strain is to shift the ions to new
positions r′

i , which are related to the old positions by the transformation

r ′
iα = riα +

∑
β

εαβriβ, (18)

where α denotes the Cartesian components of the vectors, and the 3 × 3 matrix εαβ is the
strain tensor. The tensor εαβ can be assumed to be symmetric, since any antisymmetric part
corresponds to overall rotations of the system, which are of no interest. With these definitions,
the stress tensor σαβ is defined as

σαβ = 1

�

∂Utot

∂εαβ

, (19)

where � is the volume of the system whose total energy is Utot.
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In the pseudopotential formulation of DFT, an analytic expression can be derived for
σαβ [170, 194, 195], and it is a standard operation to calculate the entire stress tensor at the
same time as the total energy and the forces, though this does add appreciably to the cost of
the whole calculation.

3.8. Practicalities

The pseudopotential/plane-wave implementation of DFT is by far the most widely used
method used for the quantum-based modelling of complex condensed-matter systems. (The
term ‘pseudopotential/plane-wave’ is not quite accurate here, since we mean to also include
the closely related projector augmented wave method—see above.) These techniques have
become very firmly established over the past 20 years and are in routine use by hundreds of
research groups. Some of the leading groups have developed comprehensively tested codes
that implement the techniques. The codes generally come with either a standard library of
first-principles pseudopotentials or separate code for generating the pseudopotentials or both.
In some cases, the codes can be freely downloaded from web sites or else obtained from the
authors at nominal cost. As with any complex technique, it is unwise to try to use the codes
without a good understanding of the underlying theory. A powerful aid to this understanding
is to learn the use of the chosen code in close collaboration with experienced practitioners.

In the present review, we survey the work of a number of different research groups, and
a variety of codes were used. In our own work at UCL, the main workhorse has been the
VASP code [153, 154], which is particularly efficient for large-scale DFT molecular dynamics
simulation, and has the advantage of being very robust and reliable for metallic systems.
Our implementation of a scheme for the extrapolation of the charge density also increased the
efficiency of the molecular dynamics simulations by up to a factor of two [5]. However, several
other pseudopotential/plane-wave codes have a comparable performance, among which are the
ABINIT [112], the CASTEP [236] and the ESPRESSO [234] packages.

The computer requirements for performing these calculations depend to some extent on
the material being studied and depend enormously on the number of atoms that need to be
handled. Static relaxation calculations are in general much less demanding than DFT molecular
dynamics. Static calculations on crystals containing no more than a few tens of atoms in the unit
cell can easily be performed on PCs or modest workstations. At the time of writing, extensive
calculations on phonon dispersion relations or static relaxation on materials containing defects,
surfaces or interfaces require somewhat more powerful facilities, which usually means parallel
machines having a modest number of processors. DFT molecular dynamics simulation on
systems of up to ∼100 atoms typically requires parallel machines having of order 64 processors.
Finally, the most ambitious DFT molecular dynamics simulations mentioned in this review,
performed on systems containing of order 1000 atoms, can at present only be done on large
national facilities. Moore’s law will ensure that the foregoing statements become rapidly out
of date.

4. Energetics of static crystals: athermal calculations

The simplest possible kind of first-principles calculation consists of determining the total
energy of an assembly of atoms in given fixed positions. For very simple crystals, in which the
positions of the atoms in the unit cell are completely fixed by symmetry, this elementary kind
of calculation, repeated at different unit cell volumes, is already useful because it allows the
computation of the equilibrium volume and the zero-temperature equation of state (pressure
as a function of volume). The geologically important MgO (the mineral periclase) is an
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Table 2. First-principles predictions of properties of MgO crystal at zero temperature and pressure,
compared with experiment: lattice parameter a0, volume of cubic unit cell V0 ≡ a3

0 , bulk modulus
K0, pressure derivative K ′

0 ≡ ∂K0/∂p, second pressure derivative K ′′
0 ≡ ∂K ′

0/∂p.

LDAa LDAb LDAc LDAd GGAe exptf

a0 (Å) 4.240 4.222 4.25 4.167 4.253 4.212
V0 (Å3) 76.2 75.2 76.8 72.4 77.0 74.7
K0 (GPa) 172.6 159 159.7 172 150.6 160.2
K ′

0 4.00 4.30 4.26 4.09 4.10 3.99
K ′′

0 −0.025 −0.030 −0.026 −0.023 −0.027 −0.024

Note: References: a [203]; b [142]; c [137]; d [177]; e [202]; f [243].

example. For less symmetrical crystals, the equilibrium positions of the atoms in the unit
cell must be determined by using the first-principles forces to relax the system. Examples
include MgSiO3 and water ice. With calculations such as these, it is also possible to compare
the stability of different crystal structures as a function of pressure and hence to determine
low-temperature phase boundaries. A slight generalization of these ideas leads to the first-
principles calculation of the stress in a crystal as function of strain, and hence the elastic
properties. Static relaxation performed on defective crystals allows one to compute quantities
such as the formation and migration energies of point defects (vacancies, impurities, etc) or the
energetics of dislocations, grain boundaries and surfaces, all of which are extremely important
in the physics and chemistry of the Earth and the planets. Caution is often needed in using
the results of zero-temperature static calculations, particularly for problems involving high
temperatures. Nevertheless, these simple and routine calculations form the essential baseline
for the more sophisticated high-temperature calculations described later.

In reviewing work on low-temperature energetics, we shall start by describing first-
principles calculations on the crystal structure and equation of state of some of the materials
that are crucial in the earth and planetary sciences. Illustrations of work on elastic properties
will then follow. The section ends with some examples of work on crystal defects of various
kinds.

4.1. Crystal structure and equation of state

4.1.1. Magnesium oxide. Because of its simplicity and its geological importance, MgO has
received a large amount of experimental and theoretical attention. (We recall from section 2.1
that, in the form of magnesiowüstite, with approximate composition (Mg0.8Fe0.2)O, it has
∼20% abundance in the Earth’s lower mantle.) Because of this, there has been strong interest
in determining its phase diagram. Diffraction measurements performed in the diamond anvil
cell [88] show that, over the whole pressure range from 0 to 227 GPa, MgO has the rock-salt
structure, though it is generally agreed that the CsCl structure becomes more stable at much
higher pressures. The high-pressure melting curve of MgO is also of great interest.

DFT calculations on MgO go back to the early 1980s [64,86,132,137,177,202,203]. First-
principles and experimental values of the lattice parameter a0, the bulk modulus K and its first
two pressure derivatives K ′ ≡ dK/dp and K ′′ ≡ dK ′/dp at T = 0 are compared in table 2.
The agreement of a0 to within ∼ 1%, and of K within ∼5% is rather typical for this kind of
ionic material. The low-temperature equation of state p(V ) is also good (figure 3), though we
note significantly better agreement with GGA than with LDA. However, the inclusion of room
temperature effects would shift both curves upwards, with the experimental results falling
roughly in the middle of the LDA and the GGA curves.
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Figure 3. Pressure as function of atomic volume for rock-salt MgO calculated with DFT-LDA
(——) and DFT-GGA (- - - -) compared with experiments (∗) [88]. Calculations do not include
zero-point or thermal effects. Reprinted with permission from [7]. Copyright 2005 American
Physical Society.

Even though MgO is such a simple material, the first-principles calculation of the rock-
salt/CsCl structural transition raises tricky technical issues that are important for all phase
diagrams. The curves of enthalpy as a function of pressure for the two structures cross at a
very shallow angle, so that small errors that do not cancel between the two phases can lead to
large spurious shifts of the transition pressure. However, the consensus from the most recent
calculations is that the transition occurs in the region of 500 GPa (see [202] and references
therein). This is far above the pressure at the base of the Earth’s mantle (135 GPa), and the
implication is that magnesiowüstite in the mantle must be in the rock-salt structure. To be sure
of this, we need to know the temperature variation of the transition pressure up to ∼ 4000 K,
and we return to this in section 5.6.

4.1.2. Magnesium silicate. Since MgSiO3 perovskite is the major component in the Earth’s
mantle (section 2.1), it is outstandingly important. Although this crystal structure is only
metastable at ambient pressure, it can be experimentally studied under these conditions.
However, the challenges in obtaining accurate experimental data under lower mantle conditions
mean that first-principles calculations have been invaluable in obtaining the properties of
MgSiO3-perovskites in the Earth. For example, in 1993 three papers were published by
different authors using different first-principles methods: LDA and pseudopotentials [283],
LDA and LAPW [250], and Hartree–Fock theory [76]. All the calculations predicted that
the orthorhombic Pbnm phase of MgSiO3 is more stable than the higher symmetry cubic and
tetragonal perovskite phases throughout the pressure range of the Earth’s mantle; this important
conclusion still stands today.

In table 3, we show first-principles predictions for the three lattice parameters a, b and
c of MgSiO3 perovskite at zero temperature and pressure obtained from DFT calculations,
compared with experimental values. The table also shows the fractional coordinates x, y and z

specifying the relaxed positions of the Mg ion and the two inequivalent O ions (the Si position
and the z-coordinates of Mg and O1 are fixed by symmetry). If the 298 K temperature difference
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Table 3. Structure of MgSiO3 perovskite crystal at ambient conditions: comparison of theoretical
and experimental values of orthorhombic cell parameters a, b and c (Å units), and components of
Mg and O positions not constrained by symmetry (fractions of cell parameters). Theoretical values
are from Hartree-Fock (HF) approximation and from LDA and GGA approximations within DFT;
GGA+P refers to pressure-corrected GGA values (see text).

HFa LDAb LDAc LDAd GGAe GGA+Pf Exptg

a 4.786 4.711 4.789 4.727 4.834 4.777 4.775
b 4.913 4.880 4.922 4.889 4.983 4.933 4.932
c 6.896 6.851 6.893 6.831 6.977 6.892 6.899
Mg x 0.5112 0.5174 0.5129 0.5160 0.5148 0.5154 0.5143

y 0.5476 0.5614 0.5521 0.5576 0.5552 0.5570 0.5556
O1 x 0.0999 0.1128 0.0980 0.1044 0.1018 0.1030 0.1037

y 0.4643 0.4608 0.4686 0.4654 0.4664 0.4666 0.4655
O2 x 0.1980 0.1928 0.1983 0.1969 0.1983 0.1972 0.1974

y 0.2029 0.1995 0.2033 0.2015 0.2031 0.2019 0.2011
z 0.5522 0.5582 0.5507 0.5539 0.5527 0.5530 0.5538

Note: References: a [76, 75]; b [282]; c [141]; d [198]; e [200]; f [200]; g [228].

between experiment and theory is taken into account, the LDA results are in good agreement
with the experimental data. In order to correct for the GGA error, Oganov et al [201] showed
that adding a simple pressure correction of about −8.5 GPa to the GGA pressure resulted in
an extremely good agreement between calculated and experimental lattice parameters, bulk
modulus and elastic constants of MgSiO3 perovskite. For instance, the GGA bulk modulus
corrected for pressure was 267 GPa, compared with the experimental value of 264 GPa found
by Yeganeh–Haeri [289]. More recent experimental data, however, show that the bulk modulus
may in fact be 253 GPa [239], so that the simple pressure correction of Oganov et al may need
to be reevaluated. We note from table 3 that in all the cases the theoretical values of the relaxed
ionic positions are in excellent agreement with experiment. Comparison of the calculated
p(V ) curve with experiment (figure 4) shows the same excellent agreement over the whole
range of mantle pressures that we saw for MgO (figure 3).

Perovskite in the lower mantle is not pure MgSiO3 and contains up to approximately 10%
iron (as both ferric and ferrous) and 5% Al2O3. The effect of Al2O3 became a topic of interest
when Zhang and Weidner [293] predicted that small amounts of Al2O3 in mantle perovskite may
have an unexpectedly large effect on its compressibility. GGA calculations by Brodholt [54],
Yamamoto et al [288] and Walter et al [277] showed that this could only be achieved if Al3+

was substituted for Si4+, with the charge balanced by oxygen vacancies. First-principles work
on the effect of iron on the properties of perovskite has been limited, partly because standard
DFT methods fail to predict the correct electronic structure of FeO, predicting it to be metallic
under ambient conditions, whereas in fact it has a sizeable band-gap [70]. Kiefer et al [143]
have used LDA and GGA to predict the effect of Fe2+ on the elasticity of magnesium-silicate
perovskite containing 25% FeO, and there are works in progress calculating the spin state of
Fe2+ and Fe3+ in mantle perovskites at very high pressures [162].

We noted in section 2 the existence of the mysterious D′′ zone at the base of the
mantle, characterized by marked seismic anisotropy, and having a very variable thickness.
One suggested explanation was that MgSiO3 transforms from Pbnm perovskite to another
structure in this region, but until very recently there had been no evidence for this. The
situation changed dramatically in 2004, when Murakami et al [187] and Oganov and
Ono [207] reported high-pressure diffraction experiments showing that a new crystal structure
having the CmCm CaIrO3 structure appears at the pressure of the D′′ zone. This new
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Figure 4. Pressure as function of atomic volume for MgSiO3 perovskite calculated with DFT-
LDA (lower dashed line) and DFT-GGA (upper dashed line). Solid line shows DFT-GGA results
corrected to include thermal pressure at room temperature. Small and large circles and diamonds
show experimental data. Reprinted from [200] with permission. Copyright 2001 Elsevier.

structure (figure 5), christened ‘post-perovskite’, was immediately investigated by first-
principles calculations [129, 207, 261], which confirmed that at low temperature its enthalpy
falls below that of orthorhombic perovskite at a pressure of ∼100 GPa (the value depends
somewhat on the exchange-correlation functional). However, the major contribution of DFT
calculations to this story has been to demonstrate that the elastic properties of the new phase
do account for the seismic anistropy and to relate the variable thickness of the D′′ zone
to the Clapeyron slope of the boundary between the two phases, as will be described in
sections 4.2.2 and 5.6.

4.1.3. Silica. Although an end-member silica (SiO2) phase is not thought to be a large
component of the Earth’s interior (section 2.1), it has been postulated as being a minor
phase depending on the exact composition of the Earth’s mantle or as being a major phase
in some restricted parts of the mantle. For example, Dobson and Brodholt [84] suggested
that ultra-low velocity zones (regions of very low seismic velocity found in the bottom
200 km or so of the mantle) may be the result of the subduction of banded iron formations
(BIFs). These BIFs are composed of layers of iron oxide and layers of silica. If, as
suggested by Dobson and Brodholt, they are subducted to deep in the Earth’s interior, the
SiO2 component will transform into its higher pressure polymorphs. At low pressures, silica
exists as quartz (trigonal, 4-fold coordinated Si), but above 2 GPa it transforms to coesite
(monoclinic) and above 8 GPa to stishovite (tetragonal, rutile structure, 6-fold coordinated Si).
Above these pressures, Kingma et al [144] reported both experimental measurements and
DFT calculations to confirm that stishovite transforms at about 45 GPa to a CaCl2 structure,
a pressure corresponding roughly to a depth of about 1200 km, at which there is a weak
seismic discontinuity. Further first-principles calculations showed that the CaCl2 structure
breaks down to a PbO2 structured phase which is stable up to about 200 GPa, where it then
transforms to a pyrite-type phase (cubic, 6 + 2-fold coordinated Si) [138, 204, 259]. This last
transformation has very recently been confirmed experimentally [158], albeit at a slightly higher
pressure.
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Figure 5. Crystal structure of post-perovskite MgSiO3, showing SiO6 octahedra with oxygen ions
(small spheres) at their vertices and Mg ions (large spheres).

4.1.4. Iron. Since the solid inner core of the Earth is composed mainly of Fe (section 2.1),
an understanding of the crystal phase diagram of Fe is extremely important. It has long been
known that at ambient pressure the ferromagnetic α (bcc) structure is stable below 1180 K
and the non-magnetic γ (fcc) phase is stable above that, with the non-magnetic δ (bcc) phase
appearing in a narrow temperature range just below the melting temperature at 1810 K (see
phase diagram, figure 6). At low temperatures, there is a transition from the bcc structure to
the ε (hcp) phase at a pressure of 10–15 GPa, and ε appears to remain stable at all pressures of
interest above that. At high p and T , there have been reports of new crystal structures [33,232],
so far unconfirmed. In the absence of firm evidence to the contrary, there has been a general
presumption that hcp is the stable phase at inner-core conditions (p ∼ 330 GPa, T ∼ 5500 K).
As a baseline for high-temperature studies, the comparison of T = 0 DFT calculations with
experimental data is clearly crucial.

Extensive static calculations on different crystal structures of Fe using the full-potential
LAPW [253] and LMTO [240] implementations of DFT were reported about 10 years ago.
It was already known then that the choice of exchange-correlation functional is important.
In particular, at zero pressure LDA incorrectly predicts that the non-magnetic fcc structure
is more stable than ferromagnetic bcc [278]. However, the use of GGA brings a large
improvement, with ferromagnetic bcc now correctly predicted as the most stable structure
at zero pressure and the experimental bcc → hcp transition pressure in the region of 12 GPa
also correctly given [240, 253]. GGA also gives good agreement with experiment for the
pressure–volume relation at T = 0 K, the agreement improving steadily with increasing
pressure up to the maximum experimental pressure of ∼300 GPa. Essentially identical results
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Figure 6. Phase diagram of iron. Solid lines represent phase boundaries and melt lines from
DAC experiments, symbols with error bars are points on melting curve from shock experiments,
and broken lines are melting curves from first-principles calculations. DAC data: a: [231],
b: [32], c: [238], d: [285], e: [49]. Shock data: triangle: [290]; circle: [57]; reverse triangle: [1];
diamond: [193]. First-principles data: f (dashed curve): [159], g (pair of chain curves): [23].
Reproduced with permission from [193]. Copyright 2004 Macmillan Publishers Ltd.

were later reported with the pseudopotential and projector-augmented-wave implementations
of DFT [18].

Detailed studies have also been reported on the relative enthalpies of the bcc and hcp
structures, as well as of all the other candidate structures (fcc, body-centred tetragonal (b.c.t.),
double hcp and orthorhombically distorted hcp), with the magnetic effects included through
spin-polarized calculations [240, 246, 253, 272]. These studies confirm that hcp remains the
most stable structure up to Earth’s core pressures at T = 0; weak anti-ferromagnetism stabilizes
the hcp structure at lower pressures, the inclusion of this effect improving the agreement
with the experimental pressure–volume relation. It has also turned out that bcc, bct and
orthorhombically distorted hcp become mechanically unstable at pressures well below those
of the Earth’s inner core [251, 252, 267, 272]. These results, while useful, do not settle the
question of the crystal structure in the inner core because thermal effects still need to be
included (see sections 5.6 and 6.4).

4.1.5. Iron silicide and carbide. Silicon is likely to be one of the light elements alloyed with
iron in the Earth’s core. In a first-principles study of the relative stability of the FeSi structure
and of some hypothetical polymorphs of FeSi, Vocadlo et al [274] predicted that a new high-
pressure phase having the CsCl structure should be the most stable; subsequently, Dobson
et al [85] performed high-pressure multi-anvil experiments in which this proposed phase was
synthesized for the first time, confirming the results of the calculations. The implications of
this are extremely significant because the high-pressure phase is topologically equivalent to
the bcc phase of iron; moreover, recent experiments [163] have found that the presence of
silicon stabilizes bcc Fe under pressure with respect to the hcp phase. This suggests the bcc
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structure of iron containing some substitutional Si as a candidate for the stable phase in the
Earth’s core.

In a critical examination of the role of carbon in the inner core, Wood [286] proposed
that iron carbide (Fe3C) might be the major phase crystallizing out of the liquid outer core.
Amongst other evidence, he based this suggestion on an equation of state which led to a
density at inner-core pressure (338 GPa) in excellent agreement with the probable range of
density determined from seismology. However, the equation of state he used was based on
estimated values of the bulk modulus, K0, and of its pressure derivative K ′ at ambient pressure
and temperature. Diffraction experiments performed to determine the thermal expansion
of Fe3C showed a kink at about 480 K, the point at which the permanent magnetism of
Fe3C is destroyed by heat. These results immediately cast doubt on the applicability to
the study of the Earth’s core of any measurements of the incompressibility of Fe3C made
at room temperature, since under core conditions (330 < p < 360 GPa and ∼6000 K),
this material will no longer be magnetic. An investigation into the effect of pressure on the
equation of state of Fe3C using first-principles calculations was performed for both ‘magnetic’
and ‘non-magnetic’ forms of Fe3C. As expected, a transition to a non-magnetic state was
found at a pressure of about 60 GPa. By applying an approximate temperature correction
to this calculated equation of state, incompressibility-density plots for Fe3C under core
conditions could be constructed, which clearly show that Fe3C cannot be a major core-forming
phase.

4.1.6. Water and ammonium dihydrate. We mentioned in section 2.3 the need for data on
water ice and related solids such as ammonium dihydrate (ADH) in order to interpret the
properties of planetary moons. First-principles calculations by Fortes [96] on the low-pressure
proton-ordered phases of ice, ice XI (the proton-ordered form of normal water ice, phase Ih)
and ice II (occurring at 0.2–0.5 GPa below ∼250 K) [97], yield equations of state that are rather
poor when compared with experiment, with large overestimates in V0 and K , particularly in
the case of ice XI. This is thought to result from the overbinding of hydrogen-bonded solids in
the DFT calculations—an effect which is greatly reduced as the pressure increases. However,
when compared at the same volume, the structural properties of these ice phases are in excellent
agreement with experiment [97, 96].

Calculations on the high pressure phases of water ice show excellent agreement with
experiment [96]. For example, the transition from ice VIII to ice X is predicted to occur
at ∼ 70 GPa compared with the experimental value of 60–65 GPa. Furthermore, these
simulations predict higher pressure transitions to dhcp ice (500–600 GPa) and antifluorite
ice (2.5 TPa).

ADH is very likely to be the most significant mineral after water ice in the mantles of
ice-rich moons orbiting Saturn, Uranus and Neptune, but the physical properties and phase
relations of ADH are poorly constrained. There are currently two known phases (I and II)
at low pressures. Neutron diffraction experiments at 150 K [192–191] suggest that ADH I
is cubic; the water molecules are orientationally disordered with partially occupied hydrogen
sites. First-principles calculations [98] show that there is a slight monoclinic distortion from
the proposed cubic structure at zero Kelvin; the suggestion is that ADH becomes ordered at
some temperature below ∼150 K, the temperature at which experimental observations suggest
discontinuities in thermal conductivity and dielectric properties [164]. This low-temperature
ordered structure has yet to be found experimentally. Neutron diffraction experiments by
Fortes et al [99] have revealed a wealth of previously unknown phases at pressures up to
9 GPa. There are at least four new polymorphs of ADH at pressures of 0.5–2 GPa, the pressure
regime of particular interest in the study of icy moons.
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4.2. Elastic properties

Since most of our understanding of the Earth’s interior derives from seismic measurements,
the elastic properties of Earth-forming materials are outstandingly important. These properties
are usually described by the elastic constant tensor, whose components give the coefficients
of proportionality between infinitesimal changes in strain and the resulting changes in stress.
The theory of elasticity is expounded in many standard texts and reviews, including Nye [197],
Wallace [276] and Born and Huang [51]. Elasticity theory for solids under a pre-existing
stress is somewhat more complex than for unstressed solids, and a paper that disentangles the
complexities in a clear way is by Barron and Klein [39].

Briefly, if a crystal suffers an infinitesimal strain, described by strain tensor dεαβ , then the
resulting change of stress dσαβ is given by

dσαβ =
∑
γ δ

cαβγ δdεγ δ, (20)

where cαβγ δ are the components of the rank-4 tensor of elastic constants. Since the stress and
strain tensors can both be assumed symmetric, equation (20) is usually rewritten in the Voigt
notation, in which the 3 × 3 tensors dεαβ and dσαβ are regarded as 6-component vectors, with
the index pairs 11, 22, 33, 23, 31 and 12 represented by the six symbols 1, 2, 3, 4, 5 and 6,
respectively. In this notation, the stress–strain relation appears as

dσi =
∑

j

Cij dεj , (21)

with i and j going from 1 to 6. Elastic constants are usually given as the coefficients Cij

in this notation. The matrix Cij is symmetric, so that the maximum number of independent
elastic constants of a crystal is 21. Because of crystal symmetries, the number of independent
constants is usually much smaller. For example, in cubic crystals there are only three elastic
constants, in hcp Fe there are five and in orthorhombic MgSiO3 perovskite there are nine.

4.2.1. MgSiO3 perovskite. The low-temperature elastic tensor Cαβ for MgSiO3 perovskite
was first calculated using first-principles methods by Wentzcovitch et al [282] using LDA and
Troullier-Martins pseudopotentials. Seven of the nine elastic constants of the orthorhombic
phase agreed with the experimental values [289] to within 10%, though C66 differed by ca 15%
and C44 by ca 25%. Later LDA calculations by Karki et al [136] obtained a set of elastic
constants in much better agreement with the data, with the worst discrepancy being only 11%
and most discrepancies being less than 5%. The difference in the two calculations must be due
to the different pseudopotentials used, so the better agreement of the results of Karki et al may
be fortuitous. Oganov et al [200,201] used GGA to calculate the elastic constants of MgSiO3

perovskite, but in order to account for the general tendency of GGA to overestimate volumes
and underestimate bulk moduli, they implemented a small pressure correction. They also took
into account the temperature difference between the athermal calculations and the ambient
temperature of the experiments. Using this scheme, they produced a set of elastic constants of
which eight out of nine agreed with experimental data to within 4%, and the other agreed to
within 10%. The very recent experimental data of Sinogeikin et al [239] are in slightly worse
agreement with the calculated values of Oganov et al , but nevertheless all but one of the elastic
constants agree to within 6%. The predicted shear modulus of Oganov et al is 179 GPa, which
agrees within error with both experimental data sets. The predicted bulk modulus, however,
is slightly higher than the latest experimental data (267 GPa versus 253 GPa, respectively).

At higher pressures, experimental data on the bulk modulus are obtained from the volumes
measured as a function of pressure in a diamond anvil cell or a multi-anvil device. The
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high pressure volumes are then fitted to an equation of state (such as that due to Birch and
Murnaghan) where the pressure effect on the bulk modulus K is reported by a single parameter
as K ′ = dK/dp. The quantities K and K ′ are, however, highly correlated with each other and
with the zero-pressure volume V0, so that K ′ obtained from different experiments or theory
cannot be compared independently of K and V0. When fitted to such an equation of state,
the GGA calculations of Oganov et al [200, 201] produce V0 = 162.4 Å3, K = 267 GPa and
K ′ = 4.10. This compares well with experimental data of Fiquet et al [95] of V0 = 162.3 Å3,
K = 259 GPa and K ′ = 3.7. The main difference is that the experiments find that K ′ is less
than the commonly assumed value of 4.0.

4.2.2. MgSiO3 post-perovskite. In section 4.1.2, we outlined the recent discovery that a
new ‘post-perovskite’ crystal structure of MgSiO3 becomes more stable than perovskite at a
pressure corresponding to that of the D′′ zone at the base of the mantle. In addition to showing
that the new phase is thermodynamically more stable than perovskite, the athermal elastic
constants calculated using GGA or LDA by three groups [129,207,262] showed that the post-
perovskite phase is elastically very anisotropic. This high anisotropy means that shear-induced
lattice-preferred orientation of post-perovskite can explain the observed seismic anisotropy of
D′′. This anisotropy of D′′ has always been difficult to explain with perovskite itself, since the
experimentally observed slip systems in perovskite do not lead to the correct type of seismic
anisotropy. Subsequently, another DFT work has examined the effect of temperature and the
effect of Al2O3 and ferrous Fe on the stability and elasticity of post-perovskite. It is fair to say
that the DFT calculations have provided the crucial link between the experimental discovery
of post-perovskite and the seismic properties of D′′.

4.2.3. Iron. The problems of interpreting seismic data on the Earth’s inner core, including its
observed seismic anisotropy, were mentioned earlier (section 2.1). These problems stimulated
early efforts to calculate the elastic properties of perfect-crystal hcp Fe and other hcp transition
metals [246, 252]. The evidence from this work suggests that GGA is capable of giving
fairly good results for the elastic constants, though attempts to compare them with existing
experimental data for Fe up to ∼210 GPa are hampered by uncertainties about the assumptions
used to interpret the data. The DFT results indicated that at inner-core pressures the difference
in compressional sound velocities parallel to and perpendicular to the hexagonal axis would
be enough to account for the observed seismic anisotropy, if there was a high degree of
alignment of the crystallites in the inner core. However, it has since been appreciated that the
complete absence of thermal effects in the calculations casts doubt on the usefulness of this
conclusion [247].

4.3. Crystal defects

First-principles calculations on defects and impurities on Earth materials at high pressures
are rather rare and have mostly been restricted to olivines. Brodholt [53] used DFT methods
to calculate the relative energetics of different point defects in Mg2SiO4 olivine (forsterite),
which is generally thought to be the major phase in the Earth’s mantle down to about 410 km.
Forsterite has three inequivalent oxygen sites and two inequivalent magnesium sites, and the
calculations showed that there are large energetic differences between the vacancies on the
different sites. For instance, oxygen vacancies on the O3 site are between 1 and 3 eV lower in
energy than those on the O2 and O1 sites. Similarly, magnesium vacancies on the M1 sites are
0.8 eV lower in energy than those of the M2 site. Assuming that diffusion of magnesium occurs
by a vacancy-hopping mechanism, the observed anisotropy in diffusion rates with respect to
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crystallographic orientation could be understood by the fact that jumps must only be between
M1 to M1 sites. A later TEM study [133] confirmed that magnesium vacancies were indeed
restricted to the M1 site.

The role of hydroxyl defects in nominally anhydrous mantle minerals (i.e. those that
contain water as a defect and are normally water-free) has been the subject of much interest
since it was empirically observed that mantle minerals such as olivine, pyroxenes and garnet
can contain significant amounts of water [40] and that small amounts of water can strongly
affect the transport properties of these minerals (i.e. hydrolytic weakening). The solubility of
water in quartz and the effect on hydrolytic weakening were studied using DFT methods by
McConnell et al [175]. The calculations showed that hydrogen was incorporated into quartz
via a hydrogarnet type substitution (4H+ substituting for one Si4+). They proposed that the
subsequent conversion of these defects to molecular water involved the nucleation of prismatic
dislocation loops and that the development of these loops led to dislocation-induced plasticity.
Brodholt and Refson [55] proposed a very different mechanism for hydrolytic weakening in
forsterite. They noted from their DFT calculations that the energy involved in the hydrogarnet
substitution was comparable to substituting 2H+ for a Mg2+ ion. In dry forsterite, the energetic
difference between Si4+ and Mg2+ vacancies is huge and the concentration of Si4+ vacancies
is vanishingly small, but in wet forsterite, the energy differences are relatively small. They
postulated, therefore, that the role of water was simply to greatly increase the concentration
of Si4+ vacancies (albeit filled with protons) and that this would have the effect of increasing
the mobility of Si4+ ions. Since Si4+ is the slowest diffusing species in olivine and, therefore,
rate limiting in any diffusion-controlled creep (i.e. diffusion creep or when rate limited by
dislocation climb), this could provide a mechanism for hydrolytic weakening of the olivine.
Later work by Braithwaite et al [52] on protons in forsterite used an embedded cluster model
which calculated the total energy of the central core of atoms constraining the defect using
Hartree–Fock theory and the outer atoms with a classic shell potential. In addition to confirming
the general findings of Brodholt and Refson [55], they calculated the infrared frequencies of
the different hydrous defects. By comparing with experimental data, they suggested that the
most common hydrous defect in olivine is three protons subsituting for Si4+, rather than the
hydrogarnet substitution.

First-principle simulations on defects in Earth-forming magnesium silicate perovskites
have been restricted to understanding the mechanism for the incorporation of Al3+. This has
implications in understanding the role of Al3+ on the elastic properties of mantle perovksites.
The two models considered were, first, Al3+ substituting for Si4+, with the charge balanced by
oxygen vacancies; and second, Al3+ substituting for Mg2+ and Si4+, which does not require
the formation of oxygen vacancies. The first of these may have important implications for the
Earth’s mantle since perovskites with a large concentration of oxygen vacancies should have
very different transport properties from those that are relatively defect poor. Both the DFT
results of Brodholt [54] and Yamamoto et al [288], however, suggest that at high-pressures
Al3+ will substitute for both Mg2+ and Si4+ and, therefore, mantle perovskites will not have an
unusually high concentration of oxygen vacancies.

5. High-temperature properties from lattice dynamics

For many, perhaps most, problems in the Earth and planetary sciences, it is not enough to
consider the properties of materials at zero temperature. This is self-evident if we are talking
of liquids, but is also true of high-temperature solids, since the elastic and other properties
often vary significantly with temperature. This means including entropy effects, so that we
need to calculate not just energies but free energies. By far the simplest way of doing this is
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to use quasi-harmonic theory to treat lattice vibrations. This is, of course, an approximation,
since it means ignoring anharmonic effects. However, it is a good approximation for most
materials up to about half the melting temperature.

There are also other reasons for calculating lattice vibration frequencies, apart from the
desire to predict thermodynamics. One very strong reason is that phonon frequencies give
a powerful way of checking the validity of the DFT methods against experiment. Phonon
dispersion relations have been measured by inelastic neutron scattering for many materials,
including some of geological interest. The large quantity of information in these dispersion
relations allows rather detailed tests of DFT exchange-correlation functionals. Until recently,
the experimental phonon data were available almost exclusively at ambient pressure, but
modern synchrotron techniques are now providing phonon data at pressures well into the
megabar regime, and this gives an important new way of validating DFT at high pressures.
Because of the close link between phonon frequencies and thermodynamics, such comparisons
also give an indirect control of the thermodynamic predictions of DFT.

5.1. Thermodynamics from quasi-harmonic theory

The general ideas behind the harmonic calculation of thermodynamic properties are easy to
understand, and we summarize them here. In a harmonically vibrating crystal in thermal
equilibrium, the total Helmholtz free energy F(V, T ) as a function of volume and temperature
can be separated into the energy Eperf(V ) of the static perfect crystal, which we discussed
at length in section 4, and the free energy Fharm(V , T ) associated with the harmonic lattice
vibrations:

F(V, T ) = Eperf(V ) + Fharm(V , T ). (22)

(If the temperature is high enough for thermal excitation of electrons to be significant, the
finite-temperature version of DFT may be needed, and Eperf should then be interpreted
as the free energy of the static perfect lattice.) Now it is shown in all the standard text
books that the vibrational free energy of a single harmonic oscillator of frequency ω is
kBT ln(2 sinh(h̄ω/2kBT )). Since Fharm is the sum of the vibrational free energies of all the
modes of vibration of the crystal, it is given by

Fharm = kBT
∑

n

ln(2 sinh(h̄ωn/2kBT )), (23)

where ωn is the frequency of the nth vibrational mode.
In fact, each mode of vibration of a perfect crystal is associated with a wavevector k, and

for each such k there is a number of modes equal to three times the number of atoms in the
primitive unit cell. If the frequency of the sth mode at wavevector k is denoted by ωks then the
vibrational free energy is

Fharm = kBT
∑

ks

ln(2 sinh(h̄ωks/2kBT )). (24)

If we can obtain the vibrational frequencies ωks from first-principles calculations, this provides
a way of calculating the Helmholtz free energy as a function of volume and temperature, and
by appropriate differentiation of the result we can obtain all other thermodynamic quantities.

A particularly important quantity that can be obtained like this is pressure p. Since
p = −(∂F/∂V )T , equation (22) implies that the pressure has two parts:

p = pperf + pharm, (25)

where pperf = −(∂Eperf/∂V ) is the contribution from the static lattice and pharm =
−(∂Fharm/∂V )T is the contribution due to lattice vibrations. The part due to lattice vibrations,
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sometimes called thermal pressure, exists because the harmonic frequencies ωks depend on
the volume of the crystal. In most materials, compression causes the vibrational frequencies
to increase, so that V ∂ωks/∂V is negative. This means that pharm is usually positive, which is
why materials expand on heating. In fact, pharm is usually positive even at zero temperature,
where the harmonic free energy becomes Fharm → ∑

ks(
1
2 )h̄ωks , i.e. the sum of zero-point

energies of the individual modes; the resulting zero-point pressure gives a slight increase in
the zero-temperature volume. It is because thermal expansivity can be obtained from the
calculation of volume-dependent harmonic frequencies that the term ‘quasi-harmonic’, rather
than ‘harmonic’ is generally used. The point here is that in a perfectly harmonic system, the
frequencies would not depend on volume, and the thermal expansivity would be zero.

The quasi-harmonic contribution to the free energy is particularly easy to analyse at high
temperature, where h̄ωks � kBT for all k and s. In this situation, where the temperature is
well above the Debye temperature, Fharm becomes equal to

Fharm = kBT

[∑
ks

(
ln(h̄ωks/kBT ) +

1

24
(h̄ωks/kBT )2 + · · ·

)]
. (26)

For h̄ωks � kBT , which is the case for most planetary science problems, the higher terms are
negligible, and we have the simple form

Fharm = NkskBT ln(h̄ω̄/kBT ), (27)

where Nks is the total number of vibrational modes in the crystal (three times the number of
atoms in the primitive cell times the number of primitive cells) and ω̄ is the geometric mean
vibrational frequency, defined by

1

Nks

∑
ks

ln(ωks/ω̄) = 1. (28)

We now turn to the theory needed to calculate the phonon frequencies ωks of a perfect
crystal by first-principles methods, starting with a brief summary of the theory of lattice
vibrations.

5.2. Basic theory of lattice vibrations

The quasiharmonic theory of lattice vibrations (see, e.g. [51]) is based on the assumption that
the vibrations are very small, so that the total energy function is accurately represented by its
expansion to second order in these displacements. Let us suppose that there are ν atoms in
the primitive unit cell of the perfect crystal, and let Rls be the equilibrium position of the sth
atom (s = 1, 2, . . . ν) in the lth primitive cell. If uls denotes the displacement away from its
equilibrium position of the sth atom in the lth unit cell then the total energy U can be expanded
thus:

U = Eperf +
1

2

∑
lsα,l′tβ

�lsα,l′tβulsαul′tβ + · · · , (29)

where Eperf , as before, is the total energy of the static perfect crystal and α, β indicate
Cartesian components. (As usual, U and Eperf represent free energies if the finite-temperature
version of DFT is used.) The matrix whose elements are �lsα,l′tβ is called the force-constant
matrix and is given by the double derivative ∂2U/∂ulsα∂ul′tβ evaluated with all atoms at their
equilibrium positions. This force-constant matrix gives the relation between the forces Fls

and the displacements ul′t , as can be seen by differentiating equation (29) and ignoring the
higher-order anharmonic terms:

Flsα = −∂U/∂ulsα = −
∑
l′tβ

�lsα,l′tβul′tβ . (30)
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The equation of motion describing the harmonic lattice vibrations is then

ms∂
2ulsα/∂t2 = Flsα = −

∑
l′tβ

�lsα,l′tβul′tβ , (31)

with ms the mass of the sth atom in each cell. The normal mode solutions to this equation
have the form:

ulsα(t) = u0
lsαeik·Rls eiωt , (32)

where k is the wavevector of the mode, ω is its frequency and the time-independent constants
u0

lsα specify the pattern of displacements characterizing the vibrational mode. Substituting this
form into equation (31), we have

− msω
2u0

sαeik·Rls = −
∑
l′tβ

�lsα,l′tβu0
tβeik·Rl′ t . (33)

This equation can be simplified by multiplying through by exp(−k · Rls ) and defining the
so-called dynamical matrix Dsα,tβ(k):

Dsα,tβ(k) = (msmt)
−1/2

∑
l′

�lsα,l′tβe−k·(Rls−Rl′ t ). (34)

In terms of this, we have∑
tβ

Dsα,tβ(k)v0
tβ = ω2v0

sα, (35)

where v0
sα = m

1/2
s u0

sα . This shows that every vibrational mode is associated with a wavevector
k, and that the squared frequencies ω2 at this wavevector are the eigenvalues of the dynamical
matrix Dsα,tβ(k). The dimension of this matrix is three times the number of atoms in the
primitive cell, and this is the number of distinct vibrational modes at each wavevector. The
graphs of these frequencies ωs(k) against the wavevector are often referred to as phonon
dispersion relations.

Examples of phonon dispersion relations for geological materials will be given later in
this section. But before this, we want to indicate how the phonon frequencies can be obtained
from first-principles DFT calculations.

5.3. First-principles calculation of phonon frequencies

In fact, there are two rather different first-principles strategies for calculating phonon
frequencies. The method that is easier to understand starts from the fact that the force-
constant matrix expresses the proportionality between displacements and forces, when the
displacements are small enough for this relationship to be linear. Since the forces on the
atoms are calculated in any case in first-principles codes, all that has to be done in principle
is to displace a single atom t in cell l′ in the Cartesian direction β, all other atoms being
held fixed at their equilibrium positions; the forces Flsα on all the atoms then give directly
the elements of the force-constant matrix �lsα,l′tβ for the given (l′tβ). If this procedure is
repeated for all other (l′tβ), all the elements of the force-constant matrix can be obtained.
Note that the number of separate calculations required to do this is at most three times the
number of atoms in the primitive cell, but for most materials symmetry relations can be used
to reduce this number substantially. This strategy, sometimes called the ‘small displacement
method’ [155], is implemented in the PHON code written by one of the present authors [4].
Although the small displacement method is widely used, and can be very accurate, a word of
caution is in order. Since DFT calculations on condensed matter always use periodic boundary
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conditions, the repeating cell must be large enough so that the elements �lsα,l′tβ have all fallen
off to negligible values at the boundary of the repeating cell. This is readily achieved for some
materials, particularly metals.

In ionic materials, the force-constant elements fall off only as r−3, and convergence can
be slow. Moreover, in polar materials Coulomb forces produce a macroscopic electric field in
the limit of zero wavevector. This electric field is responsible for a splitting in the frequencies
of the vibrational modes parallel and perpendicular to the electric field (the so-called LO–TO
splitting). This effect can be taken into account by adding a nonanalytic contribution to the
dynamical matrix at wavevector k which has the form [105]

Dna
sα,tβ = (msmt)

−1/2 4πe2

�

(k · Z∗
s )α(k · Z∗

t )β

k · ε∞ · k
, (36)

where Z∗
s is the Born effective charge tensor for atom s and ε∞ the high frequency static

dielectric tensor. These two quantities can be calculated in the framework of density functional
perturbation theory (DFPT) [37, 38, 105], which also provides a second elegant strategy for
the calculation of phonons in crystals. The main idea in DFPT, pioneered by Baroni et al [38]
(see also [111, 113]) is to exploit the Hellmann–Feynman theorem to show that a linear order
variation in the electron density upon application of a perturbation to the crystal is responsible
for a variation in the energy up to second (in fact, third [114]) order of the perturbation. Using
standard perturbation theory, this linear order variation of the electronic charge density can be
calculated using only unperturbed wavefunctions, which therefore only requires calculations
on the ground state crystal. If the perturbation is a phonon wave with wavevector k, calculation
of the density change to linear order in the perturbation can be used to determine the force-
constant matrix at wavevector k. This can be done for any arbitrary wavevector, without the
need for the construction of a supercell. The implementation of the method is by no means
straightforward, and for further details the reader should consult the original papers [38,105].

5.4. Phonon dispersion relations at ambient pressure

It was shown many years ago that the LDA gives excellent results for the phonon dispersion
relations of MgO [80]. We illustrate this from the recent work of Oganov et al on the phase
diagram of MgO [203] (figure 7). The agreement to within ∼3% for all phonon branches
across the whole Brillouin zone implies that thermodynamic predictions from quasi-harmonic
theory are likely to be reliable. As a rather different illustration, we show in figure 8 the phonon
curves of ferromagnetic Fe from GGA calculations [18] compared with experimental results.
Again, the agreement is very satisfactory.

5.5. Phonons at high pressure

Measurements of the phonon density of states (DOS) of hcp iron up to Earth’s core pressures
have recently been reported by Mao et al [169]. They used the technique of nuclear
resonant inelastic x-ray scattering (NRIXS) [237,256], which exploits the presence of a nuclear
excitation in 57Fe at 14.4136 keV. The large cross section for incident photons of this nuclear
mode and its convenient lifetime (141 fs) make it suitable for the study of the vibrational
properties of this iron isotope. The measured DOSs were also compared with those obtained
from first-principles calculations, using the small displacement method described above [169]
with forces obtained from DFT-GGA calculations. The good agreement between theory
and experiment (figure 9) provides valuable confirmation that first-principles thermodynamic
predictions are likely to be accurate at high pressures.
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Figure 7. Phonon dispersion relations of MgO in the rock-salt structure at ambient pressure.
Lines and open circles show first-principles theory and experiment, respectively. Reproduced with
permission from [202]. Copyright 2003 American Institute of Physics.

Figure 8. Phonon dispersion relations of ferromagnetic bcc Fe. Lines and open squares show first-
principles theory and experiment, respectively. Reproduced with permission from [18]. Copyright
2000 American Physical Society.

The NRIXS technique has also been recently used to measure the partial density of states of
FeS as a function of pressure [148]. Measurements were taken at pressures 1.5, 4.0 and 9.5 GPa,
in the troilite, MnP-type and monoclinic crystal structures of FeS, respectively, and were
compared with first-principles calculations based on DFT-GGA. The agreement beteween the
calculations and the experiments was reasonably good, although the FeS in the troilite structure
was found to be unstable. The calculations were also used to provide the total density of states,
which provided thermodynamic quantities such as the entropy and the specific heat (see below).
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Figure 9. Phonon density of states of bcc Fe (pressure p = 0 and 3 GPa) and hcp Fe (p from
25 to 153 GPa). Dotted curves and open circles show first-principles theory and experiment,
respectively. Reproduced with permission from [169]. Copyright 2001 American Association for
the Advancement of Science.

5.6. Thermodynamics in the quasi-harmonic approximation

An important practical use of first-principles phonon frequencies is the calculation of quasi-
harmonic free energies and hence the temperature-dependent phase boundaries between
coexisting crystal structures. We noted in section 4.1.1 that the transition in MgO from the
rock-salt structure to the CsCl structure occurs at ∼ 500 GPa at T = 0. To confirm that
MgO cannot exist in the CsCl structure in the Earth’s lower mantle (p < 135 GPa), quasi-
harmonic calculations of p(T ) on the phase boundary have been reported. Initially [86], it
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Figure 10. Temperature dependence of thermal expansivity α of MgO on isobars at 0, 10, 30, 60,
100, 150 and 200 GPa (curves from top to bottom). Experimental data at zero pressure are indicated
by filled circles. The average value of α over temperature range 300–3300 K and pressure range
169–196 GPa derived from shock experiments is indicated by the diamond. Reproduced with
permission from [140]. Copyright 1999 American Association for the Advancement of Science.

seemed that dp/dT might have the very large value of −50 GPa per 1000 K, but more recent
calculations [203], in which the linear response is used to calculate the phonon frequencies,
indicate that, even by 5000 K, p(T ) has fallen below its T = 0 value by no more than ∼50 GPa.
First-principles quasi-harmonic calculations have also been used to study the high-T /high-p
phase diagrams of SiO2 [204] and Al2O3 [208].

As an illustration of thermodynamic calculations which demonstrate the accuracy of the
first-principles quasi-harmonic approach, we show in figure 10 the temperature dependence
of the thermal expansivity α of MgO at pressures up to 200 GPa, compared with experimental
results. At ambient pressure, the first-principles α(T ) agrees very closely with experiment up
to ∼1000 K (about one-third of the melting temperature), as would be expected from the good
phonon dispersion relations (see figure 7). Good agreement is also found with the isolated
shock datum at p ∼ 180 GPa. (The increasingly poor agreement at higher T was shown by
Oganov and Dorogokupets [202] to be due to failure of the quasiharmonic approximation;
it was shown there that inclusion of anharmonic corrections restores agreement with the
experiment.)

We described in section 4.1.2 the important role of first-principles calculations in the
discovery of the post-perovskite structure of MgSiO3, which appears to solve the mystery
about the D′′ zone at the base of the Earth’s mantle. At low temperatures, the pressure of the
transition from perovskite to post-perovskite is in the region of 90 GPa, which is well below
the pressure of 127 GPa at the top of the D′′ zone. However, quasi-harmonic first-principles
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calculations [207, 261] show that the transition pressure increases with temperature, the
Clapeyron slope dp/dT being between 7 and 10 MPa K−1. This brings the predicted transition
pressure close to that at the top of D′′. These values of the Clapeyron slope also explain semi-
quantitatively the variation in thickness of the D′′ zone.

We mentioned earlier the controversies surrounding the phase diagram of solid Fe at
conditions relevant to the Earth’s inner core. Harmonic free-energy calculations on the
candidate crystal structures of Fe were reported several years ago [267]. Since the bcc structure
becomes mechanically unstable above∼ 180 GPa, and some of the other structures also become
unstable before inner-core pressures are reached, the only surviving candidate structures for
quasi-harmonic calculations are hcp, fcc and double-hcp. The free energies of these three
structures lead to the conclusion that hcp is the most stable structure, as has generally been
assumed. However, we caution that this is not conclusive evidence of Fe in the inner core
having the hcp structure, first because anharmonic effects are neglected and second because the
presence of light elements such as S and Si might tip the balance. Harmonic DFT calculations
have also played a role in helping to resolve a controversy over the temperature dependence
of c/a of hcp Fe under inner-core conditions. There have been suggestions [247] that the c/a

ratio increases rapidly with temperature from its T = 0 value of 1.59, attaining a value of
nearly 1.70 in the inner core. This, if true, would have important consequences for the elastic
properties of Fe in the inner core. However, a re-examination of the question [104,103], using
methods including quasi-harmonic DFT theory, indicates that the variation of c/a is actually
very weak, in agreement with recent experimental results [167].

There has been a considerable amount of work on the high-temperature elastic constants
of Earth’s mantle materials using first-principles quasi-harmonic theory. Examples include
work by Karki et al on MgO [140] and by Karki and Wentzcovitch [139] on MgSiO3 ilmenite.
Of particular interest is the work of Wentzcovitch et al [281] on the high-T elastic properties
of MgSiO3 perovskite, which is relevant to the question of whether the chemical composition
of the lower mantle varies with depth. Their predictions for the relationship between the
longitudinal and transverse velocities and the density led them to conclude that the seismic
data is best understood by postulating that composition does depend on depth.

6. Molecular dynamics

The methods of quasi-harmonic lattice dynamics discussed in the previous section are
powerful within their domain of applicability, but for high-temperature solids near the melting
temperature and for liquids, we must turn to molecular dynamics (m.d.) simulation. The m.d.
technique has been in use for over 40 years [26,101,224]. Before the advent of first-principles
m.d. in 1985 [58], all m.d. simulations were based on empirical models for the total energy
function, and these models remain extremely important today [94]. Since this review is about
first-principles modelling, we shall focus here on m.d. simulations based on DFT, which were
pioneered by Car and Parrinello [58]. Roughly speaking, first-principles m.d. is the same as
empirical m.d., but with the difference that, as the system evolves in time, the energy and the
atomic forces for the atomic positions at any instant are calculated using the DFT techniques
outlined in section 3. Because of this, our summary of the m.d. techniques themselves
(section 6.1) will be very brief, concentrating mainly on the DFT aspects. We then review a
range of applications to problems relevant to the Earth and planetary sciences, including the
properties of hydrogen and hydrogen–helium mixtures under the conditions that exist in the
planets Jupiter and Saturn, the properties of water, ammonia and methane under the conditions
in Uranus and Neptune, the thermodynamic and transport properties of iron in the Earth’s core
and the properties of materials in the Earth’s mantle, particularly magnesium silicate MgSiO3.
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At the end of the section, we briefly review first-principles statistical–mechanical methods for
determining crystal structures.

6.1. Summary of first-principles molecular dynamics

The two basic assumptions of first-principles m.d. are that the positions and momenta of
the nuclei evolve in time according to Newton’s equations of motion and that the forces on
the nuclei at any instant of time are those produced by the electron sub-system in its ground
state, calculated as though the nuclei were completely static at their current instantaneous
positions. The first assumption is accurate provided the temperature of the system is well
above the Debye temperature (see section 5.1), which is usually the case for problems in
the Earth and planetary sciences. The assumption about the forces is the well-known Born–
Oppenheimer approximation, which says that the electrons follow the motions of the nuclei
adiabatically. This assumption is also usually accurate and is justified by the fact that the
frequencies associated with the nuclear motions (typically ∼ 1013 Hz) are very much lower
than those of electronic excitations (typically ∼ 1015 Hz), so that the nuclear motions do not
significantly excite the electrons from their ground state.

With these basic assumptions, the simplest type of m.d. simulation that can be performed
is that in which the total energy is conserved, with ‘total energy’ here meaning the sum of the
kinetic energy of the nuclei and the ground-state DFT energy Utot(r1, . . . , rN) at each instant
of time. In this sense, the energy Utot plays the role of the ‘potential energy’ in an empirical
m.d. simulation. This type of constant energy m.d., with the volume of the system also held
fixed, usually called (N, V, E) m.d., generates phase-space configurations with a probability
distribution characteristic of the microcanonical ensemble, provided the time evolution is
ergodic. This fact implies that the time averages of dynamical variables are equal to their
thermal averages in the microcanonical ensemble.

The usual way of generating trajectories in (N, V, E) m.d. is to divide time into time steps
�t and to approximate the equation of motion mi∂vi/∂t = Fi (mi is the mass of atom i, vi is
its velocity, and Fi is the force acting on it) by a finite-difference equation. The simplest and
most effective of such algorithms is the Verlet equation [26,101,265], which can be expressed
in a number of equivalent forms, one of which is

ri (t + �t) = ri (t) + vi (t)�t +
1

2mi

Fi (t)�t2,

vi (t + �t) = vi (t) +
1

2mi

(Fi (t) + Fi (t + �t))�t. (37)

With an appropriately chosen time step, of order 1/20 of typical vibration periods, this
algorithm conserves energy rather well, over both short and long time scales. The algorithm
also has the highly desirable properties of preserving the time reversibility of the equations of
motion and of reproducing the incompressibility of flow in phase space required by Liouville’s
theorem. (See, e.g. [101] for a detailed explanation of these important statements.)

A key requirement in first-principles m.d. is that the electrons remain in the self-consistent
ground state, or at least very close to it, as the nuclear positions evolve. There are two
ways of achieving this. The most direct way is to relax the electrons to the ground state, to
within a specified tolerance, at each time step [153]. The other way, introduced by Car and
Parrinello [58], is to treat the wavefunction coefficients (in practice, the plane-wave coefficients
cnk of equation (17)) as fictitious dynamical variables. If these variables are given small enough
(fictitious) masses then they follow the nuclear motions adiabatically, at least for non-metallic
systems.
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The primary thermodynamic quantities that can be computed in an (N, V, E) m.d.
simulation, apart from the energy itself, are the temperature T and the pressure p (more
generally the stress tensor σαβ). The temperature is deduced from the average kinetic energy
of the nuclei, using the fact that the thermal average kinetic energy per atom is ( 3

2 )kBT .
The pressure or stress is obtained from the time average of the DFT stress tensor (see
section 3.7), also including a contribution from the kinetic energy of the nuclei. Also normally
calculated in the course of an m.d. simulation are the radial distribution functions gαβ(r)

giving the probability of finding an atom of type β at distance r from an atom of type α;
these provide the simplest way of characterizing the average structure of a liquid and are
also rather directly related to quantities measured in diffraction experiments. Many other
thermodynamic, structural and dynamical quantities can also be calculated by taking time
averages of appropriate variables, and a number of these quantities will be mentioned when
we present illustrative results later in this section.

Like the m.d. simulation based on empirical interaction models, first-principles m.d.
can also be performed at constant temperature and/or constant pressure (more generally,
constant stress). The preferred methods for doing this are those that produce phase-space
sampling corresponding to well defined statistical–mechanical ensembles. For constant-T
simulation, the thermostats having this property include those due to Andersen [28] and
Nosé and Hoover [127, 196]. When combined with the Parrinello–Rahman constant-stress
technique [214], this also allows simulations to be performed at constant T and σαβ (see
e.g. [283]).

6.2. Hydrogen in Jupiter and Saturn

Our presentation of recent first-principles simulation work on hydrogen will focus mainly
on studies that help with the planetary issues outlined in section 2. Work not reviewed here
includes the many interesting studies on the crystal structures of solid hydrogen [146,150,151].
A considerable effort has been devoted to the question of whether first-principles simulations
correctly reproduce the thermodynamic properties and the electrical conductivity of hydrogen
in the region explored by single- and multiple-shock experiments. It is now clear that
simulations by different groups [74, 102, 126, 161] agree closely with each other and also
reproduce reasonably well the experimental pressure–density relation on the single-shock
Hugoniot [125, 147, 189], if one discounts the results of laser-shock experiments [73], which
appear to be out of line with other data at pressures above ∼ 30 GPa. The first-principles
calculations of electrical conductivity have been done using the so-called Kubo–Greenwood
approximation [116, 157], which ignores electron–electron correlations, and can be expected
to give only rather qualitative results, except for nearly free electron metals. Nevertheless,
the simulations [102] agree with experiment [280] in predicting that on the single-shock
Hugoniot H becomes a poor metal, with a conductivity in the region of 5000 �−1 cm−1 when
the compression factor and temperature exceed 5 and 10 000 K, respectively.

A particularly comprehensive study of the structure, band gap and electrical conductivity
has been reported recently by Hood and Galli [126]. Recognizing that the band gap calculated
by DFT may not be trustworthy, these authors have used the much more reliable quantum Monte
Carlo technique [100] to calculate the band gap in the simulated system. The simulations were
performed at 3000 K and compression factors of 4, 6, 9 and 14. (The region probed by
reverberating shock experiments [280] passes near the state T � 3000 K and a compression
factor of 9.) The simulations show that for compressions greater than ∼4, the lifetime of
molecules starts to approach the very short value of 10 fs, which is the normal vibrational period
of the molecule, and the radial distribution function g(r) starts to lose the sharp peak associated
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with the intra-molecular bond length. At 9-fold compression, where the reverberating shock
experiments show a poor metal, the calculated band gap goes to zero, and the system is ∼40%
dissociated. At this state, the conductivity given by the Kubo–Greenwood approximation
is about four times the value deduced experimentally, which for present purposes counts as
reasonable agreement. An important conclusion from this simulation work is that in this part
of the phase diagram metallization and molecular dissociation are intimately linked.

The simulations just outlined give no evidence that the transition from the molecular
insulating state to the dissociated metallic state occurs by a first-order phase transition.
Nevertheless, theoretical arguments supported by first-principles data suggest that such a
first-order transition should exist [145]. At lower temperatures, near the melting curve, first-
principles simulations convincingly indicate the presence of such a transition. The evidence
comes from work by Scandolo [233], in which the properties of fluid H were studied at 1500 K
in the pressure range 75–175 GPa. Along this isotherm, a discontinuity in the volume of ∼ 6%
was found at ∼125 GPa. The almost complete disappearance of the intra-molecular peak in
g(r) across this transition indicates that it is associated with major molecular dissociation. The
rapid loss of the band gap in the electronic density of states as p goes from 112 to 137 GPa
suggests that metallization occurs across the transition. More recent first-principles work on
the melting curve of H up to pressures of 200 GPa [50], further reviewed in section 8.4 below,
indicates that the liquid in contact with the solid remains molecular up to this high pressure
but that there may well be a triple point between solid, insulating liquid and metallic liquid at
a pressure of ∼300–400 GPa. These two simulation studies confirm that the insulator–metal
transition pressure is indeed strongly temperature dependent. The transition line presumably
ends in a critical point, but the location of this point remains unknown.

To conclude this summary of first-principles simulations on hydrogen, we note briefly the
work of Pfaffenzeller et al on H/He mixtures [218]. This work addresses the question of the
anomalous heat release from Saturn, and why this should be so much higher than that of Jupiter.
It has been speculated that this could be because He is immiscible with H for conditions in
some regions inside Saturn, so that the heat release comes from sinking of precipitated He,
whereas at the higher temperatures inside Jupiter, the H/He mixture is always stable. Their
simulations focus first on the mixture at low temperatures, where they show that there is a
substantial positive enthalpy of mixing, so that phase separation would always occur. Their
estimates of the free energy of mixing at high temperatures allow them to estimate the phase
separation boundary, which indeed confirms the proposed reason for heat release in Saturn,
and also supports the idea that the H/He mixture will lie at temperatures in the miscible region
above the boundary everywhere inside Jupiter.

6.3. Uranus and Neptune

Our survey of scientific issues concerning Uranus and Neptune in section 2 showed the need to
understand the properties of water, ammonia and methane at high pressures and temperatures.
A first-principles study with strong links to experiment, which gives important insight into
pressure-induced changes in the structure of ice is that of Bernasconi et al [47]. This
work focuses on comparisons with experimental infrared spectra and the interpretation of
the observed spectral changes in terms of structural changes. The simulations indicate that
at pressures in the region of 40 GPa the protons have an asymmetric distribution, each proton
being bound for long periods to one oxygen; at 80 GPa, rapid hopping of protons is observed,
while at 125 GPa the spatial distribution of protons consists of peaks on the O–O mid-points,
in the way predicted for the ice-X structure. Several other first-principles m.d. studies by the
same group [45, 46] provide further information.
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Figure 11. Phase diagram of water under conditions relevant to the interior of Uranus and Neptune.
Reprinted with permission from [61]. Copyright 1999 American Association for the Advancement
of Science.

Rather extensive first-principles m.d. work on both H2O and NH3 under extreme
conditions by Cavazzoni et al [61] gives a valuable overview of the phase diagram, covering
the pressure range 30–300 GPa and the temperature range 300–7000 K (see figure 11). In
the lower part of the temperature range, both H2O and NH3 are solid. In the case of H2O,
the system is in the ice-VII structure at 30 and 60 GPa and in the ice-X structure at 150 and
300 GPa. In both structures, the O ions form a bcc lattice, the protons being on the O–O
bond centres in ice-X and on off-centre positions in ice-VII. The simulations show that solid
H2O becomes a superionic conductor at temperatures above ∼2000 K, with a very high proton
diffusion coefficient of order 6 × 10−8 m2 s−1. This confirmed earlier first-principles work on
superionic conduction in high-pressure ice [45].

A very recent study [109] combining Raman spectroscopy in a laser-heated diamond-anvil
cell and first-principles m.d. simulation sheds further light on the dissociation of water at high p

and T . The experiments confirm the solid–solid–liquid triple point, which is determined to be at
47 GPa and 1000 K, considerably lower in temperature than earlier measurements by Schwager
et al [235]. At 30 GPa and 1200 K, just on the lower boundary of the superionic regime
according to the first-principles work of Cavazzoni et al [61], they find that molecular H2O
is the dominant species. Their first-principles simulations indicate that superionic conduction
sets in at a pressure of ∼ 43 GPa, very close to that of the triple point.

The fate of CH4 in the interiors of Uranus and Neptune is outstandingly important for a very
interesting reason. If the temperatures and pressures are high enough to induce dissociation
into carbon and hydrogen, then the C and H are expected to be in the form of neutral atoms,
rather than ions, because the electronegativities of H and C are similar. This means that the
C might precipitate out as diamond. The notion that Uranus and Neptune might contain large
amounts of diamond first emerged [226] from an analysis of shock experiments on CH4, in
which it was believed that dissociation had been observed. The importance of this notion is that
the sinking of precipitated diamond towards the centre of the planet would release gravitational
energy, which could help to explain the observed luminosity of Neptune.

First-principles m.d. simulations performed by Ancilotto et al [27] suggest that the
situation may be more complex. This work was done nearly 10 years ago, and at that time it was
possible to treat only a rather small system of 16 CH4 molecules. Nevertheless, qualitatively
correct results would be expected even for such a small system. The main simulations were
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done at the two states 100 GPa, 4000 K and 300 GPa, 5000 K, which were chosen to lie roughly
on the planetary isentropes, the first state corresponding to a distance of about two-thirds of
a planetary radius from the centre. The simulations showed that the CH4 molecules initially
present undergo very rapid breakdown, within ∼1 ps, but surprisingly this breakdown does
not yield carbon and hydrogen at either of the two states. The simulation at 100 GPa and
4000 K revealed the formation of ethane (C2H6) and butane (C3H8) molecules, the hydrogen
produced in this process being mainly in molecular form. Analysis of the energetics of the
system showed that under these conditions, the formation of higher hydrocarbons, rather
than diamond, is thermodynamically favoured. At 300 GPa and 5000 K, longer alkane chains
were formed, but there was still no evidence for the formation of diamond. The authors
proposed that diamond precipitation might still occur in the deep interior of Uranus and
Neptune at pressures beyond 300 GPa, but to the best of our knowledge direct evidence
for this from first-principles simulation is still lacking. It is worth noting that at both the
thermodynamic states examined there is a large electronic band gap of ∼6 eV, so the C/H
system certainly cannot contribute to the electrical conductivity of the planets. Experimental
evidence for the formation of polymeric hydrocarbons has appeared since the simulations were
reported [44].

6.4. Iron in the Earth’s inner core

We noted earlier some of the questions concerning the Earth’s inner core, including the
estimation of the impurity content, the question of whether the crystal structure is hcp, as
has generally been assumed, and the correct explanation of the observed seismic anisotropy.
First-principles m.d. has already started to give partial answers to these questions, though
much remains to be done.

The simulations of Laio et al [159] provide useful information about the elastic properties
of hcp Fe under inner-core conditions. (These simulations are based on an embedded-
atom model fitted to high-temperature first-principles data but are expected to be reliable
for high-temperature elastic properties; this is confirmed by their good agreement with full
first-principles and DAC results for low-temperature elastic constants.) An important finding
from their work is that the shear modulus decreases very rapidly with increasing temperature
at the ICB pressure of 330 GPa. The calculated value at temperatures just below Tm is ∼70%
lower than the T = 0 K value, and this strong reduction is consistent with the very high value
of Poisson’s ratio in the core of ∼0.44 deduced from seismic measurements [89].

We mentioned in section 5.6 the controversy over the temperature variation of c/a in hcp
Fe under inner-core conditions. The indication from quasi-harmonic DFT calculations [103]
and from recent experiments [167] that c/a under these conditions differs little from its T = 0
value is confirmed by first-principles DFT m.d. simulations [103], in which the thermal average
deviatoric stress is calculated as a function of c/a at inner-core temperatures.

The question of the most stable crystal structure of Fe at inner-core p and T appeared to
have been settled in favour of hcp by the quasi-harmonic free-energy calculations summarized
in section 5.6. Indeed, the bcc structure seemed to be ruled out by three separate arguments:
(i) the elastic instability of bcc at pressures above 150 GPa; (ii) the vibrational instability also
revealed by first-principles calculations at high pressure; (iii) the fact that the enthalpy of bcc
is considerably higher than that of hcp. However, these arguments are not conclusive, because
they are based on zero-temperature or lattice-dynamical first-principles calculations, which
cannot be used to determine entropic effects in highly anharmonic solids at high temperatures.
Remarkably, recent first-principles m.d. simulations [269] on bcc Fe have shown that entropy
effects remove the low-temperature instabilities. (See also closely related work based on an
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Figure 12. Radial distribution function of liquid Fe from first-principles simulation at pressure of
330 GPa and temperature of 6000 K.

embedded-atom model parametrized using first-principles calculations [43].) The entropic
stabilization was shown by three different kinds of analysis: the anisotropic stresses were
monitored for evidence of elastic instability; the atomic positions relative to those of a perfect
bcc structure were analysed for evidence of vibrational instability; and the structure factors
were computed to help identify the crystal phases present. As we shall note in section 7,
calculations of the relative free energy of hcp and bcc structures indicate that hcp is still
marginally more stable than bcc, but the difference is small enough so that the balance could
be tipped by as little as 5 mole% of Si and/or S in the inner core. First-principles calculations
of chemical potentials in the inner core (section 9) suggest that at least this level of impurity
content is highly probable.

6.5. Liquid iron at Earth’s core conditions

Since the Earth’s liquid outer core is believed to consist mainly of iron, the properties of
liquid iron (we abbreviate to l-Fe) under relevant conditions (135 < p < 330 GPa and
4000 < T < 6000 K) are of fundamental importance to an understanding of the Earth’s
interior. Direct experiments on the properties of l-Fe under these extreme conditions are not
possible at present. However, the excellent agreement of DFT predictions with experimental
data for the low-temperature equation of state of Fe up to pressures of 300 GPa (section 4.1.4)
and for the phonon density of states up to 150 GPa (section 5.5) provides grounds to believe
that first-principles m.d. should be capable of giving an accurate picture of l-Fe under these
conditions.

Direct first-principles m.d. simulations of l-Fe have been reported over a wide range
of thermodynamic conditions [13, 18, 23, 82], and there have also been simulations based on
empirical potentials fitted to DFT data under the relevant conditions [42, 159]. Even with
direct first-principles m.d., it is possible at present to simulate systems of up to several hundred
atoms, and careful studies of size errors [17] show that this is more than large enough to make
size errors very small for most quantities.

To illustrate the predicted structure of l-Fe under core conditions, we show the r.d.f. at
330 GPa and 6000 K (figure 12). This g(r) is extremely similar to those found in simple liquids
in which the structure is dominated by short-range interatomic repulsion, as might be expected
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for a liquid under very high pressure. This similarity suggests that the properties of the liquid
might be accurately modelled by a system of atoms interacting via a short-range repulsive
pair potential. It has been shown that this idea can be used to provide an extremely simple
description of l-Fe over the whole range of conditions of the Earth’s core, as will be outlined
later in this section.

The m.d. simulations of l-Fe also yield thermodynamic information. The most
straightforward quantities to calculate are the internal energy and pressure for a given volume
and temperature. An alternative and more general approach is to calculate all thermodynamic
quantities from the free energy, as we describe in section 7.

A property of great interest for understanding the core is the self-diffusion coefficient D

of the atoms in l-Fe. There has been enormous controversy in the past about the viscosity of
the outer core, with estimates ranging over 12 orders of magnitude [219]. The high estimates,
if correct, would have important implications for understanding the generation of the Earth’s
magnetic field. A very high viscosity would imply a very low diffusion coefficient D, so
a simple way of addressing the controversy is to calculate D. The standard technique for
doing this in m.d. [26, 101] is to compute the mean square time dependent displacement
f (t) = 〈|ri (t + t0)−ri (t0)|2〉 for individual atoms, i.e. the mean square distance travelled by an
atom in time t . In simple liquids, f (t) increases linearly in t once t is greater than a few tenths
of a picosecond, and the slope of f (t) in this regime is 6D. First-principles m.d. calculations
of D at core conditions [18, 82] give values in the region of 5 × 10−9 m2 s−1. To put this in
context, the self-diffusion coefficient of water at ambient pressure and room temperature is
∼ 2 × 10−9 m2 s−1 [108]. The important conclusion is that, in spite of the enormous pressure
in the core, Fe atoms diffuse at a rate that is not much different from that of molecules in water
under everyday conditions, so that there is no support for a very high viscosity in the core.

This conclusion about the rather low viscosity of the liquid outer core has been confirmed
by first-principles m.d. simulations in which the viscosity itself is computed [9, 18, 245]. It
might be thought that this would necessitate a simulation of l-Fe under shear flow. However,
a far more effective way of calculating the viscosity in m.d. is to make use of the fluctuation–
dissipation theorem, which provides a formula for η in terms of the autocorrelation function
of spontaneous stress fluctuations in an unperturbed system in thermal equilibrium:

η = V

kBT

∫ ∞

0
dt〈σxy(t)σxy(0)〉, (38)

where σxy is the off-diagonal component of the stress tensor and V is the volume of the
system. First-principles calculations of η of l-Fe at core conditions using this approach [18]
give viscosity values in the region of 5 mPa s (the values depend somewhat on thermodynamic
state). Similar values of the viscosity of Fe under core conditions emerge from the first-
principles-based simulations of Laio et al [159]. For comparison, the viscosity of water under
ambient conditions has the rather similar value of 1 mPa s.

We now return briefly to the modelling of l-Fe using empirical potentials [18]. There
are three motivations for considering this. The first is that m.d. based on empirical models
is many orders of magnitude faster than first-principles m.d., so an accurate empirical model
can be used for much longer simulations on much larger systems. The second motivation is
that an empirical model can give revealing insights into the first-principles results. The third
is that empirical models play a key role in first-principles calculations of free energies (see
section 7). The important thing to appreciate here is that if an empirical total energy function
Uemp(r1, . . . rN) can be found which accurately mimics the DFT function UDFT(r1, . . . rN)

for all relevant configurations of the atoms, then by definition simulations using the empirical
model will give essentially the same results for structural quantities such as g(r) and dynamical
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quantities such as D and η. The remarkable fact is that this can be achieved for high-pressure
l-Fe with extremely simple models for Uemp.

The relevant criterion for a model Uemp to accurately reproduce UDFT is that the difference
�U = Uemp − UDFT should be essentially constant for all relevant configurations {ri}.
Specifically, the requirement is that the fluctuations δ�U ≡ �U − 〈�U〉 should be as
small as possible, 〈�U〉 being the thermal average of �U . The straightforward way to apply
this criterion is to adopt a parametrized model Uemp and to minimize the quantity 〈|δ�U |2〉.
For l-Fe under core conditions, the first-principles m.d. simulations [18] show that a pair
potential model for Uemp, with a repulsive inverse power pair potential, can achieve extremely
small values of 〈|δ�U |2〉. Explicit comparison of the radial distribution function, diffusion
coefficient and viscosity of the empirical and first-principles systems confirms that the model
does mimic the first-principles system very closely. This leads to a major simplification
in describing the system, since with an inverse power model all the properties of the system
depend non-trivially only on a single thermodynamic parameter, instead of on both pressure and
temperature.

The finding that an inverse power model reproduces the first-principles properties of l-Fe
also illuminates the inderlying physics of the system. The energetics of a transition metal
clearly must be governed both by Pauli exclusion repulsion of the electron distributions on the
atoms, and by d-band bonding. What the pair model reveals is that, although d-band bonding
is clearly crucial in determining the total energy of the system, the structure and dynamics are
completely determined by the short-range repulsion [21].

Before leaving l-Fe, we mention that quite extensive first-principles m.d. work has also
been reported on liquid alloys of Fe with sulfur and oxygen [10, 19, 270]. These are very
relevant to the Earth’s core, since S and O are two of the three main candidates for light
impurities in the core (the other is Si). In the first of these papers, the main aim was to test
suggestions that the viscosity might be considerably greater than that of pure Fe because the
liquid structure could be changed by the presence of S. The simulations showed that in fact
the structure is changed very little, and the self-diffusion coefficients of both Fe and S are
very similar to their values in pure liquid Fe at the same pressure and temperature. At much
lower pressures than those of the core, direct comparisons between first-principles simulations
of liquid Fe–S alloys and experimental measurements of diffusivity and viscosity confirm the
reliability of the simulations [270]. At low pressures, the solubility of O in liquid Fe is very
small, and it has been doubted whether significant amounts of O could be held in solution in
the Earth’s core. First-principles simulations of liquid Fe–O alloys under core conditions [19]
indicate that they are stable against precipitation of FeO up to at least 30 mol% of O.

6.6. Materials of the Earth’s mantle

Some of the earliest first-principles m.d. work on MgSiO3 perovskite at high T was reported
by Oganov et al [200, 201]. They showed that the calculated thermal expansivity of
1.86 × 10−5 K−1 at ambient conditions agreed with the available experimental data in the
range 1.5–2.2 × 10−5 K−1. They obtained the high-T elastic constants by directly calculating
the thermal average stress tensor as a function of strains of chosen symmetries. An important
result from this work concerned the quantity R ≡ d log Vs/d log Vp, where Vp and Vs are
the longitudinal and transverse velocities. Their calculated value R � 2.0 is significantly
below the value of at least 2.5 observed in the deepest parts of the lower mantle. They
concluded that the mantle must be either chemically heterogeneous or significantly anelastic.
First-principles m.d. has also been used very recently by Stackhouse et al [244] to study
the seismic anisotropy of MgSiO3 perovskite and post-perovskite, and they confirmed that
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the observed seismic anisotropy in the D′′ zone is consistent with the post-perovskite phase.
Work by Oganov et al [205] using first-principles metadynamics (see below section 6.7) has
suggested the existence of polytypic structures intermediate between MgSiO3 perovskite and
post-perovskite. This work has also indicated the mechanism of plastic deformation of these
structures and has led to a new interpretation of the anisotropy of the D′′ zone.

We noted in section 2.1 that the Grüneisen parameter γ is crucial in understanding the
temperature distribution in the Earth’s lower mantle. Since the lower mantle is convecting,
the relation between temperature and pressure is expected to be adiabatic, so that the variation
of temperature with radius is given by equation (1), which contains γ as the only unknown
quantity. In the first-principles work of Oganov et al [200,201] on MgSiO3 perovskite, γ was
determined using the definition γ = V (∂p/∂U)V . For a given fixed V , m.d. calculations at
high T were used to calculate the thermal average pressure p. It was found that to a very good
approximation the temperature dependence of U is given by the classical harmonic expression
U = Uperf + 3NkBT , with Uperf the total energy of the static perfect lattice and N the number
of ions in the system. From this, (∂p/∂U)V and hence γ was estimated using the ratio of finite
differences. It turned out that at ambient pressure γ for MgSiO3 perovskite is 1.51±0.1, close
to earlier estimates [30]. With increasing pressure, γ decreases smoothly to a value of ∼ 1.2
at the pressure of the base of the mantle. The mantle geotherm then follows by integration of
equation (1), allowing also for the presence of MgO, whose γ values are very close to those
of MgSiO3 perovskite. The resulting temperature at the base of the mantle was estimated
as ∼ 2600 K [199]. These first-principles m.d. calculations also yielded estimates for the
lateral variations of temperature in the mantle. Confirmation for the geotherm obtained in this
way comes from recent experimental studies of the post-perovskite transition compared with
seismological observation [210].

6.7. The first-principles determination of crystal structures

In section 4, we described how static first-principles calculations can be used to compare the
stability of different crystal structures. This straightforward approach has been very important,
but suffers from a serious limitation. If we wish to determine what is the most stable crystal
structure at a given pressure and temperature, in principle we should compare the Gibbs free
energies of all possible structures to find out which has the lowest value. But in practice, it may
not be obvious which candidate structures should be examined. What is needed is automatic
procedures to do the search for us. In the past few years, such procedures have started to
appear, and we summarize two of these here.

The first approach is known as metadynamics, which is a modified form of molecular
dynamics simulation. The general ideas of metadynamics [160] are motivated by the fact
that simulated condensed-matter systems (or indeed systems in the real world) can be trapped
for long periods of time in particular regions of configuration space. A common example of
this is thermally activated processes, when the system has to overcome a substantial energy
barrier in order to cross from one region of configuration space to another. In such situations,
normal molecular dynamics simulation explores only a limited region of configuration space,
and other regions may never be reached, even if they are associated with lower free energies.
Metadynamics [160] is a strategy for overcoming this, by discouraging the simulated system
from revisiting regions of configuration space that have already been visited. In practice, the
way this is done is to identify a small set of dynamical variables, which are the ‘slow’ variables,
i.e. the ones responsible for the trapping of the system. A record is kept of the trajectory of
these variables, and repulsive potentials are planted on earlier points of the trajectory. This
device obliges the slow variables to move away from their original values, until they attain
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values at which a transition to another region of configuration space spontaneously occurs.
The process is then repeated.

This rather general idea has recently started to be applied to the problem of determining
crystal structures [172]. To do this, the cell vectors a, b and c of the m.d. simulation cell are
themselves treated as dynamical variables, following well-established techniques pioneered
by Parrinello and Rahman [214]. These cell vectors are used as the ‘slow’ variables in a
metadynamics simulation. The effect of this is to generate a wide-ranging exploration of
different cell shapes and volumes, and hence crystal structures, associated with specified p

and T . An attractive general feature of metadynamics is that it automatically provides an
estimate of the free energies associated with the various regions explored, and this allows
one to identify which of the crystal structures explored is the most stable at the given (p, T )

conditions.
The metadynamics approach to the determination of crystal structures has recently been

used in a re-examination of MgSiO3 under the conditions of the lower mantle [206]. This work
has fully confirmed that the post-perovskite structure (figure 5) is indeed the structure of lowest
free energy at the p and T of the D′′ zone. Furthermore, the simulation revealed the existence
of polytypes having structures intermediate between those of perovskite and post-perovskite,
these structures being surprisingly different from what had been expected.

A second approach to the crystal-structure problem is the use of so-called evolutionary
algorithms. As the name implies, evolutionary algorithms are based on ideas that mimic
the Darwinian principle of natural selection. In general, one searches for ‘individuals’
having the greatest ‘fitness’. An individual is characterised by a set of parameters, and the
fitness of an individual is specified by the degree to which its set of parameters satisfies
some chosen criterion. The evolutionary approach works with groups (‘populations’) of
individuals and produces successive generations by mutating and recombining the parameters
in a predetermined way. This general approach has been applied many times in the past to
the search for the most stable crystal structures. In this context, an ‘individual’ is a given
crystal structure and the ‘parameters’ are the numbers – lattice parameters, atomic positions
– specifying the crystal structure. The ‘fitness’ is the energy, or more generally, free energy,
and optimisation of the fitness means searching for the lowest energy or free energy.

Over the past 10 years, the evolutionary approach to the determination of crystal structures
has had rather mixed success. But very recently, a new version of this idea has been reported,
which appears to be very successful [205]. This technique, embodied in a computer code
known as USPEX, has been applied with first-principles calculations in a combined theoretical–
experimental study of the high-pressure phases of CaCO3 [205], which is important in the global
carbon cycle of the Earth. It seems likely that this approach, as well as the metadynamics
method, will play an increasingly important role in first-principles mineral crystallography.

7. Free energy

7.1. Basic concepts

When two phases of a pure material, for example solid and liquid, co-exist in thermodynamic
equilibrium at a given pressure and temperature, their Gibbs free energies must be equal. If
the material contains two or more chemical components, then the chemical potentials of each
component in the coexisting phases must be equal. Because thermodynamic and chemical
equilibria play such a key role in the Earth and the planets, the first-principles calculation of
free energies and chemical potentials is extremely important. As we remarked in section 5,
for harmonically vibrating solids, these quantities can be calculated from the first-principles
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vibrational frequencies. However, for anharmonic solids and for liquids this approach is
powerless. In spite of this, it has become clear in the last few years that free energies and
chemical potentials of both anharmonic solids and liquids can be calculated with essentially
the same first-principles precision as they can be for harmonic solids. Free energies will be
discussed in this section, chemical potentials being deferred to section 9.

We recall some elementary ideas. The Helmholtz free energy F is defined as F = E−T S

and the Gibbs free energy as G = F + pV , where E and S are the internal energy and
entropy. Since a system is in full thermodynamic equilibrium at a given p and T when G

is a minimum, phase 1 is more stable than phase 2 when G1 < G2, and the reverse is true
when G2 < G1. The two phases are in stable coexistence when G1(p, T ) = G2(p, T ), and
this condition determines the relation between p and T on the phase boundary. It is useful
to note also that since pressure is given by p = −(∂F/∂V )T , the Gibbs free energy can
readily be calculated from the Helmholtz free energy. The isothermal infinitesimal form of
this relation, dF = −p dV , expresses the fact that dF is the isothermal reversible work done
in an infinitesimal change of volume. The Helmholtz free energy is also important because it
provides a very general route from statistical mechanics to thermodynamics, via the relation
F = −kBT ln Z, where Z is the partition function.

7.2. Statistical mechanics: thermodynamic integration

For most problems in the earth and planetary sciences, the temperature is well above the Debye
temperature, so that the nuclei can be treated as classical particles. This means that it is a good
approximation to use the standard formula of classical statistical mechanics for the partition
function Z.

For a solid or liquid containing only a single type of nucleus, the first-principles Helmholtz
free energy with the nuclei treated classically is given by

F = −kBT ln Z = −kBT ln

{
1

N !�3N

∫
dr1 . . . drN exp [−βU(r1, . . . rN)]

}
, (39)

where � is the thermal wavelength of the nuclei and U(r1, . . . rN) is the first-principles total
energy of the system in which the N nuclei are fixed at positions r1, . . . rN . (As usual, if thermal
excitation of the electrons is included via finite-temperature DFT, U(r1, . . . rN) represents a
free energy.) In the multiple integral, all nuclear positions range over the entire volume of the
system. For the periodic systems generally used for DFT calculations on condensed matter,
U means the first-principles total energy per repeating cell, and the integrations go over the
volume of the cell. In order to obtain the true thermodynamic free energy, we must take the
‘thermodynamic limit’, in which the volume of the cell and the number of atoms are taken to
infinity at constant density.

The formula for F cannot be evaluated as it stands, because there is no known way
of evaluating the multi-dimensional integral. Fortunately, this problem was studied and
solved many years ago in the context of classical simulations. (A wide-ranging exposition
of techniques for calculating free energies in simulation based on empirical interaction models
can be found in [101].) The key idea is to use the defining equation (39) for F to derive relations
that allow one to calculate the change of free energy when certain well-defined operations are
performed on the system.

The simplest of such operations are changes of volume and temperature. Since p =
−(∂F/∂V )T , and since p can be calculated as a thermal average in first-principles m.d.
(section 6.1), the difference of F for two volumes can be calculated by numerical integration
of p. Similarly, the Helmholtz formula E = (∂(F/T )/∂(1/T ))V can be used to find the
difference in values of F/T at two temperatures by the integration of internal energy E,
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with E computed as a thermal average. In classical simulation, one of the standard ways of
calculating the free energy of an anharmonic solid is to integrate E from the low-temperature
regime where the quasi-harmonic approximation is accurate (see e.g. [56]).

Many other operations are also possible. The basic idea of the technique known as
‘thermodynamic integration’ (see [101] and references therein) is to study the change of free
energy of a system when its total energy function U(r1, . . . rN) is changed. This idea is
important, because it allows one to relate the unknown first-principles free energy to the known
free energy of some other system. The derivation of the general formula for the free-energy
change due to a change in U is simple enough to be given here.

Suppose we have two systems, both having the same number N of atoms contained in the
same volume, whose total energy functions are U0(r1, . . . rN) and U1(r1, . . . rN). Call their
free energies F0 and F1. In the present context, ‘1’ will be identified as the first-principles
system and ‘0’ as the model system, whose free energy F0 we know. Now imagine that we
transform system ‘0’ continuously into system ‘1’ by changing the total energy function. To
describe this, let the total energy function Uλ(r1, . . . rN) depend on a parameter λ which varies
smoothly from 0 to 1; when λ = 0, we have the total energy function of system 0, and when
λ = 1 we have the total energy function of system 1. Denote by Fλ the free energy associated
with Uλ.

A formula for the variation of Fλ with λ can be derived from the definition of Fλ:

dFλ

dλ
= − kBT

d

dλ
ln

{
1

N !�3N

∫
dr1 . . . drNe−βUλ

}

=
∫

dr1 . . . drN

dUλ

dλ
e−βUλ

/∫
dr1 . . . drNe−βUλ . (40)

But exp(−βUλ(r1, . . . rN)) is the probability of finding the atoms at positions r1, . . . rN , apart
from a normalization constant. It follows that

dFλ/dλ = 〈dUλ/dλ〉λ, (41)

where 〈dUλ/dλ〉λ denotes the thermal average of dUλ/dλ for the system whose total energy
function is Uλ. Integrating this relation, we get

F1 = F0 +
∫ 1

0
〈dUλ/dλ〉λ dλ. (42)

This is the thermodynamic integration formula, which gives the change of free energy F1 −F0

caused by changing the total energy function. The crucial point to note is that 〈dUλ/dλ〉λ, being
a thermal average, can be evaluated by m.d. simulation. The idea is then to perform a sequence
of m.d. simulations with values of λ going from 0 to 1, calculate the value of 〈dUλ/dλ〉λ in
each of these simulations and then apply equation (42) by numerical evaluation of the integral.
This yields the required difference between the first-principles free energy F1 and the known
free energy of the system ‘0’. In practice, the usual choice of Uλ is Uλ = (1 − λ)U0 + λU1, in
which case dUλ/dλ = �U ≡ U1 − U0. With this choice, the formula becomes

F1 = F0 +
∫ 1

0
〈�U〉λ dλ.. (43)

When the thermodynamic integration formula (43) is used to calculate first-principles free
energies, the system ‘0’ whose free energy F0 is already known is called the ‘reference’ system.
There are many different ways of choosing reference systems. In one of the first applications
of these methods [257], first-principles calculations of the free energies of solid and liquid
silicon were used to compute its melting properties. In that work, the reference system for the
solid was chosen to be the Einstein model of atoms bound to lattice sites by harmonic springs;
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for the liquid, the reference system was the Stillinger–Weber model [249], whose free energy
was known from an earlier work [56].

The efficiency of thermodynamic integration is enormously improved if the reference
system is close to the first-principles system, in the sense that U0(r1, . . . rN) strongly resembles
the first-principles total energy U1(r1, . . . rN). There are two reasons for this: first, the number
of λ values at which one needs to evaluate 〈�U〉λ is reduced; second, the duration of the m.d.
runs needed to evaluate 〈�U〉λ is also reduced. If the fluctuations of �U are small enough,
F1 is accurately given by the leading terms of thermodynamic perturbation theory (see, e.g.
Chandler [63])

F1 = F0 + 〈�U〉0 − 〈(δ�U)2〉0
/
(2kBT ) + . . . . (44)

Here, the thermal averages 〈�U〉0 and 〈(δ�U)2〉0 are taken in the reference system, and δ�U

is the fluctuating part of U in this system, namely δ�U ≡ �U −〈�U〉0. Further details about
these ideas can be found in [21, 23].

In order to achieve good efficiency, careful thought should always be given to the design
of reference systems. Fortunately, good empirical total-energy functions are already available
for many types of material. For example, rigid-ion and polarizable-ion models of the Born–
Mayer type for oxides, silicates and many other minerals have been in widespread use for many
years [59,94]. A large amount of work has gone into the development of total-energy models
for water and other molecular systems (see e.g. [225] and references therein). For transition
metals, there is a whole hierarchy of models that can be used, ranging from tight-binding
schemes, through embedded-atom models, to simple pair potentials [94]. This means that
there is often a ready-made reference system that can be used. But the quality of the reference
system can almost always be improved by ‘tuning’ the model parameters to minimize the
‘distance’ between the reference and first-principles systems.

Thermodynamic integration provides a scheme for evaluating the first-principles free
energy F . Before discussing practical applications, we return to our statement that the scheme
allows F to be evaluated with high precision. It will become clear that for some applications,
a precision as high as 10 meV/atom is needed. Since we require F in the thermodynamic
limit of infinite system size, this implies, for example, that the average 〈�U〉λ appearing
in the thermodynamic integration formula must be evaluated with sizes of simulated system
large enough to reduce the size error below the specified tolerance. The duration of the m.d.
simulation runs must also be long enough to reduce statistical errors below this tolerance. In
addition, for any given system size, checks need to be made on the errors due to electronic
k-point sampling. Furthermore, the number of λ-points used for the numerical evaluation of
the integral of equation (43) must be large enough. All this means that considerable attention
to detail is needed to make the scheme work correctly. These issues of precision are discussed
in detail in [21,23], where it is shown that, at least for some systems, a precision approaching
10 meV/atom is indeed achievable.

7.3. The practical calculation of first-principles free energies

In section 5, we summarized work by several groups on the first-principles calculation
of free energy in the quasi-harmonic approximation for various materials. More recently,
thermodynamic integration has been used in extensive calculations of the free energy of iron
in several crystal structures, at least one of which is highly anharmonic, and also in the liquid
state [21, 23, 269]. We outline this work here.

We have seen that the simple inverse-power model serves as an excellent reference system
for first-principles l-Fe over a wide range of conditions (section 6.5). This reference system has
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convenient scaling properties, which make it possible to represent its free energy almost exactly
with a simple analytic formula. The differences between the reference and first-principles
systems are small enough that they are accurately given by the second-order expansion,
equation (44). These differences are weakly varying functions of density and temperature,
which can be represented as low-order polynomials. The result is that the first-principles free
energy of the liquid is given to a precision approaching 10 meV/atom by a simple analytical
formula [23]. Remarkably, it turns out that almost the same inverse-power model is a very
good reference system also for the high-temperature Fe solid near the melting line. This is
unexpected, since the harmonic phonon frequencies of the model reproduce the first-principles
frequencies only qualitatively [21]. Thermodynamic integration then leads to a simple but
accurate formula for the first-principles free energy of the hcp solid, with full inclusion of
anharmonicity [21]. From these free energies, it is straightforward to determine the melting
curve and other melting properties, as we describe in section 8.

The formulae for the first-principles free energies can be used to derive formulae for all
other thermodynamic quantities, such as expansion coefficient, bulk modulus and Grüneisen
parameter as a function of thermodynamic state, and results for these and other quantities can
be found in the original papers [21,23,268]. As we noted in section 2.1, these thermodynamic
calculations are crucial for constraining the temperature distribution in the Earth’s liquid outer
core. Since this part of the core is convecting, the variation of temperature with pressure is
expected to follow an adiabat, as in equation (1). The computation of the p–T adiabats and
other thermodynamic quantities for l-Fe is described in detail in [268]. We return in section 9.3
to the use of these adiabats to estimate the temperature at the core–mantle boundary. An
assumption that has been made in the past in estimations of the core geotherm is that the
Grüneisen parameter of l-Fe under core conditions has an almost constant value of ∼1.5. The
first-principles results confirm that this is an accurate assumption.

The correctness of the thermodynamic results can be checked by comparing with shock
measurements on solid and liquid Fe. We show in figure 13 the first-principles prediction
for the principal Hugoniot for Fe compared with experimental data. The excellent agreement
gives direct confirmation of the accuracy of the first-principles methods. This goes beyond
the low-temperature cold-compression comparisons presented in section 4, because here the
comparison depends crucially on thermal pressure effects. The same calculations yield T as
a function of p on the Hugoniot (figure 14). The theoretical results in these two plots agree
closely with earlier first-principles-based free-energy calculations [254, 279] obtained using
a statistical-mechanical approximation known as the particle-in-cell method. We recall that
temperature is notoriously difficult to measure in shock experiments. The substantial difference
between the experimentally estimated temperature and the two independent first-principles
predictions (figure 14) confirms evidence from other work that the experimental temperature
is probably unreliable.

We conclude our illustrations of first-principles free-energy calculations by returning to
the question of the thermodynamically most stable structure of Fe under inner-core conditions.
We saw in section 6.4 that under these conditions bcc Fe is entropically stabilized against the
low-temperature elastic and vibrational instabilities from which it suffers at high pressures.
However, to know whether it might be present in the inner core, its free energy must be
compared with that of hcp Fe. Remarkably, it turned out once again that the inverse-power
model provides an excellent reference system, also for the high-temperature bcc phase, so
that first-principles free-energy calculations can be performed with only short integration
paths [269]. This is an intriguing example of the technique, because it is a case where
quasi-harmonic calculations on a crystal are completely meaningless. Near the melting curve,
the Gibbs free energy of the bcc structure is predicted to lie above that of hcp by only
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Figure 13. Experimental and first-principles Hugoniot pressure p of Fe as a function of atomic
volume V . Symbols show the measurements of Brown and McQueen [57]. Solid curve is first-
principles pressure obtained when calculated equilibrium volume of bcc Fe is used in the Hugoniot–
Rankine equation; dotted curve is the same, but with experimental equilibrium volume of bcc Fe.
The comparison is meaningful only up to a pressure of ca 250 GPa (· · · · · ·), at which point the
experiments indicate melting. Reprinted with permission from [21]. Copyright 2001 American
Physical Society.

∼35 meV/atom, which is comparable with the precision of the calculations. The message
that emerges from this is that bcc must, after all, be regarded as a serious candidate for the
structure of the inner core. This conclusion is reinforced when one considers the likely effect
of light impurities in the core, a theme to which we return in section 9.

8. Melting

Solid–liquid equilibria are important throughout the earth and planetary sciences. An example
of the key importance of knowing melting properties is the equilibrium between the liquid outer
core and the solid inner core of the Earth. This equilibrium provides one of the few ways of
determining the temperature at the inner-core/outer-core boundary (ICB), which in turn gives
estimates of the temperature distribution throughout the core. If, as a zeroth approximation,
we assume that the core consists of pure Fe, then the temperature at the ICB must be equal to
the melting temperature of Fe at the ICB pressure of 330 GPa. Furthermore, the magnitudes
of both the density discontinuity at the boundary and the latent heat are crucial quantities in
understanding the heat released by the growth of the inner core due to crystallization of the
liquid outer core [117, 118].

These questions have stimulated a strong experimental effort to measure the melting
properties of geological materials up to high pressures. There are two main approaches. One
consists of static compression, performed by multi-anvil or diamond-anvil techniques, which at
present are able to reach pressures of ∼ 30 GPa and ∼200 GPa respectively. The other approach
exploits the fact that phase transitions, including melting, can be detected in shock experiments.
Although discontinuities in the principal Hugoniot p(V ) itself are extremely weak, sound
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Figure 14. Experimental and first-principles Hugoniot temperature T of Fe as a function of
pressure. Black circles with error bars and white diamonds are measurements due to Yoo et al
[290] and estimates due to Brown and McQueen [57], respectively. Solid and dashed curves
are first-principles results obtained using theoretical and experimental initial bcc volumes. The
comparison is meaningful only up to a pressure of ca 250 GPa (vertical dotted line), at which point
the experiments indicate melting. Reprinted with permission from [21]. Copyright 2001 American
Physical Society.

waves can be detected in shock experiments, and discontinuities in the sound-wave velocity
can provide prominent indications of melting. However, the experiments are challenging,
and their interpretation may not always be straightforward. The determination of melting in
static-compression experiments is not unambiguous, and the temperature distribution in the
samples may be significantly non-uniform. The difficulty of measuring temperature in shock
experiments is a major problem, though the possibility of taking the missing information
from first-principles calculations gives one away forward. One symptom of the problems is
the large disagreements between melting curves deduced from static-compression and shock
measurements, which can be as much as several thousand kelvin [91]. Furthermore, none
of the techniques can give reliable values for the volume and latent heat of melting at high
pressures.

8.1. The three approaches to first-principles melting

In the last few years, it has become clear that the first-principles calculation of melting properties
is not only feasible but also reliable, provided enough attention is paid to technical sources of
error [24]. This means that first-principles calculations are beginning to be taken seriously as a
way of resolving conflicts between experimental measurements [87]. There are currently three
broad approaches to the first-principles treatment of melting. The first is the direct application
of the free-energy methods outlined in section 7. The Gibbs free energies of solid and liquid
are calculated as a function of p and T , and the melting temperature at any p is the T at
which the free energies cross (figure 15) [13, 81, 257]. The second approach is to use first-
principles calculations to construct an empirical total-energy model which accurately mimics
both solid and liquid. This model is then used to determine the melting curve and other melting
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Figure 15. Schematic plot of Gibbs free energies GS and GL of solid and liquid as function of
temperature at fixed pressure, to illustrate the procedure for determining melting temperature.

properties, either by free-energy methods [184,183] or by performing m.d. simulations on large
systems containing solid and liquid in coexistence [22, 42, 159]. The third approach is to use
direct first-principles m.d., without the use of any auxiliary models, to simulate a large system
containing coexisting solid and liquid [7, 17, 50, 209]. Needless to say, provided all technical
errors are eliminated or corrected for, then for a given exchange-correlation functional, all
three approaches should give the same melting curves and other melting properties.

In this section, we survey the three approaches in turn, summarizing the methods that have
been developed and the practical results obtained and comparing the results of the methods
with each other and with experiment wherever possible.

8.2. Free-energy approach

The idea of using free energies calculated from first principles to predict the melting properties
of materials was first described by Sugino and Car [257], who used it to study the melting of
Si at ambient pressure. The volume and entropy changes on melting that they found were in
good accord with experiment, but the melting temperature itself was about 20% too low. It
has since been shown [11] that the discrepancy in Tm was almost certainly due to their use of
the LDA, which gives non-cancelling errors in the energies of the semi-conducting solid and
the metallic liquid. Their work was followed by first-principles free-energy calculations of the
melting properties of Al at ambient pressure [81], which agreed rather closely with experiment.
The first extensive melting curve of any material by this first-principles approach was reported
by Alfè et al [13], who evaluated the DFT–GGA melting curve of Fe for the pressure range
100–350 GPa relevant to the Earth’s core. The same approach has also been used to compute
the melting curve of Al from ambient pressure up to 150 GPa [266]. Although the melting of
Al has no direct relevance to the earth sciences, the latter work is significant here because the
close agreement with the rather complete experimental data provides valuable evidence for
the reliability of the methods. The technical details of the calculations on Al and Fe are very
similar, and we summarize them briefly here.

The construction of reference models for use as a starting point for thermodynamic
integration has been described in section 7, where we saw that for liquid Fe an inverse power
pair potential is surprisingly effective. We noted there the simplifications that follow from
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Figure 16. Melting curve of Al from DFT calculations (solid and dotted curves), compared with
experimental results (diamonds and triangles: DAC measurements, square: shock measurement).
Reproduced with permission from [266]. Copyright 2002 American Physical Society.

the scaling properties of this simple reference model. The same kind of inverse-power model
turns out to be equally effective for liquid Al [266]. The free-energy difference between the
first-principles and model systems for liquid Al was calculated by thermodynamic integration
in the same way as for liquid Fe. For high-temperature solid Al, the free-energy calculations
again followed the methods used for Fe, the reference model here being a linear combination
of the inverse-power model and the quasi-harmonic part of the first-principles total energy
function. Estimates of the technical errors in the computed melting curves can be obtained by
combining the errors from the various parts of the free-energy calculations. For Al, errors of
±50 K are estimated at low pressure, increasing to ±100 K at 150 GPa. For Fe, the technical
errors are estimated to be ±300 K across the whole pressure range.

In figure 16, we compare the first-principles melting curve of Al with the available
experimental data. The agreement looks good over the whole pressure range reported.
However, closer inspection shows that at ambient pressure the predicted melting temperature
is ∼15% below the experimental one (786 K compared with 933 K), though this discrepancy
diminishes rapidly with increasing pressure. It turns out that the main reason for this
discrepancy is that GGA does not give very accurate phonon frequencies, so that the thermal
pressure predicted by GGA is in error. Recognizing this shortcoming of GGA, it is possible
to correct for it, and once this is done, the corrected melting curve comes into very close
agreement with the experimental data across the entire pressure range.

Figure 17 shows the melting curve of Fe obtained from first-principles free-energy
calculations, compared with experimental data from both DAC and shock experiments; also
shown are predictions from the approach in which a model is fitted to first-principles data,
which will be described in more detail in section 8.3. The early experimental data of Williams
et al [285] lie considerably above those of other groups and are now generally discounted. This
still leaves a range of ∼ 700 K in the experimental values of Tm at 100 GPa. The first-principles
melting curve obtained by the free-energy approach lies above the surviving DAC curves, with
our Tm being above that that of Ma et al by ∼400 K at 100 GPa. However, we need to consider
corrections due to known errors of GGA for Fe. We know from the low-temperature equation
of state (section 4.1.4) that for Fe the GGA underestimates the pressure by ∼8 GPa at core
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Figure 17. Comparison of melting curve of Fe from DFT calculations and experimental data: black
solid and dashed curves: first-principles results of [23] without and with free-energy correction
(see text); red filled circles: corrected coexistence results from [24]; blue dashed curve: first-
principles based results of [159]; purple curve: first-principles based results of [42]; black chained
and maroon dashed curves: DAC measurements of [285] and [49]; green diamonds and green filled
square: DAC measurements of [238] and [167]; black open squares, black open circle and magenta
diamond: shock experiments of [290], [57] and [193]. Error bars are those quoted in original
references.

conditions. If we correct for this in the same way as was done for Al, we find that this lowers
the melting curve by ∼350 K at pressures of 50 GPa and by ∼70 K in the region of 300 GPa.
The corrected melting curve is also given in figure 17 and shows excellent agreement with the
recent DAC data of Shen et al [238] and Ma et al [167], which lie considerably above the
older measurements due to Boehler [49].

In the pressure region above 200 GPa, the only available experimental data come from
shock experiments, which should be able to fix a point on the melting curve at the state where
melting first occurs on the Hugoniot. However, the difficulties of measuring temperature
in shock experiments are well known. The temperatures obtained by Yoo et al [290]
using pyrometric measurements are generally regarded as too high by at least 1000 K; the
strong evidence in support of this statement from first-principles calculations of the Hugoniot
temperature was noted in section 7.3. We therefore disregard their point on the curve. In
the shock experiments of Brown and McQueen [57] and Nguyen and Holmes [193], no
attempt was made to measure temperature, which was estimated using models for the specific
heat and the Grüneisen parameter; the approximate validity of these models is supported
by first-principles calculations on hcp Fe. We note that the melting curve from free-energy
calculations, especially when corrected as described above, agrees well with the shock data
of both Brown and McQueen and of Nguyen and Holmes. A useful review of synchrotron
techniques, including a section on their contribution to the determination of the melting curve
of Fe has recently been published [87].

The large differences between the melting curve from the first-principles free-energy
approach and the model fitting approaches will be discussed further after we have described the
latter approach in more detail in the next section. We shall show there that these differences are
almost certainly due not to errors in the first-principles calculations themselves but to imperfect
fitting of empirical models.
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8.3. The model-fitting approach

There are many different ways of implementing the general model-fitting approach for the
determination of melting properties. For a given material, there may be models having different
levels of sophistication and realism. Once a given parametrized model has been chosen, the next
problem will be the adjustment of the parameters so that the model mimics the first-principles
solid and liquid as accurately as possible. This apparently simple statement conceals a number
of puzzles: what first-principles data should be used in fitting the model? By what criteria
should one judge the goodness of the fit? How does one decide whether the model is good
enough to yield accurate melting properties? Even when these matters are settled, there are
several ways of using coexistence simulations to determine the melting properties of the model.
We review briefly how these general questions have been approached by different researchers,
before outlining the work that has been reported.

Much of the first-principles work reported on melting has been done on transition metals,
and these metals give a good illustration of the issues involved in constructing models. A large
component in the energy of these metals comes from the quantum mechanics of d-band bonding,
so it is natural to work with models that represent this bonding explicitly. The most complete
empirical way of doing this is through tight-binding (TB) schemes, which allow the explicit
calculation of the electronic band-structure as a function of ionic positions [71,115,212,258].
TB models parametrized against DFT calculations have been widely used in the modelling
of transition metals and have been used in the study of Fe at Earth’s core conditions [72].
However, even more widely used are simplifications of TB that still include the dependence
of d-band energy on ionic positions. The most sophisticated of these is the generalized
pseudopotential theory of Moriarty and co-workers [184, 182], which retains a description of
the angular dependence of d-band energy. The method variously known as ‘second moment’,
‘embedded atom’ [77, 78], and Finnis–Sinclair [93] is a simpler description in which the
d-band energy is assumed to depend only on the second moment of the d-band electronic
density of states. (The effective medium theory of Nørskov et al [131] is closely related.)
Simpler yet are models which include the dependence on ionic positions only of the energy of
repulsion between the atoms, the d-band energy being represented as a term depending solely
on the overall density (and possibly temperature) of the system. The way all these methods
have been used in the modelling–fitting approach to the melting of transition metals will be
summarized below.

In the earliest first-principles based calculations of melting properties, the model fitting was
performed using only first-principles data for the solid. Examples of this approach are the work
of Moriarty and co-workers on Al [185], Cu [181], Mo [183] and Ta [184], using generalized
pseudopotential models. Comparisons with subsequent first-principles work [271] and with
shock data indicate that the predictions were accurate. In more recent work, first-principles
data on the high-temperature solid and the liquid are used to parametrize the empirical model.
A popular way of doing this is known as ‘force matching’ [90, 159]. An m.d. simulation
of the material at the thermodynamic state of interest is performed and representative atomic
configurations are drawn from the simulation. For these configurations, the parameters of the
model are adjusted so as to minimize the mean square difference of first-principles and model
forces, i.e. the quantity

W =
∑

n

∑
i=1

∣∣Fmod
i (tn) − FFP

i (tn)
∣∣2

, (45)

where the sums go over the configurations and over the ions and Fmod
i (tn) and FFP(tn) denote

the model and first-principles forces at the time-step tn. Sometimes, other quantities, such
as the pressure, are also included in the fit [159]. Clearly, as W tends to zero, the model
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system becomes identical to the first-principles system in its energetics and dynamics, except
perhaps for an overall constant shift of the total energy of one system with respect to the other.
A different, but not unrelated, method is the one described in section 7.2 for the tuning of
reference systems. In this method, the parameters are adjusted to minimize the strength of
the fluctuations of the difference of the model and first-principles total energies. Other fitting
methods have also been proposed. Naturally, for a given parametrized model, different fitting
strategies will yield different ‘optimized’ parameters. Given that no method can give a perfect
fit, it is then relevant to ask if one method is preferable to another for the calculation of melting
properties. We return to this question later.

If explicit simulation of solid and liquid is used to determine the melting properties of
the empirical model, various approaches are possible, the approaches differing mainly in the
quantities that are held fixed. In the work of Morris et al on the melting of Al [186], which
were based on an embedded-atom total-energy model, coexisting solid and liquid Al were
simulated with the total number of atoms N , volume V and internal energy E fixed. They
showed that, provided V and E are appropriately chosen, the two phases coexist stably over
long periods of time, and the average p and T give a point on the melting curve. In the work
of the UCL group [22], the constant quantities are chosen to be (N, V, T ). A further approach
was used in the simulations of Laio et al [159] on the high-pressure melting of Fe, which
were performed at constant stress, with enthalpy almost exactly conserved. The approach of
Belonoshko et al [41,42] is different again. Here, the (N, p, T ) ensemble is used. the system
intially contains coexisting solid and liquid, but since p and T generally do not lie on the melting
curve the system ultimately becomes entirely solid or liquid. Unlike the other approaches, this
one does not yield directly points on the melting curve but instead provides upper or lower
bounds, so that a series of simulations is needed to locate the transition. For a given model, the
various methods will yield the same results, provided the simulations are done on large enough
systems.

There have been three independent first-principles studies of the high-pressure melting of
Fe based on the model-fitting approach, all three of which were based on the embedded-
atom model. In the work of Laio et al [159], the model used for the coexistence
simulations was constructed using force matching, and efforts were made to ensure that
the model forces accurately reproduced the first-principles forces both in the solid and
the liquid. The work of Belonoshko et al [42] was based on fitting the energies of
the model to those calculated with FPLMTO at one thermodynamic state in the liquid.
The fitting of the embedded-atom model used by the UCL group [22] was performed by
minimizing the fluctuations in the energy differences between the model and first-principles
in simulations on the liquid state. The predicted melting curves from these studies are
shown in figure 17, in comparison with the results from the free-energy method reported
by the UCL group [23], together with the experimental static-compression and shock
measurements.

The large differences between the theoretical melting curves are of about the same general
magnitude (∼1000 K) as the differences between the experimental data. Like the free energy
results described in section 8.2, the model-fitting melting curves of Belonoshko et al and
of the UCL group are consistent with the shock results and with recent static compression
data, including those of Ma et al [167], but lie well above the Boehler static-compression
values [49]; the model-fitting results of Laio et al are much lower and agree quite well with
the Boehler data. The UCL results for the volume and the entropy change on melting at the
pressure of the inner-core boundary were 1.8% and 1.03 kB.

Obviously, the large disagreements between theoretical results seen in figure 17 are
completely unacceptable. Although the electronic structure methods are not identical in the
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three studies, we would not expect the small difference between them to lead to such large
discrepancies in the predictions. A far more likely cause is the differences in the fitting of
the empirical models. Clearly, the models have to fit the first-principles data very exactly,
otherwise the calculated melting curves cannot be regarded as truly first-principles. If high
quality fits cannot be achieved, then at least corrections should be made for the imperfections
of the models. To investigate this question, the UCL group developed a scheme [22] for
correcting the predicted melting curves for the differences between the fitted models and
the first-principles data. The basic idea of this scheme is that differences between the fitted
model and the first-principles data represent differences between the model and first-principles
free energies. The resulting shifts of the free-energy curves result in a shift of the melting
temperature, for which a simple formula can be obtained.

When this correction scheme is applied to our own model-fitting predictions, the resulting
melting curve is in essentially perfect agreement with the free-energy predictions. From the
information published by Belonoshko et al [42] about the parameters of their embedded-atom
model, it is possible to estimate the corrections that should be applied to their melting curve.
With these corrections, their melting curve comes into good agreement with ours. For the
model used by Laio et al [159], insufficient information has been published to support a full
analysis, but the information that is available suggests that the correction that should be applied
to their melting curve is of the correct sign and magnitude to account for the discrepancies.

The conclusion from these comparisons is therefore that the model-fitting approach to
the first-principles calculation of melting properties is capable of being reliable but only if
corrections are made for deficiencies of the fit of the model to the first-principles data.

8.4. First-principles coexistence approach

The direct simulation of solid and liquid in coexistence has been one of the standard methods
for studying melting properties with empirical interaction models. Extensive work of this kind
has shown that reliable results are generally obtained provided the entire system (solid and liq-
uid together) contains ∼500 atoms or more. Recent advances of computer power have brought
this size of system within range of first-principles m.d., so it is now an attractive possibility
to study melting by direct first-principles coexistence simulations. This brings the enormous
advantage of entirely avoiding the need for empirical models. The first studies of melting by
first-principles coexistence were reported by Alfè [6], and shortly after by Ogitsu et al [209]
The work of Alfè was on the melting properties of Al, whose melting curve up to 150 GPa had
already been studied by the first-principles free-energy method. The first-principles work of
Ogitsu et al was on LiH. Neither material is of direct relevance to the earth sciences, but these
studies are important for the present review because of the possibilities that they open up for
the future.

The coexistence simulations of Alfè were done using the VASP code with the GGA for
exchange and correlation, with the simulation cells having a range of sizes from 512 to 1728
atoms. We noted before that coexistence simulations can be done in a variety of ways. The
approach used by Alfè was based on the (N, V, E) ensemble; the techniques used to bring
solid and liquid into thermal equilibrium in the simulation cell with this approach are described
in the original paper. Points on the melting curve obtained from the simulations with different
sizes of system are compared in figure 18 with the melting curve from first-principles free-
energy calculations using exactly the same exchange-correlation functional. The melting
temperatures from the systems of 1000 and 1728 atoms agree to within ∼20 K, but with the
system of 512 atoms, there are indications that the melting temperature may be overestimated
by ∼50 K. Tests suggested that the error with the 512-atom system may be due to errors of
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Figure 18. Temperatures and pressures at which liquid and solid Al coexist in first-principles
simulations containing 1728 atoms ( ), 1000 atoms (•) and 512 atoms (�) performed using
�-point sampling only. Open triangle is the result from a 2 × 2 × 1 k-point grid on a 512-atom
system. The solid line is the lower end of the melting curve calculated using the free-energy
approach in [266] (see text), light dashed lines represent error bars. Results from simulations using
�-point sampling only for 1000- and 512-atom systems were reported in [6].

k-point sampling, rather than the limited size of the system itself. The overall conclusion is
that direct first-principles coexistence is a viable and accurate method for determining melting
curves. Other melting curves obtained with the first-principles coexistence method include
those of LiH [209] and H [50].

Very recently, first-principles coexistence simulations have been reported on MgO [7].
We pointed out earlier the importance of understanding MgO, because of the presence of large
amounts of Mg(Fe)O magnesiowüstite in the lower mantle. The melting curve of MgO at
lower mantle pressures (up to 135 GPa) is particularly important, because it places constraints
on the possibility of partial melting at the base of the mantle, which has sometimes been
suggested. In fact, the melting curve of MgO has been highly controversial. The only
experimental data up to lower mantle pressures are those of Zerr and Boehler [291], who
found a rather low melting slope dTm/dp � 30 K GPa−1, which might be compatible with
partial melting at the base of the mantle. However, several theoretical calculations based on
empirical interaction models for MgO predict much higher melting slopes in the region of
70 K GPa−1 [69, 273].

Like the earlier work on Al, the recent first-principles calculations on MgO melting [7]
were performed using the VASP code but used an LDA exchange-correlation functional, which
gives a better value for the melting temperature at ambient pressure. The simulations were
performed mainly on systems of 432 atoms but with one simulation of 1024 atoms as a control
on size effects. The results, shown in figure 19, give strong support to the high melting slope
predicted by earlier theoretical work and suggest that further experimental work on the melting
of MgO would be very valuable.

We have tried to show in this section how the first-principles treatment of solid–liquid
equilibria is helping to resolve important problems in the Earth and planetary sciences. How-
ever, the methods we have outlined so far are designed for pure single-component systems, and
in the real world materials are rarely pure. We have stressed, for example, that the Earth’s core
cannot be pure Fe, so that the estimate of the temperature at the inner-core boundary from the
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Figure 19. Melting curve of MgO obtained with DFT–LDA coexistence simulations performed
on 432-atom cells (blue dots and heavy solid line), 1024-atom cell (green square) and DFT–GGA
results (red triangles) [7], compared with experiments (♦) [291]. Other curves show results of earlier
modelling work based on interaction models. Reproduced with permission from [7]. Copyright
2005 American Physical Society.

melting curve of pure Fe is only a zeroth approximation. To treat equilibria in multi-component
systems, we need to consider chemical potentials, which are the subject of the next section.

9. Chemical potentials

9.1. First-principles methods

When two phases of a multi-component mixture are in thermodynamic equilibrium, the
chemical potentials of each component are equal in the two phases: µa

i = µb
i , where i

labels the chemical component and a, b denote the two phases. Generally, equality of the
chemical potentials requires that the mole fractions ca

i and cb
i in the two phases are different.

A familiar example of this is the use of salt to lower the freezing point of water when the roads
are icy. The sodium and chlorine ions are accommodated more easily in liquid water than in
ice, and equality of chemical potentials occurs when most of the salt is in the liquid phase.
The lowering of the chemical potential of the water caused by this partitioning results in the
well-known depression of freezing point. The analogous partitioning of light impurities in the
liquid and solid parts of the Earth’s core is crucial for an understanding of the core.

Our main interest here is in binary mixtures in which one component is fairly dilute, and
we refer to the majority component as the ‘solvent’, denoted by A, and the minority component
as the ‘solute’, denoted by X. Assuming that the two phases are solid and liquid, we denote the
chemical potentials of solute and solvent in the phases by µs

X, µl
X and µs

A, µl
A, respectively.

Then in thermodynamic equilibrium µs
X = µl

X and µs
A = µl

A. The corresponding mole
fractions in the two phases are denoted by cs

X, cl
X and cs

A, cl
A.

In the limit of infinite dilution cX → 0, the chemical potential µX diverges logarithmically,
going as kBT ln cX. It is convenient to separate out this logarithmic term by writing

µX = kBT ln cX + µ̄X, (46)
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where the quantity µ̄X is well behaved as cX → 0. The condition µs
X = µl

X then takes the form

kBT ln cs
X + µ̄s

X = kBT ln cl
X + µ̄l

X, (47)

from which we immediately obtain a convenient formula for the ratio of mole fractions of
solute in two phases:

cs
X/cl

X = exp[(µ̄l
X − µ̄s

X)/kBTm]. (48)

Here, Tm is the temperature at which the two phases coexist at the given pressure and solute
concentration. The quantities µ̄s

X and µ̄l
X themselves depend on cs

X and cl
X, but if these mole

fractions are small, then it may be enough to approximate µ̄s
X and µ̄l

X by their infinite dilution
values or to include their dependence on cs

X and cl
X to first order. It is shown in the text-

books (see e.g. Atkins [36]) that the depression of freezing point, i.e. the shift of coexistence
temperature Tm −T 0

m, with T 0
m the melting temperature of pure solvent, is given to lowest order

in the solute concentrations by

Tm − T 0
m = kBT

�s0
A

(cs
X − cl

X). (49)

Here, �s0
A ≡ s0l

A − s0s
A is the entropy of fusion of pure solvent.

It follows from this that a first-principles treatment of coexisting phases of dilute solutions
requires the calculation of the quantities µ̄s

X and µ̄l
X. Practical methods for doing this have

been developed in the last few years and, in combination with seismic data, have been used to
obtain new constraints on the chemical composition of the Earth’s core and the temperature
at the ICB, from which the temperature distribution throughout the core can be estimated.
Before explaining how these new constraints have been obtained, we summarize briefly the
first-principles strategies for calculating the quantities µ̄s

X and µ̄l
X, referring the reader to the

published papers for full details [14–15].
In both the solid and the liquid, it is much easier to work with the difference of chemical

potentials µXA ≡ µX − µA, rather than µX itself. If we can compute µXA, then µX can be
obtained from a knowledge of µA. But at infinite dilution µA is simply the Gibbs free energy
of the pure solvent, for which first-principles values are provided by the methods outlined
in section 7. Since the variation of µA with mole fraction cX is given by the Gibbs–Duhem
relation cAdµA + cXdµX = 0, it follows that µXA as function of cX gives us everything we
need. Now µXA is the change of free energy of the system when a solvent atom is replaced
by a solute atom. In the liquid state, it is convenient to calculate this free-energy change
by thermodynamic integration, by computing the work done as an A atom is continuously
transmuted into an X atom. Although such an ‘alchemical’ transmutation obviously cannot
be accomplished in the real world, it is rigorously justified within first-principles statistical
mechanics and provides an exact algorithm for calculating chemical potentials.

With this approach, the specific quantity that is evaluated by first-principles
thermodynamic integration, denoted by m(cX), is defined by the equation:

µXA = kBT ln
cX

1 − cX
+ 3kBT ln(�X

/
�A ) + m(cX), (50)

where �X and �A are the thermal wavelengths of solute and solvent. The thermodynamic
integration formula for m(cX) is then

m(cX) =
∫ 1

0
dλ〈U1 − U0〉λ, (51)

where U1(R) ≡ U(NA −1, NX + 1; R) and U0(R) ≡ U(NA, NX, ; R). Here, U(NA, NX; R) is
the first-principles total energy function of the system consisting of NA solvent atoms and NX
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solute atoms, while U(NA −1, NX +1; R) is the same, but for NA −1 solvent atoms and NX +1
solute atoms. For any value of λ between 0 and 1, the simulated system is governed by the total
energy function Uλ(R) ≡ (1−λ)U(NA−1, NX+1; R)+λU(NA, NX; R). As the hybrid system
evolves in time, the forces on atoms are the gradients of Uλ(R), so that at each time step two
separate first-principles calculations have to be performed, both for the same atomic positions
R ≡ {ri}. In one of these calculations, the total energy U(NA, NX; R) and its associated forces
Fi (NA, NX; R) are calculated, while in the other, the total energy U(NA −1, NX +1; R) and its
associated forces Fi (NA − 1, NX + 1; R) are calculated; the forces Fi (R) used to generate the
time evolution in the equation of motion (see equation (37)) are then the linear combinations:
Fi (R) = (1 − λ)Fi (NA − 1, NX + 1; R) + λFi (NA, NX; R). Exactly as in the thermodynamic
integration techniques described in section 7, m(cX) is obtained by numerical integration of
〈U1 − U0〉λ computed at a chosen set of λ values. In practice, the statistical efficiency of this
scheme is enhanced by switching more than a single atom at the same time.

In the solid state, thermodynamic integration is not the most appropriate way of calculating
the chemical potential differenceµXA ≡ µX−µA. This is clear, because in the zero temperature
limit, at infinite dilution m(cX → 0) is simply the change in internal energy when one atom in
the perfect lattice of solvent is replaced by a solute atom, the impurity system being relaxed
to equilibrium. This requires only a static calculation of the type described in section 4. At
finite temperatures in the infinite dilution limit, m(cX → 0) can be obtained from the quasi-
harmonic vibrational frequencies of the pure A system and the system containing a single
X impurity. If anharmonic effects are significant, as they are in the case of O substituted
in hcp Fe [20], thermodynamic integration can used to estimate the anharmonic effects.
These methods can also be generalized to include the variation of m(cX) with cX to linear
order in cX.

9.2. Chemical composition and temperature of the core

We turn now to the application of these techniques to constrain the chemical composition
of the Earth’s core. The strategy for doing this relies on two key facts already alluded to
(section 2.1). The first is that the density of the liquid outer core, as deduced from seismic
and free-oscillation measurements, is substantially lower than that of pure Fe at the relevant
pressures and temperatures. The second key fact is that the density discontinuity across the
ICB is rather well determined by free-oscillation measurements to be 6.5 ± 1.4%. The first-
principles simulations of pure liquid Fe described in section 6.5 can be used to refine earlier
quantitative estimates of the density deficit in the outer core, which is currently estimated to be
∼ 7%. If we assume initially that the core is a binary mixture of Fe and one of the impurities
S, Si or O, then for a given candidate impurity, first-principles m.d. simulation can be used to
determine what mole fraction of this impurity must be present in the outer core to lower the
density to the seismically determined value. For example, if S is assumed to be the impurity,
it turns out that 15 mol% must be present in the outer core to lower the density by the required
amount. Calculations of the chemical potentials of the candidate impurity in the liquid and
solid then determine the impurity mole fraction in the solid inner core. Finally, first-principles
simulation can be used to deduce the density discontinuity across the ICB. This can then be
compared with the known value of 6.5 ± 1.4%.

The way these comparisons turn out for the three main candidate impurities S, Si and O
is displayed in figure 20, which shows the dependence of liquid density on the impurity mole
fractions in the liquid outer core, the dependence of inner-core mole fractions on the outer-core
mole fractions, and the resulting ICB density discontinuity as a function of the outer-core mole
fractions. The comparisons reveal that S and Si partition only very weakly between the solid
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Figure 20. Liquid and solid impurity mole fractions cl
X and cs

X of impurities X = S, Si and O, and
resulting densities of the inner and outer core of the Earth predicted by first-principles simulations.
Solid, dashed and chain curves represent S, Si and O respectively. (a) liquid density ρl (kg m−3

units); horizontal dotted line shows density from seismic data [89,173]; (b) mole fractions in solid
resulting from equality of chemical potentials in solid and liquid; (c) relative density discontinuity
δρ/ρl at the ICB; horizontal dotted and dashed lines are values from free-oscillation data [174,173].
Adapted from [16], with permission.

Table 4. Estimated molar percentages of sulfur, silicon and oxygen in the solid inner core and
liquid outer core of the Earth, obtained by combining first-principles calculations and seismic data.
Sulfur/silicon entries refer to total percentages of sulfur plus silicon.

Inner core Outer core

Sulfur/Silicon 7.0 ± 2.5 8.0 ± 2.5
Oxygen 0.2 ± 0.1 13 ± 2.5

and the liquid, so that for the required outer-core mole fraction, the density discontinuity comes
out much smaller than the seismically determined value. By contrast, the required fraction of
O in the outer core leads to a density discontinuity that is much too big. It follows that the
density discontinuity can only be explained if the outer core contains both O and also some
mixture of S and Si, the ratio of the two latter elements being impossible to determine by this
route. The chemical compositions of the inner and outer core deduced from these comparisons
are summarized in table 4.

With these results for the impurity mole fractions, the depression of freezing point can then
be estimated from equation (49). The value Tm − T 0

m = 900 K thus obtained, taken together
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with the melting temperature T 0
m = 6200 K for pure Fe at the ICB pressure (section 8.2 and

8.3), leads to the estimate Tm = 5300 K as the ICB temperature.

9.3. Implications for the core geotherm

As we pointed out in section 2.1, this ICB temperature is crucially important, because it allows
us to estimate the geotherm throughout the outer core. Since the outer core is convecting,
the temperature T should follow an adiabat, so that the variation of T with radius is given by
equation (1). We saw in section 7.3 that the adiabats for liquid Fe needed to obtain the geotherm
can be derived from the first-principles free energy. The resulting geotherm [268] gives the
temperature on the core side of the core–mantle boundary (CMB) in the range 3700–3950 K, in
close agreement with other recent estimates [31]. This temperature happens to be very close to
the estimated mantle solidus [292], so there may be partially molten regions at the base of the
mantle. We note that the temperature range 3700–3950 K is substantially above the temperature
of 2600 K estimated for the mantle side of the core–mantle boundary (see section 6.6). As we
pointed out in section 2.1, this is expected, because of the thermal boundary layer at the base
of the mantle.

10. Summary and prospects

We have tried to present a broad survey of the substantial contributions that first-principles
modelling is now making to the understanding of materials in the deep interiors of the earth and
the other planets. In early work of this kind, density-functional theory was used to make zero-
temperature static calculations, but we have shown that it is now increasingly being used for
high-temperature calculations, either by lattice dynamics in the quasi-harmonic approximation
or by first-principles molecular dynamics simulation. As we have seen, the latter approach
is indispensable for the many planetary science problems that concern liquids, such as the
thermodynamics of the Earth’s core and the electronic properties of hydrogen and water in the
interiors of the giant planets. First-principles modelling has come into widespread use only
in the past 15 years, and the methods are still evolving. We conclude this review by assessing
the current accuracy of the methods, summarizing the scientific progress that has already been
achieved and suggesting where future progress can be expected.

An important theme running through this review has been the continual interplay between
first-principles modelling and experiment. Since first-principles methods necessarily involve
approximations, the most important of which is the approximate form of the exchange-
correlation functional, the importance of validating the calculations against experimental data
is obvious. The most direct evidence for the reliability of DFT methods at the high pressures
relevant to planetary interiors comes from cold compression curves, i.e. the p(V ) relation
at room temperature. We have seen that cold compression curves of geologically important
materials such as MgO, MgSiO3 and hcp Fe at pressures in the megabar region are predicted
with excellent accuracy. In the case of hcp Fe, at a pressure of 300 GPa, which is near that
of the inner-core/outer-core boundary, the error in the volume per atom is only ∼1%. Added
weight is given to these comparisons by the facts that no adjustable parameters enter the
calculations and that different DFT implementations (pseudopotential, projector augmented
wave, augmented plane wave, etc) produce essentially identical results. We have also shown
some of the abundant evidence for the accuracy of DFT for phonon frequencies at ambient
pressures, the departures from experimental frequencies for materials such as MgO and Fe
being generally no more than ∼3%. The existing rather sparse comparisons with high-pressure
phonon densities of states, currently up to pressures ∼150 GPa, give valuable evidence that
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DFT maintains its accuracy at these pressures. Since it is exactly these phonon frequencies
that enter free-energy calculations in the quasi-harmonic approximation, there is good reason
to expect reliable thermodynamic results at high p and T . Further supporting evidence for this
comes from the accurate predictions of p(V ) on the shock Hugoniot that we have illustrated.

We have seen that the situation with melting curves is not yet completely satisfactory.
Particular controversy has surrounded the melting curve of Fe, which is crucial for constraining
the temperature distribution in the Earth’s core. In the past, there were major differences
between the melting curves determined by static compression and by shock experiments.
However, we have seen that the more recent static compression data is much more consistent
with the shock data and also with the majority of first-principles results. This is an area
where the combined efforts of experimentalists and modellers are leading to major progress.
However, in other cases (we have noted particularly the case of MgO), there remains a strong
need to reconcile the theoretical and experimental results.

The work that we have reviewed shows that first-principles modelling has already made
substantial contributions to our understanding of the Earth’s interior. A striking example of
this is the role of first-principles calculations in the discovery of the post-perovskite phase of
MgSiO3 and the use of the calculations to explore its properties. We have seen how the
calculated elastic properties of post-perovskite and the calculated Clapeyron slope of the
perovskite/post-perovskite phase boundary explain the previously mysterious properties of
the D′′ zone. First-principles work has also contributed significantly to our understanding
of the temperature distribution within the Earth and the chemical composition of the core.
We have shown how these advances were made possible by the development of first-principles
techniques for calculating melting properties and chemical potentials in solid and liquid phases.
These developments have led to completely new ways of placing constraints on the temperature
at the inner-core/outer-core boundary and on the fractions of light impurities in the inner and
outer core. An important conclusion is that oxygen seems to be an essential impurity in the
core, without which the seismically observed density difference between inner and outer core
cannot be explained.

For the giant planets, the interplay between first-principles modelling and experiment
has been particularly fruitful. A central concern of much of the modelling work on hydro-
gen has been the demonstration that the DFT simulations really do reproduce the available
data. We have seen that the simulations reproduce at least semi-quantitatively the location of
the insulator–metal transition in the p–T plane and particularly the strong dependence of the
transition line on temperature. The values of the electrical conductivity measured in shock
experiments are also approximately reproduced. This gives confidence in the predictions of
modelling at thermodynamic states that cannot be probed experimentally. The simulations have
provided firm evidence for the existence of a first-order fluid–fluid transition associated with
the insulator–metal transition but so far only in a region that is rather far from the conditions
inside Jupiter and Saturn. It seems that there is much more to be done in mapping this transition
line and particularly in determining where it ends. In the case of Uranus and Neptune, where
the problems concern the properties of water, methane and ammonia under extreme conditions,
first-principles modelling has given completely new insights. In particular, it has given much
firmer quantitative guides to the thermodynamic regions in which ionic and electronic electri-
cal conductivity should be expected. It has also played an important role in mapping the phase
diagram of water, methane and ammonia over a wide range of thermodynamic conditions.

In spite of the large amount of first-principles work already reported, there remains ample
scope both for investigating new physical quantities and for improving the calculation of those
already studied. For example, rather little attention has been paid to the calculation of electri-
cal and thermal conductivities at high pressures and temperatures, apart from old work using
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empirical potentials. The calculation of the electrical conductivity of hydrogen using the Kubo–
Greenwood approximation has been described in this review. Similar calculations on liquid Fe
under Earth’s core conditions would be valuable because the value of the conductivity is crucial
in all geodynamo models but up to now has simply been estimated by intelligent guesswork.
The existing comparisons of electrical conductivity with shock compression values for hydro-
gen show only qualitative agreement, and there is a clear need for improvement in this area.

Finally, we note some current developments which look likely to improve still further
the accuracy of first-principles calculations. The first is the rapid improvement of quantum
Monte Carlo methods for calculating the total energy of condensed matter. We have described
how these have already played a significant role in studying the metallization of hydrogen
(section 6.2). Recent work has shown the feasibility of applying them to oxide materials [8,12],
and there are hopes that they may be able to overcome the deficiencies of DFT for highly
correlated materials such as transition-metal oxides. An alternative route to the treatment
of highly correlated materials is dynamical mean field theory. Here again, recent progress
on transition–metal oxides is encouraging [230]. A third area of technical progress is the
calculation of total energies by computational many-body theory (see e.g. [229]). This
approach provides a way of accounting for the dependence of exchange-correlation energy
on local electronic structure, and is known to be superior to existing DFT methods for some
materials. The rapid pace of technical advances means that we can look forward to even more
accurate and reliable quantum-based modelling methods in the future.
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[23] Alfè D, Price G D and Gillan M J 2002 Iron under Earth’s core conditions: liquid state thermodynamics and
high pressure melting curve from ab-initio calculations Phys. Rev. B 65 165118
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[270] Vočadlo L, Alfè D, Price G D and Gillan M J 2000 First-principles calculations on the diffusivity and viscosity
of liquid Fe–S at experimentally accessible conditions Phys. Earth Planet. Inter. 120 145–52
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[275] Vočadlo N L, Wall A, Parker S C and Price G D 1995 Absolute ionic diffusion in MgO—computer calculations
via lattice dynamics Phys. Earth Planet. Inter. 89 199–218

[276] Wallace D C 1998 Thermodynamics of Crystals (New York: Dover)
[277] Walter M J, Kubo A, Yoshino T, Brodholt J, Koga K T and Ohishi Y 2004 Phase relations and equation of state

of aluminous Mg-silicate perovskite and implications for the Earth’s lower mantle Earth Planet. Sci. Lett.
222 510–16

[278] Wang C S, Klein B M and Krakauer H 1985 Theory of magnetic and structural ordering in iron Phys. Rev. Lett
54 1852

[279] Wasserman E, Stixrude L and Cohen R E 1996 Thermal properties of iron at high pressures and temperatures
Phys. Rev. B 53 8296–309

[280] Weir S T, Mitchell A C and Nellis W J 1996 Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar)
Phys. Rev. Lett. 76 1860–3

[281] Wentzcovitch R, Karki B B, Cococcioni M and de Gironcoli S 2004 Thermoelastic properties of MgSiO3

perovskite: insights on the nature of the earth’s lower mantle Phys. Rev. Lett. 92 018501
[282] Wentzcovitch R, Ross N L and Price G D 1995 Ab initio study of MgSiO3 and MgSiO3 perovskites at lower-

mantle pressures Phys. Earth Planet. Inter. 90 101–12
[283] Wentzcovitch R M, Martins J L and Price G D 1993 Ab initio molecular dynamics with variable cell shape:

application to MgSiO3 Phys. Rev. Lett. 70 3947–50
[284] Wigner E and Huntington H B 1935 On the possibility of a metallic modification of hydrogen J. Chem. Phys.

3 764–70
[285] Williams Q, Jeanloz R, Bass J D, Svendesen B and Ahrens T J 1987 The melting curve of iron to 250

gigapascals—a constraint on the temperature at the Earth’s center Science 236 181–2
[286] Wood B 1993 Carbon in the core Earth Planet. Sci. 117 593–607
[287] Woodcock L V and Singer K 1971 Thermodynamic and structural properties of liquid ionic salts obtained by

Monte Carlo computation Trans. Faraday Soc. 67 12–32
[288] Yamamoto T, Yuen D A and Ebisuzaki T 2003 Substitution mechanism of Al ions in MgSiO3 perovskite under

high pressure conditions from first-principles calculations Earth Planet. Sci. Lett. 206 617–25
[289] Yeganeh-Haeri A 1994 Synthesis and re-investigation of the elastic properties of single-crystal magnesium

silicate perovskite Phys. Earth Planet. Inter. 87 111–21
[290] Yoo C S, Holmes N C, Ross M, Webb D J and Pike C 1993 Shock temperatures and melting of iron at Earth

core conditions Phys. Rev. Lett. 70 3931–4
[291] Zerr A and Boehler R 1994 Constraints on the melting temperature of the lower mantle from high-pressure

experiments on MgO and magnesiowustite Nature 371 506–8
[292] Zerr A, Diegler A and Boehler R 1998 Solidus of earth’s deep mantle Science 281 243–6
[293] Zhang J and Weidner D J 1999 Thermal equation of state of aluminium-enriched silicate perovskite Science

284 782–4


	1. Introduction
	2. The science of planetary interiors: a brief overview
	2.1. The Earth and the terrestrial planets
	2.2. The gaseous planets
	2.3. Moons

	3. First-principles techniques
	3.1. Why it is difficult to apply quantum theory to many-electron systems
	3.2. Ignoring correlations: Hartree--Fock theory
	3.3. Density functional theory
	3.4. Approximations to the exchange-correlation energy
	3.5. Pseudopotentials
	3.6. Basis sets and periodic boundary conditions
	3.7. Atomic forces and stress tensor
	3.8. Practicalities

	4. Energetics of static crystals: athermal calculations
	4.1. Crystal structure and equation of state
	4.1.1. Magnesium oxide
	4.1.2. Magnesium silicate
	4.1.3. Silica
	4.1.4. Iron
	4.1.5. Iron silicide and carbide.
	4.1.6. Water and ammonium dihydrate

	4.2. Elastic properties
	4.2.1. MgSiO3 perovskite
	4.2.2. MgSiO3 post-perovskite
	4.2.3. Iron

	4.3. Crystal defects

	5. High-temperature properties from lattice dynamics
	5.1. Thermodynamics from quasi-harmonic theory
	5.2. Basic theory of lattice vibrations
	5.3. First-principles calculation of phonon frequencies
	5.4. Phonon dispersion relations at ambient pressure
	5.5. Phonons at high pressure
	5.6. Thermodynamics in the quasi-harmonic approximation

	6. Molecular dynamics
	6.1. Summary of first-principles molecular dynamics
	6.2. Hydrogen in Jupiter and Saturn
	6.3. Uranus and Neptune
	6.4. Iron in the Earth's inner core
	6.5. Liquid iron at Earth's core conditions
	6.6. Materials of the Earth's mantle
	6.7. The first-principles determination of crystal structures

	7. Free energy
	7.1. Basic concepts
	7.2. Statistical mechanics: thermodynamic integration
	7.3. The practical calculation of first-principles free energies

	8. Melting
	8.1. The three approaches to first-principles melting
	8.2. Free-energy approach
	8.3. The model-fitting approach
	8.4. First-principles coexistence approach

	9. Chemical potentials
	9.1. First-principles methods
	9.2. Chemical composition and temperature of the core
	9.3. Implications for the core geotherm

	10. Summary and prospects
	 Acknowledgments
	 References

