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We present an efficient scheme for representing many-body wave functions in quantum Monte Carlo(QMC)
calculations. The scheme is based onB splines (blip functions), which consist of localized cubic splines
centered on the points of a regular grid. We show that blip functions are unbiased, systematically improvable,
and conveniently obtained from any standard plane-wave density functional theory(PW-DFT) code, and
therefore provide a convenient and natural interface between PW-DFT and QMC calculations. We present tests
on a 16-atom system of Si in theb-tin structure, and on 2- and 8-atom systems of MgO in the NaCl structure.
We show that already with such small systems the speed-up of blip functions with respect to plane waves is
between one and two order of magnitudes, without compromising the accuracy.
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The quantum Monte Carlo(QMC) technique1 is becom-
ing one of the standard ways of studying condensed matter,
because its accuracy is generally better than that of widely
used techniques such as density functional theory(DFT). It
has been applied to a wide range of problems, including the
reconstruction of semiconductor surfaces,2 the energetics of
point defects in insulators,3 optical excitations in
nanostructures,4 and the energetics of organic molecules.5 At
present, one of the obstacles to the more general use of QMC
is its large demand on computer time. The choice of basis set
has a significant effect on computer requirements. We pro-
pose and test here a basis set that has many of the properties
of plane waves, currently widely used in DFT calculations,
but with the advantage of being localized. We shall show that
this localized basis achieves essentially the same accuracy as
plane wave basis sets, but is very much faster for QMC
calculations.

In QMC, the trial many-body wave function
CTsr 1, . . . ,r Nd consists of a Slater determinantD—or more
generally a linear combination of Slater determinants—of
single-electron orbitalscnsr id multiplied by a parametrized
Jastrow correlation factorJsr 1, . . . ,r Nd. In the variational
Monte Carlo technique(VMC), J is “optimized” by varying
its parameters so as to reduce the variance of the “local en-

ergy” CT
−1sĤCTd, where Ĥ is the many-electron Hamil-

tonian. Since VMC by itself is not usually accurate enough,
the optimizedCT produced by VMC is used in the diffusion
Monte Carlo technique(DMC), which achieves the exact
ground state within the fixed nodal structure imposed by the
Slater determinantD. At each QMC step it is necessary to
evaluateCTsr 1, . . . ,r Nd in each of the replicas(QMC “walk-
ers”), which involves the evaluation of the single electron
orbitalscnsr id. A crucial issue in the efficiency of the calcu-
lations is therefore the representation ofcnsr id. One common
approach is using plane waves(PW). The big advantages of
PW are that their accuracy is systematically improvable(by
increasing the PW cutoff) and they are unbiased. Moreover,
many DFT codes are written in terms of PW, so the technol-
ogy is highly developed and easily accessible. However, PW
are not well suited for QMC calculations because for the

evaluation of eachcnsr id one has to sum over all PW in the
system. Since this has to be done forM orbitals andN elec-
trons, with M proportional toN, the cost of evaluating the
many-body wave function involvesOsN3d operations, with a
prefactor depending on PW cutoff, which can be very large
for “hard” systems, like MgO. The storage required for a PW
representation is proportional toN2.

This problem with PW can be overcome by using local-
ized basis sets. One possibility is to use Gaussians, but the
drawback is that they are biased and generally difficult to
improve systematically. An option which combines the best
of both worlds is to use aB-splines basis(blip functions),
already proposed forOsNd DFT calculations.6 Here we pro-
pose and test the use of blip functions in QMC calculations.
We will show that blip functions share all the advantages of
PW, i.e., are systematically improvable and unbiased. They
are also closely connected with PW, and can therefore be
obtained from PW-DFT codes. However, they are localized;
therefore the evaluation of each orbitalcnsr id has a cost
which is independent of the size of the system and indeed of
blip-grid spacing(connected to the PW cutoff). The storage
required for blip functions is not much worse than PW and
has the sameOsN2d scaling. TheB-spline basis that we will
describe appears to have something in common with the
spline basis set used in recent QMC calculations by William-
sonet al.,7 though the technical details of their basis were not
reported.

As described in detail elsewhere,6 the blip functions con-
sist of localized cubic splines centered on the points of a
regular grid, each function being nonzero only inside a re-
gion extending two grid spacings in each direction from its
center. For a cubic grid spacinga, the blip functionQssr d
centered on the grid point at positionRs=sXs,Ys,Zsd is given
by

Qssr d = f„sx − Xsd/a…f„sy − Ysd/a…f„sz− Zsd/a…, s1d

wherefsjd is
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fsjd = 1 −
3

2
j2 +

3

4
uju3, 0 ø uju ø 1

=
1

4
s2 − ujud3, 1 ø uju ø 2

= 0, uju ù 2. s2d

The function and its first two derivatives are continuous, dis-
continuities appear only in the third derivative, and all higher
derivatives are zero. Each single-particle orbital is then rep-
resented as

cnsr d = o
s

ansQssr d. s3d

For any positionr , there are only 64 nonzero blip functions,
whatever the nature and size of the system, so that the num-
ber of operations to computecnsr d is the same for any ma-
terial.

The close relationship betweenB-splines and PW has
been discussed elsewhere.6 In the PW representation, the
single-particle orbitals are given by

cnsr d = o
k

cnkeik·r , s4d

where the wave vectorsk go over the reciprocal lattice vec-
tors of the superlattice, withk less than the PW cutoffkmax.
The relationship between the PW coefficientscnk and the
blip coefficientsans can be understood by considering blip
wavesxksr d defined by

xksr d = o
s

eik · RsQssr d. s5d

For smallk, thexksr d are essentially identical to plane waves
expsk ·r d, apart from ak-dependent factorgk:

eik·r . gkxksr d. s6d

The factorgk is the Fourier transform of a single blip func-
tion Qsr d and is given by gk =gkx

gky
gkz

, where k
=skx,ky,kzd and

gk =
3

k4s3 – 4 cosk + cos 2kd. s7d

At larger k, the xksr d differ significantly from expsk ·r d, as
they must, becausexksr d is periodic ink space: the number
of independentxksr d functions is equal to the number of sites
on the blip grid.

There is a “natural” choice of blip grid spacinga, given
by a=p /kmax. With this choice, the regionk<kmax, where
blip waves and plane waves differ most, is the region where
the plane-wave coefficientscnk are very small. However, the
precision with which blip waves reproduce plane waves in
the regionk,kmax can always be improved by refining the
blip grid.

The procedure to obtain the blip coefficientsans from the
plane-wave coefficients of orbitalscnsr d obtained from a
DFT calculation is straightforward. For the relationship be-
tween blip waves and plane waves[see Eqs.(3), (4), and
(7)], it follows that

ans= o
k

cnkgkeik·Rs. s8d

The coefficientsans can therefore be evaluated using fast
Fourier transform routines.

We have implemented blip functions in the appropriately
modified CASINO code.8 To test the implementation we
present now three cases in which we compare the energy and
the standard deviation in VMC and DMC calculations per-
formed using PW or blip-function representations of the
single-particle orbitals. Calculations with blip functions are
presented for two values of the grid spacing, thenatural grid
spacinga=p /kmax, and a two times finer grid obtained with
a=p /2kmax. Results are reported in Table I. All calculations
have been performed at theG point.

The first case is a 16-atom cell of silicon in theb-tin
structure(this system was chosen because there is already
considerable QMC experience with Si, and because we are
currently using QMC to investigate the relative energetics of
the diamond andb-tin structures of Si). The single-particle
orbitals have been obtained using thePWSCF code,9 with
Hartree-Fock pseudopotentials(p channel chosen to be the
local part) and PW cutoff energy of 15 Ry. VMC calcula-
tions are reported for 3.23106 steps of length 1 a.u. in all
three cases. No Jastrow factor has been used for these VMC
calculations. We found it useful to perform these tests with-
out the Jastrow factor because it enabled us to make cross-
checks of some individual components of the energy with
DFT calculations. DMC calculations have been performed
using 320 walkers for 10 100, 12 700, and 10 100 steps of
length 0.03 a.u. for PW and blip-function calculations with
the coarse and the fine grid spacing, respectively. Diffusion
to the ground state is already achieved after<100 steps. In
VMC the natural grid is not dense enough for this system,
with the largest difference being in the kinetic energy(of
<0.06 eV/atom). The standard deviation on the energy is
also slightly larger. However, with the fine grid the blip-
function results agree identically with the PW ones within a
statistical error of only a few meV/atom. In Table I we also
report the time taken to perform one VMC step on an Origin
3000 machine. Already for this small system, with such a
modest PW cutoff, the speed-up with blip functions is almost
a factor of 6. The timings between the two blip-function
calculations should in principle be identical, the small differ-
ence between the two is probably due to the larger sparsity in
memory of the blip coefficientsans for the case with a finer
grid, and we found that this is machine dependent. For DMC
the computational speed-up is more that a factor of 10, and
the energy is already correct with the natural grid, which
means that the nodal surface is essentially the same as the
PW one already with the natural grid.

The second test we performed was a perfect crystal of
MgO in its zero-pressure NaCl structure. The unit cell in this
case contained only 2 atoms and had face-centered-cubic
(fcc) geometry. Single-particle orbitals were obtained again
using thePWSCF code, with Hartree-Fock pseudopotentials
(d channel chosen as the local part for both Mg and O) and a
PW cutoff of 200 Ry. No Jastrow factor has been used in
these calculations. VMC calculations have been done with
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3.363107, 1.63108, and 1.63108 steps of length 0.3 a.u.
for PW and the two blip functions cases. DMC calculations
have been performed using 1600 walkers for 10.793104,
23.983104, and 11.533104 steps of length 0.005 a.u. for
the three cases.10 Diffusion to the ground state is achieved
after the first few hundred steps. Similarly to the previous
case, blip-function VMC energies and standard deviation
agree identically with those obtained using PW for the dense
blip grid, and the speed-up obtained with blip functions is
more than a factor of 10. DMC energies are also in this case
correct already when the coarse grid is used, but the variance
is significantly improved when the fine grid is used.

Finally, the third test consists of the same MgO
crystal simulated in a simple-cubic(sc) cell containing
8 atoms. Single-particle orbitals were obtained in analogy
to the previous case, i.e., same pseudopotential and same
PW cutoff of 200 Ry. No Jastrow factor has been used.
VMC calculations have been done with 0.323106,
1.63106, and 1.63106 steps of length 0.3 a.u. for PW and
the two blip-function cases. The important thing to notice in
this case is the speed-up obtained with blip functions, which
is over two order of magnitudes. We have not attempted
DMC calculations as they would be impractical for the PW
case.

TABLE I. Comparisons of the various components of the total energy(in eV/atom) and timings between
VMC and DMC for a 16-atom Si system in theb-tin structure, and an MgO crystal in the NaCl structure.
Standard deviation of the total energys (eV/atom) is also reported. The MgO crystal has been simulated
using a 2-atom face-centered-cubic cell and an 8-atom simple-cubic cell. PW calculations have been per-
formed with a cutoff energy of 15 Ry for Si and 200 Ry for MgO. Blip calculations have been performed
using two different grid spacings:a=p /kmax anda=p /2kmax, wherekmax is the modulus of the largest PW
vector.

PW Blips sa=p /kmaxd Blips sa=p /2kmaxd

Si b-tin, 16 atoms

VMC

Ekin 43.864(3) 43.924(3) 43.862(3)

Eloc 15.057(3) 15.063(3) 15.058(3)

Enl 1.533(3) 1.525(3) 1.535(3)

Etot −101.335s3d −101.277s3d −101.341s3d
s 4.50 4.74 4.55

T (s/step) 1.83 0.32 0.34

DMC

Etot −105.713s3d −105.711s4d −105.715s4d
s 2.29 2.95 2.38

T (s/step) 2.28 0.21 0.25

MgO-NaCl, 2 atoms, fcc cell

VMC

Ekin 199.449(24) 199.465(15) 199.418(15)

Eloc −239.899s27d −239.861s15d −239.855s15d
Enl −26.906s12d −26.889s8d −26.902s8d
Etot −224.527s4d −224.465s3d −224.523s2d
s 28.7 35.8 28.3

T (s/step) 101310−3 8.3310−3 8.9310−3

DMC

Etot −228.429s10d −228.433s7d −228.427s9d
s 22.1 28.9 22.3

T (s/step) 89310−3 7.1310−3 7.5310−3

MgO-NaCl, 8 atoms, sc cell

VMC

Ekin 178.349(49) 178.360(22) 178.369(22)

Eloc −225.191s50d −225.128s24d −225.177s23d
Enl −17.955s25d −17.974s11d −17.976s11d
Etot −227.677s8d −227.648s4d −227.669s4d
s 14 15 14.5

T (s/step) 7.8 5.6310−2 7.1310−2
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We note that despite we have chosen to use PW cutoffs of
15 Ry and 200 Ry for Si and MgO, respectively, we found
that by using a much larger cutoff energy(typically 32 Ry
for Si and 500 Ry for MgO) the variance of the energy can
be further significantly improved. Of course, increasing the
PW cutoff leads to a direct increase in the PW computational
time, but has hardly any effect in the calculations that em-
ploy blip functions. We have also found that by using a much
larger PW cutoff the blip-function natural grid is already
accurate enough, as expected.

We have presented here a robust and efficient scheme
based onB-splines to represent the trial wave functions in
QMC calculations. We have shown that this scheme shares
all the advantages of plane waves, but offers a much better
scaling behaviour with respect to the number of atoms in the
system and the hardness of the pseudopotentials used in the
calculations. This scheme has been implemented in the
CASINO code,8 and we have presented tests on three different
cases. The largest system considered here(in terms of num-
ber of plane waves) was an MgO crystal in the NaCl struc-
ture simulated with a sc unit cell containing 8 atoms. We

have shown that already for this relatively small system the
speed-up obtained using blip functions is over a factor of
100. SinceB-splines can easily be obtained from PW, they
also provide a natural and convenient interface between
QMC and PW-DFT codes. Moreover, this technique can be
used in conjunction with “linear-scaling” techniques for
QMC calculations, as reported elsewhere.7,11We conclude by
noting that we are now attempting to calculate the formation
energy of a Schottky defect in MgO using a cell containing
54 atoms. This calculation would be impossible to perform if
we had to use PW(results will be reported elsewhere12).
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