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We report diffusion Monte Carlo �DMC� calculations on MgO in the rock-salt and CsCl structures. The
calculations are based on Hartree-Fock pseudopotentials, with the single-particle orbitals entering the corre-
lated wave function being represented by a systematically convergeable cubic-spline basis. Systematic tests are
presented on system-size errors using periodically repeating cells of up to over 600 atoms. The equilibrium
lattice parameter of the rocksalt structure obtained within DMC is almost identical to the Hartree-Fock result,
which is close to the experimental value. The DMC result for the bulk modulus is also in good agreement with
the experimental value. The B1-B2 transition pressure �between the rocksalt and CsCl structures� is predicted
to be just below 600 GPa, which is beyond the experimentally accessible range, in accord with other predic-
tions based on Hartree-Fock and density functional theories.
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I. INTRODUCTION

The quantum Monte Carlo �QMC� technique is becoming
an increasingly important tool in the study of condensed
matter.1,2 Competitive in accuracy with high-level quantum
chemistry methods, it has the enormous advantage of being
practicable for large systems containing hundreds of atoms.
The power of QMC in overcoming the deficiencies of den-
sity functional theory �DFT� has been amply demonstrated
by recent applications, including the energetics of point de-
fects in silicon3 and carbon,4 the reconstruction of the Si
�001� surface5 and its interaction with H2,6 and the calcula-
tion of optical excitation energies.7 Nevertheless, the classes
of materials to which QMC has been applied have so far
been rather limited. Oxide materials are likely to be a very
fruitful field for the application of QMC, but in exploring
this field it is clearly important to study the capabilities of the
techniques for the simplest possible oxides. We present here
QMC calculations on MgO, focusing on its elementary bulk
properties, including the equilibrium lattice parameter of the
rocksalt structure, the stable structure under ambient condi-
tions, and the pressure of the B1-B2 transition between the
rocksalt and CsCl structures.

Two types of QMC are relevant here. In the first, known
as variational Monte Carlo �VMC�, a trial many-electron
wave function is constructed as the product of a Slater deter-
minant of single-electron orbitals and the so-called Jastrow
correlation factor. The latter is parametrized, and the param-
eter values are obtained using a stochastic optimization pro-
cedure. Since VMC by itself is not usually accurate enough,
the optimized many-electron wave function produced by
VMC is then used in diffusion Monte Carlo �DMC�,1,2,8

which improves the ground-state estimate by performing an
evolution in imaginary time. In principle, the ground-state
energy would be exact, but to overcome the fermion sign
problem we use the standard “fixed-node approximation.”9

In practice, only the valence electrons are treated explicitly,

the interactions between the valence and core electrons being
represented by pseudopotentials. This introduces additional
approximations, including the “pseudopotential locality ap-
proximation.” The calculations are performed on periodically
repeated cells, and system size errors need to be carefully
treated. However, in many cases, the overall errors within
QMC can be made much smaller than those within DFT, and
QMC has already been important in revealing, quantifying,
and overcoming DFT errors in such quantities as defect for-
mation energies, surface reaction energies, and energy
barriers.3,4,6

The three main purposes of this work are first, to establish
the technical feasibility of performing QMC on MgO, sec-
ond, to study differences between DFT and QMC predictions
for the properties of bulk MgO, and third, to prepare the way
for QMC work on more challenging oxides. As one of the
simplest oxides, MgO has often been used as a paradigm for
testing theoretical techniques. For QMC, the issue of techni-
cal feasibility is a nontrivial one, since the computing effort
required to obtain accurate results with DMC depends
heavily on the ability of VMC to deliver wave functions
which are sufficiently close to the exact ground-state wave
function. If sufficiently accurate trial wave functions cannot
be obtained, the DMC calculations may even become un-
stable. The electronic simplicity of MgO is expected to ease
the task of finding good trial wave functions.

The concerns of this work are not purely technical. The
pressure-induced transition from the rocksalt to CsCl struc-
ture in MgO has been much studied because of its geological
interest �see, e.g., Refs. 10 and 11 and references therein�.
We also expect that the present work will provide the basis
for applying QMC to several important and controversial
questions related to ionic materials such as MgO, including
the adsorption and dissociation of molecules on their sur-
faces �see, e.g., Ref. 12�, the self-trapping of hole centers and
their trapping at defects �see, e.g., Ref. 13�, and the conflict
between theory and experiment for the slope dT /dp of their
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melting curves.13–18 Beyond this, we hope that the experi-
ence gained here will help to prepare the way for the appli-
cation of QMC to transition-metal oxides such as FeO,
where electron correlation is highly nontrivial. DMC studies
of NiO �Ref 19� and MnO �Ref. 20� have already shown the
feasibility of calculations on these materials, but those stud-
ies did not include energy-volume curves, and the unit cells
used were not large enough to give the accuracy required
here.

In the following section we summarize the QMC tech-
niques used here. In Sec. III, we present tests on the magni-
tude of various errors, including system-size errors, and we
report our results for the total energy as a function of volume
for the rock-salt and CsCl structures, and the transition pres-
sure between the two. Discussion, prospects for future work,
and conclusions are presented in Sec. IV.

II. TECHNIQUES

Detailed descriptions of VMC and DMC have already
been reported,1,2 so here we only outline rather briefly the
main features of the present work. All the QMC calculations
presented here were performed using the CASINO code, the
technical details of which are given in Ref. 21.

Our trial wave functions are of the Slater-Jastrow type

�T�R� = D↑D↓eJ, �1�

where D↑ and D↓ are Slater determinants of up- and down-
spin single-electron orbitals, and eJ is the so-called Jastrow
factor, describing the correlation between the electrons. We
use single-electron orbitals obtained from DFT calculations.
These single-particle orbitals fix the nodal surface �the sur-
face in configuration space on which the wave function van-
ishes and across which it changes sign�. Within this “fixed-
node approximation” DMC gives a variational upper bound
to the ground-state energy, rather than the exact ground-state
energy. However, because of its large band gap, we expect
that a single Slater determinant will give a good description
of the nodal surface of MgO. The function J appearing in the
Jastrow factor is a sum of parametrized one-body and two-
body terms,22 the latter being designed to satisfy the cusp
conditions. The free parameters in J are determined by re-
quiring that the variance of the local energy in VMC be as
small as possible.23,24

In the present work, the many-body wave function repre-
sents explicitly only valence electrons, whose interactions
with the ionic cores are represented by pseudopotentials. We
used pseudopotentials generated within Hartree-Fock �HF�
theory, but including scalar relativistic effects.25 There is
evidence to show that HF theory provides better pseudo-
potentials for use within QMC than DFT.26 The core radii
of our pseudopotentials are r�O2s�=0.423 Å, r�O2p�
=0.397 Å, r�O3d�=0.524 Å, and r�Mg3s�=r�Mg3p�
=r�Mg3d�=1.259 Å.

The single-particle orbitals entering the Slater determi-
nants of Eq. �1� are the most important component of the
wave function. Filippi and Fahy34 have developed a method
for optimizing orbitals within VMC, which achieved an en-
ergy reduction in diamond from optimizing LDA orbitals of

0.040�16� eV per atom. Kent et al.27 found that in bulk sili-
con using LDA orbitals in a VMC calculation gave an energy
0.024�4� eV per atom lower than HF orbitals. These energy
changes would be significantly reduced in DMC and it ap-
pears that HF and LDA orbitals are sufficient for these sys-
tems. In this work we have used LDA orbitals obtained using
the plane-wave pseudopotential DFT code PWSCF.28

The basis set used to represent the single-particle orbitals
in the QMC calculations themselves is not plane waves,
which become very inefficient for large systems, because the
computation cost of evaluating an orbital is proportional to
the system size. Instead, we use a B-spline basis, also known
as blip functions, consisting of piecewise continuous local-
ized cubic spline functions centered on a regular grid of
points. A detailed explanation of blip functions, and their
great advantages for QMC calculations have been reported
elsewhere.29 The blip basis is closely related to a plane-wave
basis, and for a plane-wave cut-off energy Ecut=�2kcut

2 /2m
�m is the electron mass�, there is a natural choice of blip-grid
spacing a given by a=� /kcut. In the same way that plane-
wave convergence is achieved by increasing kcut, blip con-
vergence is achieved by reducing a. Because of the relation-
ship between plane waves and blips, it is straightforward to
transform the plane-wave coefficients from the PWSCF calcu-
lations into the blip coefficients needed for the QMC calcu-
lations, as explained in more detail in our earlier paper.29

For QMC calculations on perfect crystals, there is a useful
device which allows a considerable saving of memory. In-
stead of constructing single-particle orbitals at a given k
point �e.g., the � point� for the large repeating cell, we con-
struct them for the primitive cell at the corresponding set of
k points. The plane-wave coefficients from this calculation
are then converted to blip coefficients on points of the blip
grid within the primitive cell. At run time, a simple conver-
sion allows these stored coefficients to be used to calculate
the required values of the single-particle orbitals at any point
in the large repeating cell. The key point here is that it is
unnecessary to store blip coefficients at grid points covering
the entire large repeating cell.

An important source of error in QMC calculations using
periodic boundary conditions is the limited size of the repeat-
ing cell, and the convergence of the QMC energy with re-
spect to the size of the simulation cell must be carefully
investigated. To improve this convergence, we follow the
common practice35 of correcting for this error by using sepa-
rate DFT calculations: We add to the DMC energies the dif-
ference �E�→k between the DFT-LDA energy calculated
with a very large set of k points and the DFT-LDA energy
calculated using the same sampling as in the DMC calcula-
tion. The question of correcting for finite size errors in the
Coulomb energy has been addressed in recent papers,30–32

and a method known as the model periodic Coulomb �MPC�
interaction has been developed. The finite size error in the
Ewald interaction energy arises from the exchange-
correlation energy, which can be written as the interaction of
the electrons with their exchange-correlation holes. The in-
teraction with the hole should have the standard 1/r form,
but within periodic boundary conditions this must be re-
placed by a periodic interaction. The MPC interaction main-
tains the correct Ewald interaction for evaluating the Hartree
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energy while for the exchange-correlation energy a periodi-
cally repeated potential based on the 1/r form is used. This
significantly reduces the finite size errors in the interaction
energy, although effects due to the squeezing of the
exchange-correlation hole into a finite cell still remain.

We also mention two other technical points relating to
size effects. DMC calculations require the use of real trial
wave functions. However, these can be constructed using
single-particle orbitals obtained either from calculations at
the � point or, in general, k points which correspond to one
half of a reciprocal lattice vector of the simulation cell.33 The
difference between QMC energies obtained in these two
ways can be used as an indication of the system size errors.
The other point is that a given physical crystal structure can
be treated using large repeating cells associated with differ-
ent Bravais lattices. Since MgO in both the rocksalt and CsCl
structures has cubic symmetry, it is most natural to use Bra-
vais lattices for the repeating cell having simple-cubic �sc�,
body-centered-cubic �bcc�, or face-centered-cubic �fcc� sym-
metries. We expect that the fcc repeating geometry will give
the best convergence with respect to system size, and we
shall present results which illustrate this effect.

The number of walkers in DMC simulations is governed
by a population control algorithm, which has the purpose of
maintaining this number roughly constant. In order to mini-
mize statistical bias in the total energy, the calculations need
to be run with a large population of walkers. For our DMC
calculations we have used a target population of 640 walkers,
which also makes it efficient to run on massively parallel
machines, with parallelism achieved by distributing walkers
across processors. For the imaginary time evolution of the
walkers we found that a time step of 0.005 a.u. gave time
step errors in the DMC energy of less than 10 meV/atom.

III. RESULTS

A. Technical tests

We have found that the quality of our Slater-Jastrow trial
wave function is improved if a large plane-wave cutoff is
used in generating the single-particle orbitals, and a corre-
spondingly small blip-grid spacing is used in representing
them. In order to investigate this question, we performed a
series of VMC calculations, and calculated the standard error
in the energy as a function of plane-wave cutoff. The blip-
grid spacing was taken to be related to the plane-wave cutoff
by the “natural” formula mentioned in Sec. II. The calcula-
tions were performed without a Jastrow factor, because this
makes it possible to check some components of the total
energy against DFT calculations. These calculations were
performed on a 16-atom cell for MgO in the rocksalt struc-
ture with a lattice parameter of a=4.17 Å, which is close to
the zero pressure equilibrium lattice parameter. We found
that with a plane wave �PW� cutoff of 680 eV the VMC-HF
total energy is about 5 eV/atom higher than the converged
value. With a cutoff of 1360 eV the difference is still more
than 1 eV/atom, and reduces to about 0.1 eV/atom when the
PW cutoff is 2710 eV. Results for the standard error on the
energy are presented in Fig. 1. We notice that by increasing
the PW cutoff from 680 to 6800 eV the standard error in the
energy is reduced by a factor of �2. This means that QMC

runs performed using the trial wave function obtained with
the largest cutoff can be four times shorter, in order to
achieve the same statistical accuracy. More importantly, we
found that using a very large PW cutoff was essential for
having stable DMC runs. We were unable to perform any
useful DMC simulation with cut-off energies less than
2712 eV.

We have made extensive tests on system size effects. We
divide our discussion of these tests into two parts: first, tests
on the rocksalt structure at low pressures, which are relevant
to the equilibrium properties of this structure; second, tests
on both the rocksalt and CsCl structures at high pressures,
which are relevant to the determination of the transition pres-
sure. As we shall see, these two sets of tests involve some-
what different questions. In Fig. 2, we show the DMC energy
per atom of MgO as a function of the number of atoms in the
repeating cell, using both the standard Ewald interaction and
the MPC interaction. For these calculations we used a plane-
wave cutoff of 6800 eV and the associated natural blip-grid
spacing for the description of the single-particle orbitals. We
note that the MPC results appear to converge considerably
faster than the Ewald ones, and that for a system of 54 atoms

FIG. 1. The standard error in the energy � for runs of the same
length, calculated within VMC without a Jastrow factor, as a func-
tion of the plane-wave cut-off energy, for a 16-atom cell of MgO in
the rocksalt structure with a lattice parameter of 4.17 Å.

FIG. 2. The DMC energy per atom for MgO in the rocksalt
structure with a volume per atom of 9.06 Å3 as a function of the
number of atoms in the repeating cell, using both the Ewald inter-
action �circle� and the MPC interaction �squares�.
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the MPC energy is already converged to better than
�50 meV/atom. We therefore decided to use this cell size to
evaluate the energy-volume curve presented in the following
section.

The results we report here for the CsCl structure were
performed with the standard Ewald method rather than the
MPC method. In order to check system-size errors thor-
oughly, we found it essential to perform tests on large sys-
tems of up to over 600 atoms. We made extensive tests on
the CsCl structure to compare sc and fcc repeating geom-
etries and to examine the effect of using different sampling
wave vectors. The sampling wave vectors we used are the �
point �2� /L��0,0 ,0�, and the wave-vector �2� /L��0.5,
0.5,0.5�, where L specifies the dimension of the repeated
cell. �In more detail, L is the length such that with sc repeat-
ing geometry the primitive translation vectors are L�1,0 ,0�,
L�0,1 ,0�, and L�0,0 ,1�, while with fcc geometry they are
L�0,0.5,0.5�, L�0.5,0 ,0.5�, and L�0.5,0.5,0�.� Since the
wave-vector �2� /L��0.5,0.5,0.5� lies on the zone boundary
of the Brillouin zone associated with the periodically re-
peated supercell, we refer to sampling using this wave vector
as “zone-boundary” sampling. These tests were performed at
the volume 8.77 Å3/atom, which is close to the zero pressure
equilibrium volume. The tests were all performed using
VMC, and we used the Jastrow factor optimized using a 16
atom cell for all system sizes, because reoptimizing the Ja-
strow factor introduces small “jumps” in the energy. Since
we needed to go to large system sizes, we decided to reduce
the plane-wave cutoff from 6800 to 2712 eV, because this
gave a considerable reduction in the memory required; with
this lower cutoff, the standard error in the energy fluctuations
is only slightly larger �see Fig. 1�, and DMC calculations are
still stable. Results of these tests are shown in Fig. 3. We see
that convergence to within less than 50 meV/atom is ob-
tained for systems larger than 108/128 atom. We also note
that convergence is better with the fcc than with the sc re-
peating geometry, as expected because the Wigner-Seitz cell
of the fcc cell is closer to being a sphere, and that there is

little to choose between � point and “zone-boundary” sam-
pling. We have therefore performed all further calculations
using fcc geometry and �-point sampling.

Since calculation of the transition pressure requires QMC
calculations for the two structures at high pressures, we have
performed further VMC calculations at volumes 4.23 and
4.41 Å3/atom for the CsCl and the rocksalt structures, re-
spectively, close to the transition, using the Ewald interac-
tion. Results of these tests are reported in Table I. We see that
for calculations on the CsCl structure, using a cell containing
108 atoms with fcc repeating geometry, the error is about
50 meV/atom. The error is approximately the same for the
rocksalt structure with a 128-atom cell, so that the error in
the energy difference between the two structures is less than
our target accuracy of 30 meV/atom.

B. Production results

In Fig. 4 we display DMC energies as a function of vol-
ume for MgO in the NaCl structure. The length of these
simulations was typically 6000 steps, resulting in a statistical
error bar of less than 10 meV/atom. These energy points
were then used to fit the parameters of the Birch-Murnaghan
equation of state55

FIG. 3. The VMC energy per atom for MgO in the CsCl struc-
ture with a volume per atom of 8.77 Å3 as a function of the number
of atoms in the repeating cell, calculated using the Ewald interac-
tion. Squares and circles: simple cubic cell with �-point and zone-
boundary sampling, respectively; diamonds and triangles: fcc cell
with �-point and zone-boundary sampling �see text for wave vector
used in zone-boundary sampling�. The lines are guides to the eye.

TABLE I. VMC energies for MgO in the NaCl and CsCl struc-
tures at volumes per atom 4.41 and 4.23 Å3, respectively, as a func-
tion of the number of atoms in the repeating cell.

Number of atoms

Energy �eV/atom�

NaCl CsCl

32 −227.143�6�
54 −227.971�4�
108 −226.914�4�
128 −227.846�3�
250 −227.806�5�
256 −226.867�5�
432 −227.794�7�
500 −226.866�9�

FIG. 4. The DMC energy per atom as a function of volume for
MgO in the NaCl structure.
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where �= �3−3B0� /4�, V0 is the equilibrium volume, B0 is the
zero-pressure bulk modulus, B0� is its derivative with respect
to pressure at zero pressure, and E0 is the energy at the
minimum. The fitted curve is also reported in the same fig-
ure. The values of the fitted parameters are reported in Table
II together with other theoretical results and experimental
data. A comparison of the QMC results with experimental
values shows that our calculated lattice parameter of a0
=4.098 Å is smaller than the measured value of a0
=4.213 Å,36 and our bulk modulus B0=183 GPa is greater
than the measured value B0=160±2 GPa.36 However, two
kinds of corrections need to be made. It is known from ear-
lier DFT calculations37 that room temperature thermal pres-
sure due to lattice vibrations increases a0 by 0.03 Å and de-
creases B0 by 10 GPa. We should also correct for pseudopo-
tential errors. To estimate these, we have compared the pre-
dictions of pseudopotential and all-electron HF calculations
using the CRYSTAL38 code �see Table II�. This shows that the
pseudopotentials we have used underestimate a0 by 0.10 Å
and overestimate B0 by 15 GPa. Combining these two cor-
rections, our revised QMC values are a0=4.23 Å and B0
=158 GPa, which are very close to the experimental values.

In Fig. 5 we report the DMC energy for MgO in the NaCl
and the CsCl structures evaluated for volumes corresponding
to roughly one half of the zero pressure equilibrium volume,

which is the region of volumes in which the transition oc-
curs. These energy points have also been fitted to the Birch-
Murnaghan equation of state, which we have then used to
compute the enthalpies of the two structures, which are dis-
played in the upper part of Fig. 6, from which we infer a
transition pressure of about 597 GPa. We note that the slopes
of the two curves are very similar, and that an error of about
1 meV/atom in the relative enthalpy results in an error in the
transition pressure of about 1 GPa. We do not expect our
DMC results to be more accurate than about 20 meV/atom,
so our computed transition pressure should be considered to
have an error bar of about 20 GPa. For comparison, we also
report in the lower part of Fig. 6 the enthalpy evaluated with

TABLE II. DFT and HF values for the lattice constant and bulk modulus of the NaCl phase of MgO, and
the equilibrium pressure for the B1-B2 transition. See the original references for details.

a0 �Å� B0 �GPa� Ptr�B1-B2� �GPa�

Experiments 4.213a 4.211b 4.212c 4.19d 160±2a 160.2c 156e 164.6d 	227f

QMC 4.098g 183g 597±20g

HF-PP 4.089g 196g

HF-AE 4.195g,h 4.200i 181g,h 182i

HF-LCAO 4.201j 4.191q 186j 182q 220j 712q

B3LYP 4.230i 162i

DFT-LDA 4.160i 4.240k 4.194�4.222�l

4.25m 4.167n 4.163o 4.191p 4.160q
198i 172.6k 169�159�l

159.7m 172n 185.9o 146p 181q
490k 451m 510n

515o 1050p 512q

DFT-GGA 4.273q 4.243q 4.247o 4.244i

4.253r 4.259s 4.218t 4.259u
153q 160q 159q 169.1o 157i

150.6r 161.5t 160u
478q 428q 418q 515o

509r 664s 400t

aReference 36.
bReference 39.
cReference 40.
dReference 41.
eReference 42.
fReference 43.
gThis work.
hReference 44.
iReference 45.
jReference 46.
kReference 10.

lReference 37; values in parentheses include zero
point motion and room temperature effects.
mReference 47.
nReference 48.
oReference 49.
pReference 50.
qReference 51.
rReference 11.
sReference 52.
tReference 17.
uReference 53.

FIG. 5. The DMC energy per atom for the NaCl structure
�circles� and the CsCl structure �squares� of MgO as a function of
volume in the region of the B1-B2 phase transition.
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DFT-LDA and the same pseudopotentials, from which we
deduce a transition pressure of 569 GPa.

IV. DISCUSSION AND CONCLUSIONS

An important conclusion from this work is that it is tech-
nically feasible to carry out diffusion Monte Carlo calcula-
tions on MgO at the level of accuracy required to compute
quantities such as the equilibrium lattice constant, the bulk
modulus, and the B1-B2 transition pressure. As we men-
tioned in the Introduction, this is a nontrivial conclusion,
because DMC calculations succeed in practice only if the
many-body trial wave function is sufficiently close to the
true ground-state wave function. Even though MgO should
be a favorable oxide in this respect, it was still essential to
pay careful attention to the accurate representation of the
single-electron orbitals in order to bring statistical fluctua-
tions under control.

We have shown that, provided corrections are made for
thermal effects and errors due to imperfections of our
pseudopotentials, the QMC predictions of lattice parameter
a0 and bulk modulus B0 agree with experimental values to
within �0.5% for a0 and to within experimental error
��2% � for B0. In future work, there should be scope for
further improvement in the pseudopotentials. It is interesting
to note that our QMC prediction for a0 is almost identical to
the HF prediction with the same pseudopotentials. This
might seem to suggest that correlation effects are negligible
in MgO. However, this is certainly not the case. The corre-
lation energy is at least the difference between the HF and
the QMC total energies. We find that for the rocksalt struc-
ture near the equilibrium volume, this difference is
�4.5 eV/atom. The close agreement between the HF and
QMC lattice parameters therefore indicates that this rather
large correlation energy depends only weakly on volume.
Our QMC value of 597±20 GPa for the B1-B2 transition
pressure supports the most recent DFT predictions of a pres-
sure in the region of �500 GPa, which is beyond the region
of geophysical interest �the pressure at the core-mantle
boundary of the Earth is 135 GPa�. The detailed value we
have found may suffer from a pseudopotential error, but at
present we are unable to quantify this.

With these encouraging results for MgO, we believe that
there are now good prospects for extending QMC methods to
studying the more challenging problems involving MgO
mentioned in the Introduction, and to studies of transition
metal oxides. LDA �and generalized gradient approximation�
calculations are unsuitable for transition metal oxides be-
cause they lead to an incorrect filling of the energy levels.
Unrestricted HF and B3LYP orbitals have already been used
with some success in DMC studies of transition metal

oxides,19,20 and one might also consider using LDA+U or
SIC �self-interaction corrected� DFT orbitals. Towler and
Needs54 found that unrestricted HF orbitals gave a lower
energy than B3LYP orbitals for NiO. Transition metal oxides
are clearly a case where it would be useful to optimize the
orbitals in the presence of the Jastrow factor.
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