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The temperature of Earth’s core is a parameter of critical importance to model the thermal structure of

Earth. Since the core is mainly made of iron, with a solid liquid boundary (the inner core boundary) at

1220 km from the center of the Earth, the melting temperature of iron at the pressure of the ICB provides

constraints on the temperature of the core. These constraints are based either on extrapolations to ICB

pressure of experimental measurements, or on theoretical calculations which employed various flavors of

quantum mechanics, most notably density functional theory. Significant disagreement between estimates

obtained with different methods calls for calculations based on more accurate techniques. Here we used

quantum Monte Carlo techniques to compute the free energies of solid and liquid iron at ICB conditions.

We obtained an iron melting temperature at 330 GPa of 6900� 400 K.
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Knowing the thermal structure of Earth is of fundamen-
tal importance to our understanding of the dynamical
mechanisms that govern the evolution of our planet, in-
cluding the generation of the Earth’s magnetic field in the
Earth’s core, and processes like plate tectonics and volca-
nism. Today we accurately know the density distribution
inside the planet, and the pressure as function of depth. In
particular, we know that the Earth’s core is a solid ball of
almost pure iron surrounded by a shell of liquid, also
mainly formed by iron, extending up to 3480 km from
the center [1]. We also know that a small fraction of light
impurities like O, Si, and S must be present in the core.
Very little is known about the temperature inside the Earth,
as conventional probing techniques based on the analysis
of seismic waves do not provide direct temperature mea-
surements. The past two decades have witnessed strenuous
efforts both on the experimental and the theoretical sides,
towards what appear to be elusive attempts of measuring or
computing the temperature of the Earth’s core. These
attempts exploit the presence of a boundary between the
solid and the liquid core (the ICB), and therefore the fact
that the core material must be at the melting point at that
boundary. Since iron is the major component, experiments
and theory have focused on the melting point of iron.

On the experimental side, the uncertainties are due to
difficulties related to the extreme conditions, which require
extrapolations from regions of much lower pressures and
temperatures [2–9]. Theoretical calculations based on vari-
ous approximations of quantum mechanics have been able
to predict the whole melting curve of iron up to core
pressures, but sometimes with conflicting results due to
differences in the underlying techniques [10–13]. The most
accurate calculations available to date are those based on
density functional theory (DFT). In particular, in our ear-
lier work, we used DFT to compute the free energies of

solid and liquid iron in the whole range of core pressures,
and obtained the melting curve by imposing equality of the
Gibbs free energies of solid and liquid [10,11]. The melting
temperature at 330 GPa obtained with this method was
6350� 600 K [11], where we estimated the first �300 K
of the error being due to statistical sampling and the second
�300 K to possible systematic errors due to the practical
application of DFT, the latter inferred by comparing calcu-
lated phonon dispersions, phonon density of states as func-
tion of pressure and pressure-volume equation of states
with experiments.
Recently, we have readdressed the problem using the

technique of the coexistence of phases, in which solid and
liquid are simulated together in a large box. This approach
to melting is equivalent to the free energy approach, pro-
vided the forces on the atoms are obtained by the same
potential energy method. With this method, the melting
temperature of iron at 330 GPa was calculated as 6390�
100 K [14], and since the method is completely indepen-
dent from the free energy approach, the close agreement of
the two results strongly indicates that the DFT melting
temperature of iron at 330 GPa is in the region of
�6350 K.
However accurate it may be, each implementation of

DFT has one important approximation which is difficult to
overcome: the exchange correlation energy (XC). This
term of the potential energy contains all the physics that
cannot be captured exactly. For iron, it has been shown that
if the XC known as PW91 [15] is used, then a number of
static and vibrational properties can be accurately pre-
dicted, including the transition pressure from the body
centered cubic (bcc) phase to the hexagonal closed packed
(hcp) phase [16,17]—the most probable phase of iron at
Earth’s core conditions—, the hcp pressure versus volume
equation of state, the zero pressure bcc phonon dispersions
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[18], and the high pressure hcp phonon density of states
[19]. However, when comparing with experimental data,
small errors in the above mentioned quantities are appar-
ent, and these errors may propagate to the calculated free
energies. Although it is reasonable to expect that most of
the errors due to the approximate treatment of the XC are
similar in solid and liquid, and therefore cancel out, it is
difficult to put a definite number on these uncontrollable
errors.

Here we have tried to go beyond DFT, using the tech-
nique known as quantum Monte Carlo (QMC) simulation
[20], and, in particular, the diffusion Monte Carlo (DMC)
method, which is an exact way to solve the Schrödinger
equation using a projection scheme in imaginary time
which provides the ground state wave function, and there-
fore the ground state energy. In practice, for a fermionic
system DMC cannot be applied without resorting to two
approximations: the fixed node approximation (FNA),
where the nodal surface of the electronic wave function
is fixed to that of a predefined trial function, and the use of
pseudopotentials. However, there is abundant evidence that
even with the FNA, DMC is in most cases 1 order of
magnitude more accurate than DFT [21,22] (albeit 3 or 4
order of magnitudes more expensive). For a description of
the QMC techniques used here we refer the reader to our
previous paper [23]. All present calculations were per-
formed using the CASINO code [24]. Single particle orbitals
were obtained by plane-wave DFT-PBE [25] calculations
at the � point in the Brillouin zone of the corresponding
supercell, using the PWSCF [26] code, and reexpanded in B
splines [27]. We used a DFT norm-conserving pseudo-
potential, with atomic configuration 3s23p64s13d7, and a
plane-wave cutoff of 75 Hartree. Finite size errors were
estimated with the method of Kwee et al. [28] as imple-
mented by one of us (ES).

We have computed the DMC melting temperature of Fe
at 330 GPa by calculating free energy differences between
DMC and DFT, using thermodynamic integration [29].
This is a general technique to evaluate the Helmholtz
free energy difference �F between the two systems, given
by �F ¼ R

1
0 d�h�Ui�, where �U ¼ UDMC �UDFT, with

UDMC and UDFT the potential energies of the DMC and the
DFT systems, respectively, and hi� represents thermal av-
erage in the ensemble generated by the potential energy
function U� ¼ �UDMC þ ð1� �ÞUDFT. If UDMC and UDFT

are similar, then it is easy to show that

�F ’ h�Ui�¼0 � 1

2kBT
hð�U� h�Ui�¼0Þ2i�¼0; (1)

where kB is the Boltzmann constant. The advantage of this
perturbative approach is that we only need to compute
averages in the ensemble generated by DFT. The possible
drawback is that this approximation is only reliable if the
second term of the right-hand side of Eq. (1), the fluctua-
tion term, is small. To put numbers in context, we note that
an error of �10 meV=atom in the free energy difference

between solid and liquid is responsible for an error of
�100 K in the melting temperature, so we require that
the size of this fluctuation term is not bigger than a few tens
of meV=atom. The difference in melting temperature be-
tween DMC and DFT at pressure p is given by [30]:

�Tm ’ �Gls

SlsDFT
(2)

where the superscript ls indicates differences between
liquid and solid, SlsDFT is the DFT entropy of melting, and
the difference of Gibbs free energy �G ’ �F�
V�p2=2KT , with KT the isothermal bulk modulus and
�p the change in pressure as the potential energy is
changed from UDFT to UDMC at constant volume V. The

volume of interest here is about 7 �A3=atom, and KT ’
1300 GPa [11], so even a difference of 20 GPa in pressure
would only be responsible for 6 meV difference between
�G and �F. In fact, the difference is likely to be much
smaller than that, as the DMC pressure-volume zero tem-
perature equation of state [23] shows pressure differences
between DMC and DFTof the order of 1–2 GPa. We do not
have direct evidences at high temperature, or indeed for
the liquid, but we believe that it would be unlikely that

FIG. 1 (color online). Top panel: DMC energies corresponding
to configurations representative of solid (blue triangles) and
liquid (red dots) iron, generated with DFT molecular dynamics
on 64-atom systems. Red solid line and blue dashed line connect
DFT energies calculated on the same set of configurations. An
offset is added to the energies so that the average value of the
DMC and DFT energies is the same, separately in the solid and
the liquid. Bottom panel: DMC—DFT energy differences on the
same configurations. The average DMC-DFT energy difference
for the solid is subtracted from all points. Lines represent the
average of the energy differences between DMC and DFT in the
solid (line at zero energy) and the liquid.
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these differences would change by more than a few GPa.
Moreover, most of these differences will cancel between
liquid and solid, so that for present purposes the value
of �F at constant V is also representative of �G at con-
stant p.

To compute �F we generated two long simulations
using DFT molecular dynamics, one for the solid (in the
hcp phase, with c=a ¼ 1:6) and one for the liquid, and
extracted statistically independent configurations every 0.1
ps (which is twice as long as the correlation time). The
simulations were performed at the DFT melting point
ðp; TÞ ’ ð330 GPa; 6350 KÞ [11], with 64 atoms in the
simulation cell. Using these configurations we calculated
DFT and DMC energies, which are shown in the top panel
of Fig. 1 for both the solid and the liquid, with an offset so
that the DMC and the DFT energies have the same average
value. Represented in this way, it is easy to see that the
DMC energies follow quite closely the DFT energies, with
the fluctuation terms being 17� 7 meV=atom and 12�
6 meV=atom for liquid and solid, respectively. The very
low values of the fluctuation terms mean that the perturba-
tive formula in Eq. (1) can be used reliably. In the bottom
panel of Fig. 1 we show the differences between DMC and
DFT energies for both solid and liquid, offset by the
average of this difference in the solid. It is clear that the
solid is stabilized with respect to the liquid, and we obtain
the value �Fls ¼ 50� 20 meV=atom, which used in
Eq. (2) together with the value SlsDFT ¼ 1:05kB [11] gives
a DMC correction to the DFT melting temperature �Tm ¼
550� 230 K. Combining this value with the DFT melting
temperature Tm

DFT ¼ 6350� 300 K (note that here we are
only considering the statistical component of the DFT
error, because any systematic component is absorbed as a

constant shift in the energy differences between DMC and
DFT), and considering an extra error of �100 K due to
DMC time step errors (see below) we obtain a DMC
melting temperature at 330 GPa of Tm

DMC ¼ 6900�
400 K. To study possible size effects, we repeated similar
calculations on systems containing 96 atoms, which we
show in Fig. 2. From these simulations we obtain �F ¼
50� 25 meV=atom, which is in agreement with the results
obtained with the 64-atom systems. This is expected, given
the proximity of the DMC and DFT potential energy
functions demonstrated by the low values of the fluctuation
terms.
The present DMC melting point is reported in Fig. 3

together with other previous theoretical calculations and
experimental data. Our DMC iron melting point is consis-
tent with the shock-wave results of Brown and McQueen
[7] and those of Nguyen and Holmes [8], and perhaps with
the diamond anvil cell (DAC) experiments of Shen et al.
[4] and Ma et al. [6], though these experiments are only
available to much lower pressures. This melting tempera-
ture is difficult to reconcile with any reasonable extrapo-
lation of the DAC experiments of Boehler [3]. The
differences between the theoretical melting curves re-
ported in Fig. 3 have been discussed in Ref. [14], and are
due to the fact that the calculations of Refs. [12,13] were
based on classical potentials fitted to DFT calculations.
How reliable are the present DMC results? There are

two kind of errors in the calculations. Those of the first
kind are related to convergence with respect to various
technical parameters. Specifically, these are DMC time

FIG. 2 (color online). Same as Fig. 1 but for 96-atom systems.

FIG. 3 (color online). Comparison of melting temperatures (T)
of Fe as function of pressure (P) from present calculations with
experiments and other ab initio results. Black filled circle:
present DMC results; blue filled square: melting point from
DFT coexistence [14]; solid black line: melting curve from
DFT free energies [11]; dashed blue curve: theoretical results
from Ref. [13]; light purple solid curve: theoretical results from
Ref. [12]; black chained and maroon dotted curves: DAC mea-
surements of Refs. [2,3]; green open diamonds: DAC measure-
ments of Ref. [4]; green plus: DAC measurement of Ref. [6];
green filled triangle: DAC measurement of Ref. [5]; black stars,
black open circle and pink filled diamond: shock experiments of
Refs. [7–9]. Error bars are those quoted in original references.
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step errors, DMC finite size errors (in addition to the
finite size errors discussed above), and DMC statistical
errors. DMC time step errors have been investigated by
repeating simulations with time steps of 0.02, 0.01, 0.005,
0.0025 and 0.00125 a.u. on two representative configura-
tions, one for the liquid and one for the solid. These tests
showed that using a time step of 0.01 a.u. the relative error
between solid and liquid is less than 10 meV=atom. DMC
finite size errors are of the order of 0.23 and 0:15 eV=atom
for the 64-atom and the 96-atom systems, respectively, but
they are essentially identical in solid and liquid—with
relative differences of less than 3 meV=atom—, so these
errors are completely negligible. Finally, DMC simulations
were run for 2500–5000 steps, resulting in errors between
10 and 15 meV for each DMC energy point. All these
errors have been statistically combined in the error esti-
mates reported above, a part from the (small) finite size
errors which have been treated as rigid free energy shifts.
The second kind of errors are related to the FNA and the
use of pseudopotentials. The close agreement with the
experiments for the DMC pressure-volume equation of
state [23] indicates that at least for the zero temperature
solid the combination of these two errors is indeed ex-
tremely small, and confirms the general trend of high
accuracy of DMC even with single Slater determinant trial
functions.

In conclusion, we have presented ab initio parame-
ter free diffusion Monte Carlo free energy calculations
for iron at Earth’s core conditions, which we have used
to obtain a melting temperature at the inner core boundary
pressure of Tm

DMC ¼ 6900� 400 K. This melting tempera-

ture is slightly higher than that obtained with DFT, and
combined with the estimated depression of melting
temperature due to the presence of light impurities [31]
gives a probable core temperature of 6000� 500 K. This
raised core temperature also raises the adiabatic gradi-
ent throughout the core, and therefore the heat flux lost
by conduction, possibly leading to a shorter life of the
inner core (less than the preferred age of 3:5� 109 years
[32]). It will also be responsible for a higher core-
mantle-boundary (CMB) temperature of over 4400 K,
which might be higher than the solidus at the CMB and
therefore result in partial melting of the bottom of the
mantle, and could explain the presence of ultra-low-
velocity zones.
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[11] D. Alfè, G. D. Price, and M. J. Gillan, Phys. Rev. B 65,

165118 (2002).
[12] A. B. Belonoshko, R. Ahuja, and B. Johansson, Phys. Rev.

Lett. 84, 3638 (2000).
[13] A. Laio, S. Bernard, G. L. Chiarotti, S. Scandolo, and E.

Tosatti, Science 287, 1027 (2000).
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[30] D. Alfè, M. J. Gillan, and G.D. Price, J. Chem. Phys. 116,
7127 (2002).
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