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Ab initio melting curve of the fcc phase of aluminum
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The melting curve of the face-centered cubic~fcc! phase of aluminum has been determined from 0 to
;150 GPa using first-principles calculations of the free energies of both the solid and liquid. The calculations
are based on density functional theory within the generalized gradient approximation using ultrasoft Vanderbilt
pseudopotentials. The free energy of the harmonic solid has been calculated within the quasiharmonic approxi-
mation using the small-displacement method; the free energy of the liquid and the anharmonic correction to the
free energy of the solid have been calculated via thermodynamic integration from suitable reference systems,
with thermal averages calculated usingab initio molecular dynamics. The resulting melting curve is in good
agreement with both static compression measurements and shock data.
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I. INTRODUCTION

The determination of the melting curves of materials
very high pressures is of fundamental importance to our
derstanding of the properties of planetary interiors; howe
obtaining such melting curves remains a major challeng
experimentalists and theorists alike. In particular, the melt
behavior of iron is of great interest to the Earth science co
munity, since knowledge of this melt transition would he
constrain the temperature at the inner core boundary~about
1200 km from the center of the Earth! which is currently
uncertain to within a few thousand degrees. Although sev
attempts have been made to obtain the melting curve of i
experimentally and theoretically determined melting curv
vary widely with significant disagreement between sta
compression measurements,1–3 shock data,4,5 and first-
principles calculations.6–10 Consequently, the true nature o
the melting curve of iron remains in some dispute.

In order to test the reliability of the theoretical techniqu
used in our previous work on iron and to validate further
reported melting curve,6,8 we have calculated the meltin
curve of aluminum, for which there is a plethora of ambie
experimental data~e.g., Ref. 11! and for which the experi-
mental melting curve has recently been measured.12–14

In the past, a number of theoretical approaches have b
used to investigate the melting behavior of aluminum. Mo
arty et al.15 used the generalized pseudopotential the
~GPT! to calculate the free energy of both the solid and l
uid. They treated the solid harmonically within the quasih
monic approximation and for the liquid they used fluid var
tional theory, where an upper bound for the free energy
calculated from a reference system constructed within G
They obtained a melting curve to 200 GPa in fair agreem
with more recently determined experimental data,12–14 pre-
dicting a zero-pressure melting temperature of 1050 K co
pared to the experimental value of 933 K.11 Mei and
Davenport16 used the embedded atom model~EAM! based
on an analytical potential fitted to the structural properties
aluminum. They calculated the free energies of the solid
liquid and obtained a melting temperature at zero pressur
800 K. Morris et al.17 employed the same EAM but the
0163-1829/2002/65~21!/214105~12!/$20.00 65 2141
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used phase coexistence to determine the melting temper
as a function of pressure, with results considerably low
than previous theoretical and experimental estimates; t
obtained a zero-pressure melting temperature of;720 K.
Straubet al.18 used first-principles calculations to constru
an optimal classical potential and used this potential to c
culate the free energies of the solid and liquid using mole
lar dynamics; they obtained a zero-pressure melting temp
ture of 955 K.

The first fully ab initio determination of aluminum melt
ing behavior is that of de Wijset al.,19 who obtained the
zero-pressure melting point by calculating the free energy
the solid and liquid entirely from first principles. Their ca
culations were based on density functional theory~DFT!
~Ref. 20! using the local-density approximation~LDA ! for
the exchange-correlation energy. The free energy of the s
was obtained as the sum of the free energy of the harm
solid, within the quasiharmonic approximation, and the f
anharmonic contribution, calculated using thermodynam
integration21 using the harmonic solid as the reference s
tem. For the liquid they used thermodynamic integrati
with a Lennard-Jones fluid as the reference system. T
obtained a melting temperature of 890 K. More recently, J
son and Madden23 used the orbital-free~OF! variant of ab
initio molecular dynamics and thermodynamic integration
calculate the free energy of liquid and solid aluminum. Th
found a melting temperature of 615 K, attributing the d
crepancy with the DFT-LDA value of de Wijset al.19 to ei-
ther the OF approximation or the pseudopotential used.

In this paper we present the first fullyab initio calcula-
tions of the entire melting curve of aluminum from 0 to 15
GPa. Our calculations are similar in the general principles
those of de Wijset al.19 in the sense that we calculate theab
initio free energies of both liquid and solid using thermod
namic integration, although we use the generalized grad
approximation~GGA! ~Refs. 24 and 25! for the exchange-
correlation energy. In addition to extending the calculatio
to a wide range of pressures, we also present a more effic
approach to the thermodynamic integration scheme, in wh
additional intermediate steps are introduced in order to m
©2002 The American Physical Society05-1
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LIDUNKA VOČ ADLO AND DARIO ALFÈ PHYSICAL REVIEW B 65 214105
mize the computational effort. Finally, we discuss some p
sible limitations of the GGA.

Since the stable low-pressure phase of solid aluminum
face centered cubic~fcc! we have determined the meltin
curve by comparing the gibbs free energies of liquid and
aluminum. In the high-pressure–high-temperature region
stable solid phase may be different~zero-temperatureab ini-
tio calculations suggest that aluminum undergoes two ph
transitions, one at 20 GPa where it becomes hexagonal c
packed and a second at 40 GPa where it becomes body
tered cubic26!. The calculation of the high-pressure–hig
temperature phase stability of solid aluminum goes bey
the scope of this work, but if the highP-T phase was not fcc
this would only mean that our reported melting curve wou
be a lower bound to the actual melting curve.

The paper is organized as follows: in Sec. II we descr
theab initio simulation techniques and the strategy to cal
late the melting curve; in Secs. III and IV we describe t
calculations of the free energy of the liquid and solid, resp
tively, and in Sec. V we present the melting properties
aluminum.

II. Ab initio SIMULATION TECHNIQUES AND STRATEGY
FOR MELTING

In the present work, the aluminum system was rep
sented by a collection of Al31 ions and 3N electrons, where
N is the number of atoms. The ions were treated as class
particles, and their motion was adiabatically decoupled fr
that of the electrons via the Born-Oppenheimer approxim
tion. For each position of the ions, the electronic probl
was solved within the framework of DFT~Ref. 20! using the
GGA of Perdew and Wang.24,25 Thermal electronic excita
tions were included using the standard methods of fin
temperature DFT developed by Mermin.27–29 The present
calculations were performed with the codeVASP,30 which is
exceptionally efficient for metals. The interaction betwe
electrons and nuclei was described with the ultrasoft pseu
potential~USPP! method.31 We used plane waves with a cu
off of 130 eV. The Brillouin zone was sampled usin
Monkhorst-Pack~MP! special points32 ~the detailed form of
sampling will be noted where appropriate!. The extrapolation
of the charge density from one step to the next in theab
initio molecular dynamics~AIMD ! simulations was per-
formed using the technique described by Alfe`,33 which im-
proves the efficiency of the calculations by almost a facto
2. The time step used in our simulations was 1 fs.

To calculate the melting temperature we calculated
Gibbs free energy of both the solid and liquid as a funct
of pressure and temperature,Gs(P,T) andGl(P,T), and at
each chosenP obtained the melting temperatureTm from
Gs(P,Tm)5Gl(P,Tm). In fact, we calculated the Helmholt
free energyF(V,T) as a function of volume and temperatur
and the Gibbs free energy was obtained from the usual
pressionG5F1PV, whereP52(]F/]V)T is the pressure
The main problem in determining melting curves with th
technique is the high precision with which the free energ
need to be calculated. This is because the Gibbs free en
curve of the liquid crosses that of the solid at a shall
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angle, the difference in the slopes being the entropy cha
on melting. For aluminum this is about 1.4kB /atom at zero
pressure, which means that an error of 0.01 eV/atom in ei
Gs or Gl results in an error of'80 K in the melting tem-
perature. Therefore, it is important to reduce noncance
errors between the liquid and solid to an absolute minimu
In the next sections we give a detailed discussion of
techniques that we have used to calculate the free energi
the liquid and solid, and report what thecontrollableerrors
are: those due tok-point sampling, finite size, and statistic
sampling. We also try to give an estimate of what theuncon-
trollable errors due to the DFT-GGA may be.

III. FREE ENERGY OF THE LIQUID

The Helmholtz free energyF of a classical system con
taining N particles is

F52kBT lnH 1

N!L3NEV
dR1•••dRNe2bU(R1 , . . . ,RN ;T)J ,

~1!

whereL5h/(2pMkBT)1/2 is the thermal wavelength, with
M the nuclear mass,h Planck’s constant,kB the Boltzmann
constant, andb51/kBT. The multidimensional integral ex
tends over the total volume of the systemV.

A direct calculation ofF using the equation above is im
possible, since it would involve knowledge of the potent
energyU(R1 , . . . ,RN ;T) for all possible positions of theN
atoms in the system. We have used instead the techn
known as thermodynamic integration,21 as developed in ear
lier papers.19,34-36 This is a general scheme to compute t
free energy differenceF2F0 between two systems whos
potential energies areU and U0, respectively. In what fol-
lows we will assume thatF is the unknown free energy of th
ab initio system andF0 is the known free energy of a refer
ence system. The free energy differenceF2F0 is the revers-
ible work done when the potential energy functionU0 is
continuously and reversibly switched toU. To do this switch-
ing, a continuously variable energy functionUl is defined
such that forl50, Ul5U0, and forl51, Ul5U. We also
requireUl to be differentiable with respect tol for 0<l
<1. A convenient form is

Ul5@12 f ~l!#U01 f ~l!U, ~2!

where f (l) is an arbitrary continuous and differentiab
function of l with the propertyf (0)50 and f (1)51. The
Helmholtz free energy of thishybrid system is

Fl52kBT lnH 1

N!L3NEV
dR1•••dRNe2bUl(R1 , . . .RN ;T)J .

~3!

Differentiating this with respect tol gives
5-2
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dFl

dl
52kBT

1

N!L3NEV
dR1•••dRNe2bUl(R1 , . . . ,RN ;T)S 2b

]Ul

]l D
1

N!L3NEV
dR1•••dRNe2bUl(R1 , . . . ,RN ;T)

5 K ]Ul

]l L
l

, ~4!
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DF5F2F05E
0

1

dl K ]Ul

]l L
l

. ~5!

For our calculations we definedUl thus:

Ul5~12l!U01lU. ~6!

DifferentiatingUl with respect tol and substituting into Eq
~5! yields

DF5E
0

1

dl^U2U0&l . ~7!

Under the ergodicity hypothesis, thermal averages
equivalent to time averages, so we calculated^•&l using
AIMD, taking averages over time, with the evolution of th
system determined by the potential energy functionUl . The
temperature was controlled using a Nose´ thermostat.37,38

To evaluate the integral in Eq.~7! one can calculate the
integrand^U2U0&l at a sufficient number ofl and calcu-
late the integral numerically.

Alternatively, one can adopt the dynamical method d
scribed by Watanabe and Reinhardt.39 In this approach the
parameterl depends on time and is slowly~adiabatically!
switched from 0 to 1 during a single simulation. The switc
ing rate has to be slow enough so that the system remain
thermodynamic equilibrium and adiabatically transform
from the reference to theab initio system. The change in fre
energy is then given by

DF5E
0

Tsim
dt

dl

dt
~U2U0!, ~8!

whereTsim is the total simulation time,l(t) is an arbitrary
function of t with the property of being continuous and di
ferentiable for 0<t<1, l(0)50, andl(Tsim)51.

When using this second method, it is important to ens
that the switching is adiabatic, i.e., thatTsim is sufficiently
large. This can be achieved by changingl from 0 to 1 in the
first half of the simulation and then from 1 back to 0 in t
second half of the simulation, evaluatingDF in each case;
the average of the two values is then taken as the best
mate forDF, and the difference is a measure of the nonad
baticity. If this difference is less than the desired statisti
uncertainty, one can be confident that the simulation tim
sufficiently long.

In our calculations we chose a total simulation time
sufficient length such that the difference inDF between the
21410
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two calculations was less than a few meV/atom. We ret
later to estimate the errors in our calculations in Sec. III

As pointed out by Jesson and Madden,23 a possible prob-
lem in the calculation of the thermodynamic integral is th
the systemUl may be in the solid region of the phase di
gram, even though the two end membersU0 andU are in the
liquid region. If this happens, the system can freeze dur
the switching, and the integration path is not reversible, le
ing to an incorrect result. For small systems the situation
even more problematic, since the phase diagram is not
fined by sharp boundaries, and the system can freeze ev
it is above the melting temperature of the corresponding s
tem in the thermodynamic limit. We have ourselves expe
enced freezing of the system for some simulations at te
peratures very close to the melting point; in order to av
including the results from these simulations, we carefu
monitored the mean-square displacement and the struc
factor of the system, and included only those simulations
which these two quantities clearly indicated liquid behav
throughout the whole simulation.

It is important to stress that the choice of the referen
system does not affect the final answer forF, although it
does affect the efficiency of the calculations. The latter c
be understood by analyzing the quantity^U2U0&l . If this
difference has large fluctuations, then one would need v
long simulations to calculate the average value to a suffic
statistical accuracy. Moreover, for an unwise choice ofU0
the quantitŷ U2U0&l may strongly depend onl so that one
would need a large number of calculations at differentl ’s in
order to compute the integral in Eq.~7! with sufficient accu-
racy. It is crucial, therefore, to find a good reference syste
where ‘‘good’’ means a system for which the fluctuations
U2U0 are as small as possible. In fact, if the fluctuations
small enough, we can simply writeF2F0.^U2U0&0, with
the average taken in the reference ensemble. If this is
good enough, the next approximation is readily shown to

F2F0.^U2U0&02
1

2kBT
^@U2U02^U2U0&0#2&0 .

~9!

This form is particularly convenient since one only needs
sample the phase space with the reference system and
form a number ofab initio calculations on statistically inde
pendent configurations extracted from a long classical sim
lation. We considered the second-order truncation to
sufficiently good where the second term on the right-ha
side of Eq.~9! was only of the order of a few meV~see Sec.
III C !.
5-3
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TABLE I. Components of the free energy of the liquid.DF5FG2F IP , whereFG is the free energy of the
ab initio system calculated withG point sampling and the adiabatic switching technique@Eq. ~8!#; the errors
are estimated from the difference between switching froml50→1 andl51→0. F IP is the free energy of
the reference system. The last column contains the values ofd(B,a)/2kBT given by Eq. ~12! for B
51.85Å3 anda56.7.

V (Å3) T (K) DF (eV) ^U3332UG&G

1

2kBT
^@U3332UG2^U3332UG&G#2&G d(B,a)/2kBT

9.5 5000 26.8770~6! 0.0571~6! 0.0008~1! 0.0266
9.5 5500 26.8909~22! 0.0579~6! 0.0010~1! 0.0282
9.5 6000 26.9078~33! 0.0580~6! 0.0010~1! 0.0250
10.0 4500 26.6766~56! 0.0124
10.0 5000 26.6880~34! 0.0089
10.0 5500 26.7046~2! 0.0552~5! 0.0009~1! 0.0233
12.0 2700 26.0789~61! 0.0177
12.0 3000 26.0827~27! 0.0174
12.0 3500 26.0881~42! 0.0496~5! 0.0014~1! 0.0180
14.0 2000 25.6347~31! 0.0132
14.0 2500 25.6395~10! 0.0433~6! 0.0020~3! 0.0170
16.5 1000 25.1666~6! 0.0150
16.5 1400 25.1732~10! 0.0128
16.5 1700 25.1774~35! 0.0398~4! 0.0019~2! 0.0114
17.5 1300 25.0049~11! 0.0365~12! 0.0044~17!

18.5 1200 24.8493~30! 0.0373~11! 0.0039~12!

19.5 800 24.6900~10!

19.5 1000 24.6981~2! 0.0375~13! 0.0066~18!

19.5 1200 24.7032~20!
la
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A. Reference system

We mentioned earlier that the efficiency of the calcu
tions is entirely determined by the quality of the referen
system, i.e., by the strength of the fluctuations ofDU5U
2U0. The key to the success of these simulations, theref
is being able to find a reference system such that the fluc
tions inDU are as small as possible. Based on the experie
of previous work on liquid Al~Ref. 19! and liquid Fe~Refs.
6 and 8! we experimented with the Lennard-Jones~LJ! sys-
tem and an inverse power potential~IP!. Analysis of the fluc-
tuations inDU indicated that the system which best rep
sented the liquid was the IP:

U IP5
1

2 (
IÞJ

f~ uRI2RJu!, ~10!

where

f~r !54«S B

r D a

, ~11!

where «51 eV. The potential parametersB and a were
chosen by minimizing the quantity

d~B,a!5^@U IP~B,a!2U2^U IP~B,a!2U&#2&, ~12!

with respect toB anda, where^& means the thermal averag
in the ensemble generated by theab initio potential. To in-
vestigate whether the optimum values for the potential
rameters depended strongly on thermodynamic state, we
21410
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formed the optimization at the three thermodynamic state
the extremes of highP/T and low P/T, and also a point in
between; we found that the single choice ofB51.85 Å and
a56.7 was equally good for all states@to support this state-
ment we report in Table I the value ofd(B,a)/2kBT# and we
therefore used these two parameters for all our calculatio
For illustrative purposes, we also show in Fig. 1 the value
the quantity in Eq.~12! as a function ofB and a for the
thermodynamic stateV59.5 andT55000 K. For this state

FIG. 1. Numerical value of the quantityd(B,a)/N as a function
of B anda for the thermodynamic stateV59.5 andT55000. The
number of atoms isN564. The distance between contour levels
0.005 eV2.
5-4
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AB INITIO MELTING CURVE OF THE fcc PHASE OF . . . PHYSICAL REVIEW B 65 214105
the valuesB51.85 Å anda56.7 do not correspond to th
actual minimum ofd(B,a), but the numerical distance from
the minimum is very small. It is interesting to notice that th
quantity depends rather weakly on the exponenta of the
inverse power potential, provided that also the value ofB is
adjusted accordingly.

It may be surprising that such a simple inverse pow
potential can reproduce the energetics of the liquid with s
ficient accuracy, since simple repulsive potentials cannot
scribe metallic bonding. One may think that a more realis
potential such as those based on the EAM~Refs. 16 and
40–42! would be more appropriate, since these potent
explicitly contain a repulsive and a bonding term. Howev
in our recent work on iron7 we tested the use of an EAM
potential as a reference system and found that the bon
term is almost independent of the positions of the ato
depending only on the volume and temperature of the s
tem, and the fluctuations of the energy are almost enti
due to the repulsive term. Since the only relevance in
work is the strength of the fluctuations@Eq. ~12!#, little is
gained by using an EAM rather then a much simpler inve
power potential.

B. Free energy of the reference system

Consider the excess free energy of the IP,F IP
ex5F IP

2FPG, whereFPG is the Helmholtz free energy of the pe
fect gas andF IP the total Helmholtz free energy of the I
system. The very simple functional form ofU IP makes it
easy to show that the adimensional quantityF IP

ex/kBT can
only depend nontrivially on a single thermodynamic va
able, rather then separately onV andT:

F IP
ex/kBT5 f ~z!, ~13!

with

z5B/Va/3kBT. ~14!

The free energy of the IP has been studied extensively in
past,43 but only for special values of the exponenta, which
did not include our owna56.7. We have therefore explicitly
calculated the free energy of our inverse power potential
ing thermodynamic integration as before, but this time
started from a system of known free energy, the Lenna
Jones liquid, whose potential function is given by

ULJ54«F S s

r D 12

2S s

r D 6G . ~15!

The free energy of the Lennard-Jones liquid,FLJ , has been
accurately tabulated by Johnsonet al.44 To calculateF IP
2FLJ5DFLJ→IP we used simulation cells containing 512 a
oms with periodic boundary conditions and a simulation ti
Tsim5200 ps. We performed the calculations forz ranging
from 2.5 to 6.25, with steps of 0.25. The calculations we
done at a fixed volume of 14 Å3/atom and varying tempera
tures according to Eq.~14!. We carefully checked that th
results were converged to better than 1 meV/atom with
spect to the size of the simulation cell and the length of
simulations. To avoid truncating the inverse power poten
21410
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at a finite distance we used the Ewald technique. Our res
were fitted to a third order polynomial inz:

f ~z!5(
i 50

3

ciz
i . ~16!

The coefficients are: c052.4333, c1527.805, c2
525.0704, andc351.5177, and the fitting function repro
duced the calculated data such that the errors inF IP were
generally less than 1 meV per atom.

As an additional check on the calculated free energy,
repeated most of the simulations using the perfect gas as
reference system, thereby avoiding the inclusion of any p
sible errors that may exist in the free energy of the LJ sys
reported in the literature.44 For these calculations we used
different form forUl : namely,

Ul5l2U IP ~17!

~the potential energy of the perfect gas is zero, so does
appear in the formula!. So Eq.~5! becomes

F IP2FPG5E
0

1

dl2l^UIP&l . ~18!

The advantage of using this different functional form forUl

is that the value of the integrand does not need to be c
puted forl50, where the dynamics of the system is det
mined by the perfect gas potential. In this case, since th
are no forces in the system there is nothing stopping
atoms from overlapping, and the potential energyU IP di-
verges. Not computing the integrand atl50 partially solves
this problem, but for small values ofl where the forces on
the atoms are small, the atoms can come close together
the potential energyU IP fluctuates violently. However, we
found that by performing long enough simulations, typica
1 ns, we could calculate the integral with an accuracy
'1 meV/atom, and, within the statistical accuracy, w
found the same results as those obtained using the LJ r
ence system.

C. Free energy of theab initio system

To calculate the fullab initio free energy of the liquid,
F liq , we used thermodynamic integration, starting from t
IP system. The calculations were performed at 19 differ
thermodynamic states over a range of volumes~9.5–19.5
Å3/atom! and temperatures~800–6000 K!. To support the
quality of theab initio calculations, we show in Fig. 2 th
calculated radial distribution function for liquid Al compare
with experimental data.45 To address the issue ofk-point
sampling and cell size errors in the free energy differen
F liq2F IP , tests were carried out on cells containing up
512 atoms and a 43434 k-point grid, atV519.1 andT
51023 K. The free energy differenceF liq2F IP was calcu-
lated using the perturbational approach@Eq. ~9!#, with sets of
configurations generated using the IP potential. We fou
that a 64-atom cell with a 33333 k-point grid was suffi-
cient to get convergence to within 4 meV/atom. These res
are summarized in Fig. 3. However, we were reluctant
5-5
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LIDUNKA VOČ ADLO AND DARIO ALFÈ PHYSICAL REVIEW B 65 214105
perform simulations using the desired 33333 k-point grid
@14 points in the Brillouin zone~BZ!# since these calcula
tions are extremely expensive. We found it more efficien
add one further step to our thermodynamic integrat
scheme:

DFG→3335F3332FG5E
1

0

dl^U3332UG&l , ~19!

whereU333 andUG are theab initio total energies calculate
using the 33333 k-point grid andG-point sampling, re-
spectively, andF333 andFG are the corresponding free ene
gies. To evaluate the free energy differenceDFG→333 we
noticed that the differenceU3332UG did not depend signifi-
cantly on the position of the atoms, so the integral in Eq.~19!
could be evaluated using the second-order formula@Eq. ~9!#.
Using a longG-point ab initio simulation, we extracted up to
25 statistically independent configurations and calculated
ab initio energies using the 33333 k-point grid. To test

FIG. 2. Calculated radial distribution function for liquid Al a
V519.1 Å3 and T51023 K ~solid line! compared with experi-
mental data~Ref. 45! ~dashed line!.

FIG. 3. Free energy difference between the liquid and the
verse power potential as a function of cell size andk-point
sampling.
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this, we performed spot checks at two thermodynamic sta
where we calculated the full thermodynamic integralF333

2F IP using adiabatic switching with a switching time o
'2 ps, and found the same results to within a few me
atom.

The free energy differenceDF IP → G 5FG2F IP was ob-
tained by full thermodynamic integration between theab ini-
tio and reference system using adiabatic switching@Eq. ~8!#
with a switching time of 5 ps, which resulted in errors of
~4! meV/atom in the low~high! P/T region. To test this, we
also calculated this free energy difference at several s
points by numerical evaluation of the thermodynamic in
gral @Eq. ~5!#, with l50, 0.5, and 1; we found that this gav
the same numerical answer to within our statistical erro
We report in Table I the results of the various steps of th
modynamic integration together with the statistical errors.
Fig. 4 we show the value ofU IP2U as a function ofl for an
adiabatic switching simulation withV59.5 and T
55500 K. We also plot on the same figure the value
^U IP2U&l for the three values ofl50.0, 0.5, 1.0. It is clear
that the value of the integral calculated using the two me
ods is the same within the statistical accuracy and a
that the results correctly satisfy the Gibbs-Bogoliubov21

inequality:

]2F

]l2
5

]^~U2U IP!&l

]l
<0. ~20!

In summary, the free energy of the liquid was obtain
from a series of thermodynamic integration calculations:

F liq5F3335FLJ1DFLJ→IP1DF IP→ G 1DFG→333.
~21!

-

FIG. 4. U IP2U as a function ofl. The dashed line showsU IP

2U obtained from Eq.~8! over a total simulation time of 5 ps; th
solid circles show^U IP2U&l calculated forl50, 0.5, and 1
@Eq. ~7!#.
5-6
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D. Representation of the free energy of the liquid

The results of the calculations described in the previ
section were fitted to a suitable function ofT andV. In order
to do that efficiently we expressed the free energy in
following way:

F liq5F IP1DF5F IP1DUs1~DF2DUs!, ~22!

whereDUs5Us2U IP
s , with Us the zero-temperatureab ini-

tio ~free! energy of the fcc andU IP
s the inverse power energy

Us can be calculated very accurately, details of which will
given below in Sec. IV A;U IP

s has no errors. The remainin
quantityDF2DUs is a weak function ofV andT, and was
fitted to a polynomial inV andT:

DF2DUs5(
j 50

1 S (
i 50

3

ai j V
i DTj . ~23!

The fitting reproduced the calculated data to with
'2 meV/atom.

E. Error estimates for F liq

The errors onF IP andDUs are each less than 1 meV/ato
~see Sec. IV A below!. The part of the free energy that ca
ries the largest errors isDF2DUs, which we estimate to be
2 ~5! meV/atom at low~high! P/T.

IV. FREE ENERGY OF THE SOLID

The free energy of the solid can be represented as the
of two contributions: the free energy of the perfect non
brating fcc crystal and that arising from atomic vibratio
above 0 K:

Fsol5Fperf1Fvib . ~24!

The contribution to the free energy due to the vibrations
the atoms may be written

Fvib5Fharm1Fanharm, ~25!

whereFharmis the free energy of the high-temperature crys
in the harmonic approximation andFanharmis the anharmonic
contribution.

A. Free energy of the perfect crystal

The free energy of the perfect crystal,Fperf, was calcu-
lated as a function of volume and temperature. Calculati
were performed on a fcc cell at a series of volumes~9.5–19.5
Å3/atom representing compression up to;150 GPa) and
temperatures~up to 6000 K! with a 24324324 k-point grid
@equivalent to 1300 points in the irreducible wedge of t
Brilloiun zone ~IBZ!#, which ensures convergence of th
~free! energies to better than 1 meV/atom. At each differ
temperature we calculated theab initio ~free! energy as a
function of volume and then performed a least-squares fi
the results to a third-order Birch-Murnaghan equation
state:22
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f

E~V!5E01
3

2
V0KF3

4
~112j!S V0

V D 4/3

2
j

2 S V0

V D 2

2
3

2
~11j!S V0

V D 2/3

1
1

2 S j1
3

2D G ,
j5

3

4
~42K8!. ~26!

The parametersE0 , V0 , K0, andK8 were fitted to a fourth-
order polynomial as function of temperature:

E0~T!5(
i 50

4

e0,iT
i , V0~T!5(

i 50

4

v0,iT
i ,

K0~T!5(
i 50

4

k0,iT
i , K8~T!5(

i 50

4

k0,i8 Ti . ~27!

The fitting reproduced the calculated energies to better tha
meV/atom in the wholeP/T range.

B. Free energy of the harmonic crystal

The free energy of the harmonic crystal is given by

Fharm~V,T!52S 3kBT

VBZNi
D(

i
E

BZ
S lnF kBT

\vq,i~V,T!G
2

1

24F\vq,i~V,T!

kBT G2

1••• Ddq, ~28!

wherevq,i(V,T) are the phonon frequencies of branchi and
wave vectorq, VBZ is the volume of the Brillouin zone,Ni is
the total number of phonon branches, and the dependenc
temperature ofvq,i is due to electronic excitations. We trun
cate the summation after the first term, which is the class
limit of the free energy:

Fharm52S 3kBT

VBZNi
D(

i
E

BZ
S ln

kBT

\vq,i
Ddq. ~29!

This is a justifiable approximation to make for two reaso
~i! the error in making such a truncation is very sm
(,1 meV/atom), and ~ii ! neglecting the higher-orde
terms, i.e., the quantum corrections, is consistent with
liquid calculations where the motions of the atoms we
treated classically.

It is useful to express the harmonic free energy in terms
the geometric averagev̄ of the phonon frequencies, define
as

ln v̄5
1

NqNi
(
q,i

ln~vqi !, ~30!

where we have replaced the integral (1/VBZ)*BZdq with the
summation (1/Nq)(q . This allows us to write

Fharm53kBT ln~b\v̄!. ~31!
5-7
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To calculate the vibrational frequenciesvq,i , we used our
own implementation46 of the small-displacement method.47,7

The central quantity in the calculation of the phonon f
quencies is the force-constant matrixF isa, j tb , since the fre-
quencies at wave vectorq are the eigenvalues of the dynam
cal matrixDsa,tb , defined as

Dsa,tb~q!5
1

AMsMt
(

i
F isa, j tb

3exp@ iq•~Rj
01tt2Ri

02ts!#, ~32!

whereRi
0 is a vector of the lattice connecting different prim

tive cells,ts is the position of the atoms in the primitive cell,
and Ms its mass. If we have the complete force-const
matrix, thenDsa,tb , and hence the frequenciesvql , can be
obtained at anyq. In principle, the elements ofF isa, j tb are
nonzero for arbitrarily large separationsuRj

01t t2Ri
02tsu,

but in practice they decay rapidly with separation, so a k
issue in achieving our target precision is the cutoff dista
beyond which the elements can be neglected.

In the harmonic approximation thea Cartesian compo-
nent of the force exerted on the atom at positionRi

01ts is
given by

Fisa52(
j tb

F isa, j tb ujtb , ~33!

whereujsb is the displacement of the atom inRj
01tt along

the directionb. The force constant matrix can be calculat
via

F isa, j tb52
Fisa, j tb

ujtb
, ~34!

where all the atoms of the lattice are displaced one at a t
along the three Cartesian components byujtb , and the forces
Fisa, j tb induced on the atoms inRi

01ts are calculated. Since
the crystal is invariant under translations of any lattice v
tor, it is only necessary to displace the atoms in one primit
cell and calculate the forces induced on all the other atom
the crystal, so that we can simply putj 50. The fcc crystal
has only one atom in the primitive cell, so only three d
placements are needed. However, a displacement alongx
direction is equivalent by symmetry to a displacement alo

TABLE II. Harmonic free energy convergence with respect
cell size at the state pointV516.5 Å3 and T51000 K. Calcula-
tions have been done with a 12312312 MP k-point grid on the
eight-atom cell. Equivalentk-point sampling has been used for th
other cell sizes.

Cell size F~eV!

8 20.348 22
27 20.339 10
64 20.338 63
216 20.338 64
512 20.338 81
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the y or z direction, and therefore only one displaceme
along an arbitrary direction is needed. It is convenient
displace the atom along a direction of high symmetry, so t
the supercell has the maximum possible number of sym
try operations. These can be used to reduce the numberk
points in the IBZ, minimizing the computational effort. Fo
an fcc crystal this is achieved by displacing the atom alo
the diagonal of the cube.

Tests for cell size~64–512 atoms!, displacement length
~0.0687–0.0081 Å!, and k-point grid ~up to 13313313)
were performed atV516.5 Å3 and 1000 K. Convergence o
the free energy to within less than 1 meV/atom was achie
using a 64-atom cell with a displacement of 0.016 Å and
93939 k-point grid ~equivalent to 85 points in the IBZ o
the supercell!. The results from these tests are summarized
Tables II, III, and IV. Calculations were performed forV

59.5–18.5 Å3 and T5500–6000 K, and ln(v̄) has been
fitted to the following polynomial inV andT:

ln~v̄ !5(
j 50

3 S (
i 50

3

ai j V
i DTj . ~35!

The fitting reproduced the calculated data within'1 meV/
atom.

C. Anharmonicity

To obtain the anharmonic contribution to the free ene
of the solid we have again used thermodynamic integrat
In this case a natural choice for the reference system co
be the harmonic solid,19 but unfortunately this does not re
produce theab initio anharmonic system with sufficient ac
curacy. A much better reference system is a linear comb
tion of the harmonicab initio and the same IP used for th
liquid calculations:7

TABLE III. Harmonic free energy convergence with respect
displacement,x, for the 64-atom cell at state pointV516.5 Å3 and
T51000 K. The calculations have been done with 32k points.

x(Å) F ~eV!

0.0081 20.338 97
0.0162 20.338 63
0.0343 20.337 97
0.0687 20.334 79

TABLE IV. Harmonic free energy convergence with respect
k-point sampling for the 64-atom cell at state pointV516.5 Å3

andT51000 K. The calculations have been done with a displa
ment of 0.0162 Å.

No. k points F (eV)

4 20.335 41
32 20.338 63
44 20.338 60
85 20.337 52
231 20.337 77
5-8
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U ref5aUIP1bUharm, ~36!

where the harmonic potential energy is

Uharm5
1

2 (
isa, j tb

uisaF isa, j tb ujtb , ~37!

and whereujsb is the displacement of the atom inRj
01t t

along the directionb, andF isa, j tb is the force-constant ma
trix. The parametersa andb are determined by minimizing
the fluctuations in the energy differencesU ref2U on a set of
statistically independent configurations generated withU ref .
However, when we start our optimization procedure we
not knowU ref , so we cannot use it to generate the config
rations. We could use theab initio potential, but this would
involve very expensive calculations. We used instead an
erative procedure, like in our previous work on iron.7 We
generated a set of configurations using the harmonic po
tial Uharm and calculated theab initio energies. By minimiz-
ing the fluctuations ofU ref2U we found a first estimate fo
a and b, and we constructed a first estimate ofU ref . We
generated a second set of configurations using thisU ref , cal-
culated theab initio energies and minimized again the flu
tuations ofU ref2U with respect toa andb. This procedure
could be continued until the values ofa and b no longer
changed, but in practice we stopped after the second step
found a50.95 andb50.12. We did not use the extra free

TABLE V. Anharmonic contribution to the free energy of th
solid. Units are meV/atom.

V (Å3)

T(K) 9.5 12 14 18.5

1000 0~1! 23~3! 21~1! 9~1!

2000 12~2!

2700 210 ~1!

5000 224 ~2!
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dom in the choice of the inverse power parameters since
found that this reference system already described the e
getics of the solid very accurately.

The calculation of the anharmonic part of the free ene
required, once more, two thermodynamic integration ste
In the first step we calculated the free energy differen
F ref2Fharm. These are cheap calculations since they invo
only the classical potentialsU IP andUharm; the simulations
were performed with cells containing 512 atoms for 10
which ensured convergence of the free energy differe
F ref2Fharm to within 1 meV/atom. In the second step w
calculatedFvib2F ref where, since the fluctuations in the e
ergy differencesU2U ref were very small, we were able t
use the second order formula@Eq. ~9!#.

The problem in the calculation of thermal averages fo
nearly harmonic system is that of ergodicity. For an h
monic system different degrees of freedom do not excha

FIG. 5. Comparison of melting curve of Al from present calc
lations with previous experimental results. Solid curve: pres
work. Dotted curve: present work with pressure correction~see
text!. Diamonds and triangles: DAC measurements of Refs. 12
13, respectively. Square: shock experiments of Ref. 14.
the

t-
on
FIG. 6. Calculated pressure dependence of
melting properties of Al:~a! volume change on
melting, ~b! entropy change on melting, and~c!
melting gradient. Solid curve: present work. Do
ted curve: present work with pressure correcti
~see text!.
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LIDUNKA VOČ ADLO AND DARIO ALFÈ PHYSICAL REVIEW B 65 214105
energy, so in a system which is close to being harmonic
exploration of phase space using molecular dynamics ca
a very slow process. We solved this problem following R
19 whereby the statistical sampling was performed us
Andersen molecular dynamics,48 in which the atomic veloci-
ties are periodically randomized by drawing them from
Maxwellian distribution. This type of simulation generat
the canonical ensemble and overcomes the ergodicity p
lem.

All the calculations were performed on a 64-atom c
with kpoints in a 73737 grid for the high-P/T state points
and a 93939 grid for the low-P/T state points equivalen
to 172 or 365 points in the IBZ, respectively.

The anharmonic contribution to the free energy of t
solid turns out to be very small, being positive and equa
only a few meV/atom at low pressure and approximative
220 meV/atom at high pressure. These results are repo
in Table V.

D. Error estimates for F sol

The errors inFperf are less than 1 meV/atom, the errors
Fharm are'3(4) meV/atom at low~high! P/T, and the er-
rors in Fahnarmare'1 ~3! meV/atom at low~high! P/T; the
total errors inFsol are'3 ~6! meV/atom at low~high! P/T.

V. RESULTS AND DISCUSSION

We display in Fig. 5 our calculated melting curve com
pared with the experimental zero-pressure value,11 the
diamond-anvil-cell~DAC! high-pressure results,12,13 and the
high-pressure shock datum.14 We also report in Fig. 6 the
volume change on melting,DV, the entropy change on mel
ing, DS, and the melting gradientdTm /dP, respectively. The
errors in the melting curve arise from the errors in the c
culated free energies and are'50 (100) K in the low-
~high-! pressure part of the diagram, respectively. For illu
trative purposes we display in Fig. 7 the calculated free
ergies of both the solid and liquid as a function of tempe
ture at 125 GPa.

FIG. 7. Calculated Gibbs free energy as a function of tempe
ture at 125 GPa for both the solid and liquid. The linewidths in
cate the the size of the calculated errors.
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The overall agreement with the experiments is extrem
good; however, the low-pressure results differ by more th
15% ~at zero pressure, 786 K compared with the experim
tal value of 933 K!. Indeed, at zero pressure the agreem
between the calculated and experimental volume change
melting anddTm /dP is not very good~see Table VI!. In
addition, our calculations are not in very good agreem
with the previous calculations of de Wijset al.,19 although
this is not necessarily surprising, since these latter calc
tions were based on the LDA, while ours are based on
GGA. Nevertheless, one might expect the results from
LDA and GGA to be similar, since Al is a nearly free
electron-like metal and therefore one would expect a v
good DFT description with both the LDA and GGA. To ex
plore a possible reason why the GGA does not predict
melting properties of aluminum very accurately we consid
the zero-pressure crystal equilibrium volume. This is p
dicted by the GGA to be'2% larger than the experimenta
value; this means that the calculated pressure for the exp
mental zero-pressure volume is'11.6 GPa. To see how
this error propagates in melting properties we may devis
correction to the Helmholtz free energy such that the pr
sure is rectified:

Fcorr5F1dPV, ~38!

with dP51.6 GPa. UsingFcorr in our calculations we found
thecorrectedmelting curve, represented by the dotted line
Fig. 5, where we assumeddP to be the same in the whol
P/T range. The zero-pressure corrected melting tempera
is 912 K, which is in very good agreement with the expe
mental value 933 K. The corrected volume change on m
ing, entropy change on melting, anddTm /dP are also in
much better agreement with the experimental numbers.
correction is less important at high pressure, wheredTm /dP
is smaller.

This point may be further illustrated by looking at th
zero-pressure phonon dispersion curves for Al. Since pho
frequencies depend on the interatomic forces, their corr

-
-

TABLE VI. Comparison ofab initio and experimental melting
properties of Al at zero pressure. Values are given for the mel
temperatureTm , entropy of the solid phase,Ssolid , entropy change
on melting,DS, volume of the solid phaseVsolid , volume change on
melting, DV, and melting gradientdTm /dP. The LDA results are
from Ref. 19; the experimental values forTm , DS, and dTm /dP
are from Refs. 11, 55, and 54, respectively, and the experime
melting volume DV is calculated using the Clapeyron relatio
DV5DSdTm /dP.

Experiment LDA GGA
GGA

corrected

Tm ~K! 933 890~20! 786 ~50! 912 ~50!

Ssolid (kB) 5.20~35! 5.55~35!

DS (kB) 1.38 1.36~4! 1.35 ~6! 1.37 ~6!

Vsolid (Å3) 17.70~4! 17.39~4!

DV (Å3) 1.24 1.26~20! 1.51 ~10! 1.35 ~10!

dTm /dP (K GPa21) 65 67 ~12! 81 71
5-10
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FIG. 8. Comparison of the phonon dispersio
curve for Al from present calculations with pre
vious experimental results. Solid curves: prese
work with the GGA. Dotted curves: present wor
with the GGA and with pressure correction~see
text!. Dashed curves: present work with the LDA
Dot-dashed curves: present work with the LD
and with pressure correction~see text!. Dia-
monds: experiments from Ref. 49.
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ness is surely important in the context of melting. In Fig
we display the GGA calculated phonon dispersion cur
compared with experimental data.49 Our calculations were
performed both at the GGA zero-pressure equilibrium v
ume and the experimental volume~both at 80 K!. We notice
that the agreement is good~though not perfect! if the calcu-
lations are performed at the experimental volume and no
good if the calculated zero-pressure GGA volume is u
instead. This indicates that the GGA will probably yield be
ter results if the GGA pressure is corrected in order to ma
the experimental data.

In their work, de Wijset al.19 found good agreement be
tween the LDA and experiments. In their case acorrected
LDA would lower the zero-pressure melting point below 8
K. In order to understand this apparent different behav
between the LDA and GGA we have also calculated
phonons using the LDA at the calculated equilibrium volum
and also at the experimental volume~both at 80 K!. These
are also reported in Fig. 8. In accord with previous LD
calculations50 we found very good agreement with the e
periments when the phonons are calculated at the LDA z
pressure volume, but the agreement becomes poor at th
perimental volume, which is consistent with the result for t
melting temperature.19

In conclusion, both the GGA and LDA predict an inco
rect equilibrium volume at a fixed pressure, although
LDA yields very good results for both the phonon dispers
curves and the zero-pressure melting properties~which is
probably accidental!. For the GGA the incorrect equilibrium
volume propagates to an incorrect description of the pho
frequencies and the melting properties. If the GGA pressu
.

s,
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are corrected so as to match the experimental data, the
non dispersion and the melting properties come out in v
good agreement with the experiments. These two behav
are internally consistent, but point to an intrinsic error due
the use of the GGA. Quantum Monte Carlo~QMC!
techniques51 have been shown to predict the energetics w
much higher accuracy than DFT,52 and calculations for sys
tems containing more than 100 atoms have already b
reported.53 We believe that in the near future it will be pos
sible to use QMC techniques for more accurate calculati
of free energies.

To summarize, we have calculated the melting curve
the fcc phase of aluminum entirely from first principle
within the DFT-GGA framework. Our work is based on th
calculation of the Gibbs free energy of liquid and solid A
and for each fixed pressure the melting temperature is de
mined by the point at which the two free energies cross. O
results are in good agreement with the available experim
tal data, although they reveal an intrinsic DFT-GGA err
which is responsible for an error of'150 K in the low-
pressure melting curve. This error is probably due to
incorrectly predicted pressure by the GGA, and it becom
less important in the high-pressure region, asdTm /dP be-
comes smaller.
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