
Physics of the Earth and Planetary Interiors 240 (2015) 1–24
Contents lists available at ScienceDirect

Physics of the Earth and Planetary Interiors

journal homepage: www.elsevier .com/locate /pepi
Structural, vibrational and thermodynamic properties of Mg2SiO4

and MgSiO3 minerals from first-principles simulations
http://dx.doi.org/10.1016/j.pepi.2014.10.007
0031-9201/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: Eduardo.Hernandez@csic.es (E.R. Hernández), J.Brodholt@ucl.

ac.uk (J. Brodholt), D.Alfe@ucl.ac.uk (D. Alfè).
E.R. Hernández a,⇑, J. Brodholt b, D. Alfè b

a Instituto de Ciencia de Materials de Madrid (ICMM–CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
b Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, Great Britain, United Kingdom

a r t i c l e i n f o
Article history:
Received 2 July 2014
Received in revised form 2 October 2014
Accepted 15 October 2014
Available online 6 November 2014

Keywords:
Mantle minerals
Thermodynamics of minerals
Mantle transition zone
First principles simulation
a b s t r a c t

In this paper we report a computational study of the structural and vibrational properties of the Mg-end
members forsterite, wadsleyite and ringwoodite of Mg2SiO4, and akimotoite, majorite and the perovskite
phase of MgSiO3. Our calculations have been carried out in the framework of Density Functional Theory
(DFT) using a plane wave basis set and the Projector-augmented Wave (PAW) method to account for the
core electrons. All structures have been fully relaxed at a series of volumes corresponding to the pressure
range relevant to the transition zone in the Earth’s mantle, and at each volume the phonon frequencies
have been obtained and classified. Using the quasi-harmonic approximation, we have estimated a series
of thermodynamic properties for each structure, including the Gibbs free energy, from which we have
computed approximate phase diagrams for Mg2SiO4 and MgSiO3. In spite of our reliance on the quasi-
harmonic approximation, which is expected to break down at high temperatures, our calculated phase
diagrams qualitatively reproduce the main features expected from diagrams fitted to experimental data.
For example, from the computed phase diagram for Mg2SiO4 we obtain a post-spinel boundary at
P = 22.1 GPa at T = 1873 K, with a slope of �3.4 MPa/K.This supports experimental results suggesting a
relatively large slope rather than those favouring a much flatter one. It also suggests that vertical deflec-
tions of the 660 km discontinuity due to thermal signatures from plumes and slabs should be similar to
those at the 410 km, and that a deflection of 35 km as seen in recent seismic studies could be caused by a
thermal anomaly as small as 330 K. We also identify the triple point between the ringwoodite, ilmenite
(plus periclase) and perovskite (plus periclase) phases to be at P = 22.9 GPa and T = 1565 K. Our results
clearly illustrate the stringent requirements made on theoretical models in order to extract predictions
compatible with the available experimental data.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Our understanding of the internal structure and dynamics of the
Earth and similar planets builds up through the constructive inter-
play of geophysical observation (mostly of seismography data) and
mineral physics. Geophysical observation has resulted in a wealth
of data on the variation of S and P waves and the density as a func-
tion of depth, but does not provide direct information on composi-
tion or temperature. It has long been recognised, however, that the
layered internal structure of the Earth, as revealed by seismological
data analysis, correlates with the occurrence of a series of phase
transitions in its material constituents. Indeed, the upper-mantle
(‘‘410 km’’) discontinuities are attributed to the olivine to b-spinel
(wadsleyite) and c-spinel (ringwoodite) phase transitions; like-
wise, the transition zone-to-lower mantle discontinuity is thought
to arise from the post-spinel disproportionation reaction, in which
the ringwoodite c-spinel structure of ðMg1�x; FexÞ2SiO4 decom-
poses into ðMg1�y; FeyÞSiO3 plus ferropericlase (Bina and Helffrich,
1994). In this respect, one of the aims of mineral physics is to pro-
pose compositional models that can reproduce/explain the geo-
physical observations, thus gaining a more detailed unde
rstanding of the nature of the observed seismic transitions and of
how these correlate with chemical composition in the mantle.
However, the experimental task required for this is a daunting
one, given the range of possible compositions, the technical diffi-
culties involved in reproducing the temperature and pressure con-
ditions that are relevant to the Earth’s interior, and in carrying out
controlled experiments at such conditions. Nevertheless, given the
geophysical relevance of these materials, it is not surprising that a
great number of experimental as well as theoretical studies have
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Table 1
The structures considered in this study. Listed is the chemical composition of each
structure, the number of formula units per primitive unit cell, the Monkhorst-Pack
sampling used in each case, and the number of k-points in which it resulted.

Structure Composition f.u./u.c. k-point grid Nr. k-points

Forsterite (fo) Mg2SiO4 4 6� 4� 6 18
Wadsleyite (wa) Mg2SiO4 4 4� 4� 4 17
Ringwoodite (ri) Mg2SiO4 2 8� 8� 8 60
Akimotoite (ak) MgSiO3 2 8� 8� 8 88
Majorite (mj) MgSiO3 16 4� 4� 4 14
Perovskite (pv) MgSiO3 4 6� 6� 4 18
Periclase (pe) MgO 1 8� 8� 8 60
Stishovite (st) SiO2 2 8� 8� 10 50
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been devoted to the understanding of their thermodynamics in
general, and their phase dynamics in particular (see e.g. Stixrude
and Lithgow-Bertelloni, 2011, Wentzcovitch et al., 2010 and refer-
ences therein).

In this article we report the results of an extensive computational
study based on Density Functional Theory (DFT) (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965) of the structural and dynamic
properties of various phases of composition Mg2SiO4 and MgSiO3

relevant to the transition zone of the Earth’s mantle. We have deter-
mined the Gibbs free energy of each phase on the basis of the quasi-
harmonic approximation, and used those free energies to obtain
qualitative phase diagrams for these systems.

There are a number of reason that make this a worthwhile
approach. First of all, the entire phase diagram is predicted within
exactly the same level of theory, and by comparing with experi-
mental data, provides a stringent test of these methods. Secondly,
we shown how small uncertainties in free energies affect the phase
boundaries and slopes, again providing valuable insight into how
sensitive phase boundaries are to DFT uncertainties. And thirdly,
there are aspects of the phase diagram which are still uncertain.
These include the position of triple points, but also the Clapeyron
slope of the ringwoodite to perovskite plus periclase phase transi-
tion. This is geophysically important in that the magnitude of the
slope affects mantle flow between the upper and lower mantle.
Moreover, the magnitude of the slope has implications for seismic
detection of the deflection of the phase boundaries due to thermal
signatures of plumes and slabs.

The structure of this paper is the following: in Section 2 we
describe the computational approach used in this study. Section 3
is devoted to a detailed discussion of our results; first, in Section 3.1
we describe the structures obtained through relaxation calcula-
tions for each phase; secondly, Section 3.2 is devoted to a discus-
sion of the vibrational properties. In the interest of space we only
discuss in detail the cases of forsterite (Mg2SiO4) and the ortho-
rhombic perovskite phase of MgSiO3, as representative cases of
each composition. The vibrational properties of the remaining
phases are discussed in an appendix at the end of this paper, except
in the cases of majorite, MgO (periclase) and SiO2 (stishovite),
which are reported in a supplementary information file. Our calcu-
lated phase diagrams are reported in Section 3.3, where we com-
pare them to the available experimental and previous theoretical
data. Finally, in Section 4 we summarise our results and
conclusions.
1 The gap in forsterite at 0 GPa is calculated to be � 5 eV, and actually increases
slightly within the pressure range considered here; the same occurs for wadsleyite
and ringwoodite, which have comparable gap sizes; MgSiO3 in the perovskite
structure has a larger gap, � 5:8 eV at 0 GPa, which also shows a tendency to increase
with pressure; akimotoite has a similar sized gap, while that of majorite is
comparable to the gaps of the Mg2SiO4 structures).
2. Computational methodology

Our calculations have been carried out using the VASP code
(Kresse and Furthmüller, 1996), an efficient program for perform-
ing DFT simulations using a plane-wave basis set, combined with
the Projector augmented Wave (PAW) method (Blöchl, 1994),
which enables VASP to perform all-electron calculations (Kresse
and Joubert, 1999) within this framework. The code uses an effi-
cient charge-density extrapolation technique (Alfè, 1999) which
enables it to reduce the number of self-consistency cycles required
in subsequent steps of a molecular dynamics or structural relaxa-
tion simulation.

Our calculations have been performed employing the Perdew-
Wang (PW91) Generalized Gradient Approximation (GGA) func-
tional (Wang and Perdew, 1991) to account for the exchange-cor-
relation energy. While it is well-known that the use of the Local
Density Approximation (LDA) to the exchange-correlation energy
generally results in equilibrium lattice parameters and volumes
that match more closely their experimental counterparts than
those predicted by GGA functionals, it is also well-established that
the position of LDA-calculated phase boundaries is much worse,
sometimes being underestimated by �10 GPa or more (see e.g.
Yu et al., 2007, 2008, 2011). Since our primary aim in this study
is to determine the phase diagrams of Mg2SiO4 and MgSiO3, we
have resorted to using a GGA functional. A kinetic energy plane-
wave cutoff of 500 eV has been used in our simulations; it will
be shown below that this is sufficient to converge energy and
enthalpy differences between the various structures considered
in this study, and is also sufficient for adequately converging the
atomic forces, a requirement for the phonon calculations to be dis-
cussed below. Since all the minerals we have concerned ourselves
with in this study have sizeable band gaps at the Fermi energy,1

requirements on the k-point sampling have not been large. In Table 1
the actual k-point sampling grids (Monkhorst and Pack, 1976) used
for each structure are listed. Also listed in the table is the number of
formula units per primitive cell for each structure. We note that for
computational convenience and expedience the calculations
reported below have all been performed on primitive cells of the cor-
responding structures, even in the cases such as ringwoodite, wads-
leyite, akimotoite and majorite, for which experimental structures
are usually quoted in a conventional unit cell, several times larger
than the primitive one.

With the above set-up, our strategy has been to conduct an ini-
tial series of fixed-volume structural relaxations for each system at
different volumes. In some cases, such as ringwoodite (a cubic
structure) the relaxation involved only internal (atomic) coordi-
nate variables, but in general lattice parameters have also been
relaxed in order to attain a hydrostatic pressure at each volume.
From these initial calculations we were able to obtain for each
structure a sequence of volumes corresponding to pressures in
the range��20 to 30 GPa at intervals of �2.5 GPa. It was necessary
to consider volumes corresponding to negative pressures so as to
appropriately account for the thermal expansion at finite temper-
atures (see below). Each of these configurations were then care-
fully relaxed at each volume, with a view to perform a phonon
calculation using the small displacements method implemented
in the PHON code (Alfè, 2009). Each structure was relaxed until
forces on all atoms were smaller than 10�6 eV/Å, in order to ensure
that the calculated phonon frequencies were unaffected by numer-
ical noise in the forces. These calculations provided us with phonon
band structures and vibrational densities of states (VDOS), as well
as with a quasi-harmonic approximation to the vibrational free
energy for each structure and each volume considered, from which
we were then able to construct an approximate phase diagrams for
the Mg2SiO4 and MgSiO3 systems, which constitute the central
result of this work.



Fig. 2. Enthalpy vs pressure for all structures considered in this study. The
enthalpies are referred to that of ringwoodite. Two sets of data are shown for each
case: a continuous line, evaluated with a plane wave cutoff of 500 eV, and thick dots
of the same colour, evaluated at 1000 eV cutoff. The enthalpy of periclase (pe) has
been added to that of the structures with MgSiO3 composition (twice to that of
stishovite, SiO2) to account for the difference in chemical composition with the
Mg2SiO4 structures. Keys: ak � akimotoite; fo � forsterite; mj �majorite;
pe � periclase; pv � perovskite; st � stishovite; wa �wadsleyite.
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3. Results

3.1. Structural relaxation

Fig. 1 shows the variation of the total energy as a function of
volume for the Mg2SiO4 and MgSiO3 structures considered in this
work. Two sets of data are shown for each structure; the dashed
lines represent results obtained with a plane wave cutoff of
500 eV, while the continuous lines in the same colour show data
obtained for the same structure, but with a cutoff of 1000 eV, sim-
ilar to that used by Yu et al. (2008) for their determination of the
phase boundaries between forsterite, wadsleyite and ringwoodite.
It is obvious from the data shown in Fig. 1 that the total energy is
not fully converged with the lower plane wave cutoff, though the
differences in total energy are small (in all cases smaller than
0.04 eV/f.u.). It should be stressed, however, that our results do
not rely on the full convergence of the total energy, but on that
of the energy differences between the various structures. That
energy differences are fully converged for this system with a plane
wave cutoff of 500 eV is argued below and demonstrated in Fig. 2.
By fitting the data plotted in Fig. 1 to the Murnaghan (Murnaghan,
1944) or Birch-Murnaghan (Birch, 1947) equation of state we can
obtain values for the equilibrium volume, bulk modulus and its
pressure derivative for each of the structures in this study. A selec-
tion of the data obtained is reported in Table 2. The differences in
equilibrium volume and bulk modulus obtained when using either
equation of state are small and fairly systematic (the equilibrium
volume increases by an amount of the order of 0.01%, while the
bulk modulus reduces by an amount smaller than 1%), so we only
quote the data obtained by fitting to the Birch-Murnaghan equa-
tion of state. The effect of increasing the plane wave cutoff from
500 to 1000 eV is generally to reduce the equilibrium volume by
an amount smaller than 0.1% (except in the case of the perovskite
structure, which increases its volume by 0.03%), and to change the
bulk modulus by about 1% (again with the exception of perovskite,
which increases it by � 2:5%).

Together with our calculated results, Table 2 lists a selection of
data from previous theoretical as well as experimental studies for
comparison. Most of the previous computational studies have been
performed with the local-density approximation (LDA) to the
exchange-correlation energy, although we also quote data from a
study (Ottonello et al., 2009) that used the B3LYP (Becke, 1993;
Stephens et al., 1994) hybrid functional, and from another one
(Yu et al., 2011) using the generalised-gradient functional due to
Perdew et al. (1996) (PBE). Overall, it can be seen from Table 2 that
there is reasonable agreement, within well-known trends, of our
Fig. 1. Total energy vs volume. The left panel shows results obtained for structures with
while the right panel shows results for structures of MgSiO3 composition, akimotoite (
continuous lines of the same colour have been obtained for the same structure, but usi
references to colour in this figure legend, the reader is referred to the web version of th
data with the results of previous simulation studies. LDA data for
equilibrium volumes slightly under-estimates the experimental
volumes. Our own volume values are larger than the LDA calcu-
lated data typically by 1–3%. Agreement is closer with the B3LYP
results of Ottonello et al. (2009) for the Mg2SiO4 structures, which
our own results overshoot by less than 1%. Conversely, bulk moduli
obtained with either the LDA or B3LYP functionals are generally
slightly higher than ours, while its pressure derivative seems to
be rather insensitive to the calculation model, having a value that
oscillates around 4. Concerning the comparison with available
experimental data, we observe that our calculated equilibrium vol-
umes tend to over-estimate the experimental values by about 2.5–
3%, which is in line with the well-known over-estimation of lattice
parameters by � 1% of the PW91 GGA functional used in our calcu-
lations. The trend is less clear on the bulk moduli prediction:
although there seems to be a general tendency to under-estimate
it by about 10%, in the case of ringwoodite the calculated value is
larger by the same amount. Below we provide more detailed struc-
tural comparisons between the calculated structures and their
experimental counterparts.

Let us now consider the question of the convergence of the total
energy differences with respect to the employed plane wave cutoff.
The relevant data is displayed in Fig. 2, where we have plotted
enthalpies vs pressure rather than energies vs volume, so as to
Mg2SiO4 composition, namely forsterite (fo), wadsleyite (wa) and ringwoodite (ri),
ak), majorite (mj) and the perovskite (pv) structure. Data shown with dashed and
ng a plane wave cutoff of 500 and 1000 eV, respectively. (For interpretation of the
is article.)



Table 2
Equilibrium volumes of the unit cell (V0), bulk modulus (B) and its pressure derivative for each structure, as obtained by fitting the calculated total energies of each structure [see
Fig. 1] to the Birch-Murnaghan equation of state. The displayed calculated data has been obtained with a plane-wave cutoff of 1000 eV; data evaluated with a cutoff of 500 eV is
very similar (see text) and is not shown. The experimental data is from the following references: a Hazen (1976); b Hazen et al. (2000); c Hazen et al. (1993); d Ye et al. (2012); e
Yamanaka et al. (2005); f Angel et al. (1989); g Sinogeikin and Bass (2002); h Ross and Hazen (1990); i Jacobsen et al. (2008); j Yamanaka et al. (2002). Selected calculated values
reported by other authors are from k Ottonello et al. (2009), obtained using the B3LYP functional, l Li et al. (2007) (LDA); m Wu and Wentzcovitch (2007) (LDA); n Yu and
Wentzcovitch (2006) (LDA); o Karki (2002) (LDA); p Karki et al. (2000) (LDA); q Yu et al. (2011) (LDA); r Yu et al. (2011) (PBE); s Karki et al. (2000b) (LDA); t Oganov et al. (2005)
(LDA).

Structure Calculated Experiment

V0 (Å
3
) B (GPa) dB=dP V0 (Å

3
) B (GPa) dB=dP

Forsterite 297.4 117.4 4.42 288:6a 120:0a –

296:7k;289:5l 130:8k;126:4l 4:0k;4:2l

Wadsleyite 552.2 155.0 4.65 539:26b 172:0b 6:3b

550:4k;541:35m 161:8k;165:7m 4:4k;4:4m

Ringwoodite 537.5 175.2 4.28 525:73c
159:0d 6:3d

530:9k;527:5n 196:4k;184:6n 4:3k;4:5n

Akimotoite 270.65 188.4 4.6 262:6e 219e 4e

261:7o;271:8r 210o;207:5r 4:6o;3:7r

Majorite 1559.4 146.8 4.6 1518:6f 166g 4:2g

1519:2q;1584:4r 160:8q;137:8r 4:3q;r

Perovskite 167.2 229.7 4.4 162:36h 254h 4h

164:1p;169:7r 247p ;223:7r 3:9p;r

Periclase 76.2 153.3 4.14 74:698i 164i 4:05i

75:24s 159s 4:30s

Stishovite 48.24 260.3 5.7 46:61j 292j 6j

46:31t 318:33t 4:37t

Table 3
Forsterite structural parameters, as obtained from our structural relaxation calcula-
tions at zero pressure, compared to the experimental structure obtained by Hazen
(1976) at 77 K and 1 atm. For comparison with the experiment, data is listed here in
the Pbnm non-standard setting of space group Pnma.

Atom Site This work Hazen (1976)

a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)
4.793 10.283 6.020 4.746 10.18 5.976
x y z x y z

Mg 4a 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mg 4c 0.9917 0.2772 0.2500 0.9914 0.2772 0.2500
Si 4c 0.4265 0.0936 0.2500 0.4261 0.0939 0.2500
O 4c 0.7669 0.0916 0.2500 0.7661 0.0919 0.2500
O 4c 0.2224 0.4465 0.2500 0.2202 0.4469 0.2500
O 8d 0.2768 0.1629 0.0323 0.2777 0.1628 0.0333
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be able to show on the same graph the data for structures of
Mg2SiO4 composition together with those of MgSiO3 composition,
by adding the enthalpy of MgO periclase to the latter. Again, two
sets of data are shown for each structure: a continuous line show-
ing data obtained with the lower cutoff, and dots of the same col-
our obtained with the larger cutoff. The enthalpies are referred to
that of the ringwoodite structure.

The first observation to be extracted from Fig. 2 is that enthalpy
(and hence total energy) differences are fully converged with a
plane wave cutoff of 500 eV. Indeed it can be appreciated that
the data obtained with both the lower and higher cutoffs fall neatly
on top of each other in all the pressure range considered in this
study. We can also see in Fig. 2 the sequence of phases predicted
by our calculations in the low temperature limit of the phase dia-
gram: in the pressure range 0–11.4 GPa forsterite is predicted to be
the most stable structure, followed by wadsleyite from 11.4–
14.5 GPa, then ringwoodite in the range 14.5 to 20.2 GPa, at which
point akimotoite (plus periclase) becomes stable, followed by
stishovite (plus periclase, SiO2 þ 2MgO) from 25.3 GPa onwards.
Although not shown in the figure, which only goes up to 30 GPa,
it is evident from the slopes of the enthalpy differences that at
higher pressures ultimately the perovskite and periclase combina-
tion will become the most stable one. We should also note that the
enthalpies displayed do not contain the zero-point vibrational con-
tribution; although this contribution is not generally important at
the temperatures relevant to the mantle, it can have a noticeable
effect at low temperatures. In particular, the combination of stish-
ovite plus periclase is practically wiped out of the phase diagram
when this contribution is properly included [see Fig. 11]. A final
observation to be derived from Fig. 2 is the fact that the majorite
phase is never seen to be the most stable one at low temperature.
This is consistent with the expectation that this phase is only sta-
bilized at finite temperatures.

The low-temperature phase diagram of the Mg2SiO4 system is
not known in detail, as experiments are usually conducted at
higher temperatures. Nevertheless, inferences can be made from
the high-temperature experimental data, and our zero-tempera-
ture results are not inconsistent with those. Comparing with
previous theoretical studies, Yu et al. (2008) have reported a fo–
wa transition pressure of 6.5 GPa calculated with the LDA func-
tional, and 12.6 GPa with the PBE–GGA functional; this latter figure
is rather close to our estimation of 11.4 GPa. For the wa–ri transi-
tion they report values of 9.6 (LDA) and 15.7 GPa (PBE-GGA), the
latter value again being close to our own result for this transition.
To our knowledge, pressures for the ri–(ak+pe) and ak–(st+pe)
transitions have not been hitherto evaluated.

Forsterite crystallizes in the orthorhombic crystal system, hav-
ing space group Pnma (Hazen, 1976). The structural parameters
resulting from our relaxation calculation at 0 GPa are compared
to an experimental structural determination reported by Hazen
(1976) in Table 3. As already mentioned above, the theoretical lat-
tice parameters over-estimate the experimental ones by a maxi-
mum of 1%, which is commonly the case with GGA functionals.
This mismatch in the lattice parameters amounts to a 3% overesti-
mation of the equilibrium volume. Otherwise, the atomic positions
are satisfactorily reproduced, as seen in the table. The degree of
agreement that is seen for the atomic positions in the case of for-
sterite is typical of what we find for the remaining structures con-
sidered in this study.
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The agreement observed between experimental and theoreti-
cally obtained lattice parameters is not confined to zero pressure.
As an illustration of this, we show in Fig. 3 a comparison between
the experimental data of Kudoh and Takeuchi (1985) and our cal-
culated lattice parameters and volume up to pressures of 15 GPa. It
is apparent that the over-estimation of the lattice parameters
observed at zero pressure persists at higher pressures, but the
response of the system to increasing pressures is nicely reproduced
by the calculations. This is shown more quantitatively by compar-
ing the experimental and calculated axial compressibilities,
obtained by fitting the data shown in Fig. 3 to a first-order polyno-
mial of the form aðPÞ ¼ ð1� baPÞað0Þ for lattice parameter a, and
equivalently for b and c. Doing this with the experimental data
results in ba ¼ 1:36; bb ¼ 2:61 and bc ¼ 2:56� 10�3 GPa�1, respec-
tively, while from the theoretical data we obtain values of
ba ¼ 1:56; bb ¼ 2:61 and bc ¼ 2:13� 10�3 GPa�1. It is interesting
to note that the axial compressibilities along b and c, i.e. along
the larger lattice parameters, are significantly larger than along a.
The same procedure applied to the volume leads to a compressibil-
ity value of bv ¼ 6:4� 10�3 GPa�1 for the experimental data, com-
pared to bv ¼ 6:1� 10�3 GPa�1 for the calculated volumes.

Also displayed in Fig. 3 (right panel) is the volume-vs.-pressure
curve (shown in green) obtained by fitting the calculated data
obtained by Li et al. (2007) (calculated at 300 K using the LDA
approximation) to a third-order Birch-Murnaghan equation of
state (Birch, 1947). This curve is very similar to the one we obtain,
but shifted downward, giving a closer match to the experimental
volumes of Kudoh and Takeuchi (1985), as expected of LDA calcu-
lated volumes.

Wadsleyite, like forsterite, is an orthorhombic crystal, having
space group Imma. In Table 4 we compare lattice parameters and
atomic positions of the relaxed structure at 0 GPa according to
our calculations, with those experimentally obtained by Hazen
et al. (2000). The level of agreement between both sets of results
is comparable to that already observed in the case of forsterite
Fig. 3. Comparison of experimental and theoretical lattice parameters and volume vs. p
Takeuchi (1985), is shown as red symbols, while the theoretical data from this work is sh
and squares, respectively, while the volume is represented by diamonds. The scatter in
relatively low sensitivity of the total energy to small changes in the lattice parameter
calculated (this work) volume vs. pressure data, the right panel shows also a fit to the
(continuous green line). (For interpretation of the references to colour in this figure lege
and that we will encounter again in subsequent structures. The spi-
nel structure of Mg2SiO4 ringwoodite is cubic, with space group
Fd�3m. Our relaxed structure has a lattice parameter of 8.13 Å at
zero pressure, to be compared with the value of 8.071 Å reported
by Hazen et al. (1993) (a difference of less than 1%). In this struc-
ture, the Mg atoms are found at Wyckoff positions 16d (1/2,1/
2,1/2), while the Si atoms are at positions 8a (1/8,1/8,1/8). The oxy-
gen atoms are found at 32e positions, with coordinates (x, x, x). In
our relaxation calculations, a value x ¼ 0:2443 results, compared to
the experimental value of x ¼ 0:2441 reported by Hazen et al.
(1993).

We now turn our attention to the structures with MgSiO3 com-
position, starting with the perovskite structure. This polymorph
presents an orthorhombic distortion with respect to the ideal cubic
perovskite structure, which results from a concerted rotation of the
SiO6 octahedra present in the structure. In Table 5 we present a
comparison of our calculated zero-pressure lattice parameters
and atomic positions with experimental data at a similar pressure
obtained by Ross and Hazen (1990). It can be appreciated there
that once more the level of agreement in lattice parameters (differ-
ences smaller than 1%) falls within the expected range for the
exchange-correlation functional used in this work, and is compara-
ble to that obtained for the Mg2SiO4 polymorphs. To demonstrate
that this is the case also at higher pressures, in Fig. 4 we plot a
comparison of calculated and experimental lattice parameters
and volume at a range of pressures. It can be seen there that the
theoretical data mimics the response of the real system to the
increasing pressure, as was the case for forsterite, discussed above.
This is borne out by a comparison of the axial compressibilities; the
experimental data provide values of b of 1.2, 1.0 and
1:2� 10�3 GPa�1 for a, b and c, respectively, nearly identical to
the theoretical values, namely 1.2, 1.1 and 1:2� 10�3 GPa�1. It is
interesting to note that here the compressibilities (both experi-
mental and theoretical) along different crystallographic axes are
very similar, contrary to what happens in the forsterite structure,
ressure for the forsterite structure. The experimental data, taken from Kudoh and
own as blue symbols with lines; parameters a. b and c are shown as circles, triangles
the theoretical data, particularly noticeable in the b lattice parameter, is due to the
values close to the equilibrium structure. As well as displaying experimental and
calculated data obtained by Li et al. (2007) at 300 K using the LDA approximation
nd, the reader is referred to the web version of this article.)



Table 4
Wadsleyite structural parameters at zero pressure. Experimental data are taken from
Hazen et al. (2000).

Atom Site This work Hazen et al. (2000)

a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)
5.740 11.536 8.324 5.6978 11.4620 8.2571
x y z x y z

Mg 4a 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mg 4e 0.0000 0.2500 0.9706 0.0000 0.2500 0.9698
Mg 8g 0.2500 0.1274 0.2500 0.2500 0.1269 0.2500
Si 8h 0.0000 0.1196 0.6166 0.0000 0.1199 0.6165
O 4e 0.0000 0.2500 0.2167 0.0000 0.2500 0.2182
O 4e 0.0000 0.2500 0.7169 0.0000 0.2500 0.7157
O 8h 0.0000 0.9904 0.2554 0.0000 0.9898 0.2565
O 16j 0.2605 0.1226 0.9929 0.2601 0.1226 0.9931

Table 5
MgSiO3 Perovskite structural parameters, as obtained from our structural relaxation
calculations at zero pressure, compared to the experimental structure obtained by
Ross and Hazen (1990) at room temperature and 0.001 GPa.

Atom Site This work Ross and Hazen (1990)

a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)
4.814 4.971 6.952 4.778 4.928 6.899
x y z x y z

Mg 4c 0.5147 0.5565 0.2500 0.5132 0.5563 0.2500
Si 4b 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000
O 4c 0.1046 0.4645 0.2500 0.1031 0.4654 0.2500
O 8d 0.1961 0.2013 0.5540 0.1954 0.2011 0.5510
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an observation that reflects the fact that the perovskite structure is
more nearly isotropic. We also compare our results for the volume
shown on the right panel of Fig. 4 to LDA values obtained by Karki
et al. (2000) at 300 K. The green curve shown in the figure results
from fitting the data of Karki et al. (2000) to a Birch-Murnaghan
third order equation. It can be appreciated that their calculations
Fig. 4. Calculated and experimental lattice parameters and volume of the perovskite stru
(1990); different colours represent data from different samples. Our calculated data is sh
right panel is a fit to the data obtained by Karki et al. (2000) using the LDA approximati
referred to the web version of this article.)
result in slightly lower volumes than those we obtain, as expected,
but the volume response to imposed pressure is similar in both
cases.

The remaining structures of MgSiO3 composition relevant to
this study are akimotoite and majorite. Akimotoite has the ilmenite
structure (space group R�3), and majorite is a garnet; we have only
considered the tetragonal I41=a structure of majorite, with ordered
cations. Tables 6 and 7 compare the structural parameters for these
structures as obtained from our relaxation calculations with exper-
imental data, and demonstrate they are reproduced with the same
level of fidelity as obtained for the perovskite structure and for the
structures of Mg2SiO4 composition considered above.
3.2. Vibrational properties

The calculation of phonon frequencies and related properties by
means of the small-displacement method (Alfè, 2009) requires that
the plane-wave cutoff be sufficiently large to adequately converge
the forces on the atoms in the cell. We have checked that the
kinetic energy cutoff of 500 eV used in our calculations was suffi-
cient to comply with this requirement. Indeed, spot checks for
the individual structures considered in this study show that the
difference between atomic force components calculated with a
kinetic energy cutoff of 500 eV and those obtained with a cutoff
twice as large were of the order of 10�5 eV/Å, i.e. typically a factor
of 104 smaller than the actual magnitude of the force components
themselves. We thus performed all the phonon calculations
reported below with the 500 eV plane-wave cutoff.

We will discuss in detail the calculation of vibrational frequen-
cies and related properties for the particular cases of forsterite and
the perovskite structures, as representatives of the Mg2SiO3 and
MgSiO3 stoichiometries, respectively. Calculated values for the
remaining structures considered in this study will be provided in
the appendix, but calculation procedures and analysis have been
carried out in an entirely parallel fashion as for the cases of these
representative structures. Nevertheless, in Figs. 5 and 6 we display
cture as a function of pressure. The experimental data is taken from Ross and Hazen
own as black symbols and continuous lines. The continuous green line shown on the
on. (For interpretation of the references to colour in this figure legend, the reader is



Table 6
Structural parameters of akimotoite (ilmenite structure) obtained at 0 GPa; exper-
imental results are taken from Yamanaka et al. (2005).

Atom Site This work Yamanaka et al. (2005)

a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)
4.785 4.785 13.670 4.729 4.729 13.559
x y z x y z

Mg 6c 0.0000 0.0000 0.36061 0.0000 0.0000 0.36029
Si 6c 0.0000 0.0000 0.1577 0.0000 0.0000 0.15773
O 18f 0.3217 0.03621 0.2404 0.3230 0.0366 0.23956

Table 7
Structural parameters of tetragonal majorite (space group I41=a). Experimental data is
taken from Angel et al. (1989).

Atom Site This work Angel et al. (1989)

a (Å) c (Å) V (Å
3
) a (Å) c (Å) V (Å

3
)

11.617 11.548 1558.5 11.501 11.480 1518.6
x y z x y z

Mg 8c 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mg 8e 0.5000 0.2500 0.6230 0.5000 0.2500 0.6258
Mg 16f 0.6294 0.0145 0.2690 0.6253 0.0112 0.2587
Si 4a 0.5000 0.2500 0.3750 0.5000 0.2500 0.3750
Si 4b 0.5000 0.2500 0.8750 0.5000 0.2500 0.8750
Si 8d 0.5000 0.0000 0.0000 0.5000 0.0000 0.0000
Si 16f 0.6249 0.0107 0.7560 0.6249 0.0065 0.7544
O 16f 0.5253 0.0586 0.6678 0.5282 0.0550 0.6633
O 16f 0.5439 0.9548 0.8605 0.5380 0.9529 0.8562
O 16f 0.7239 0.1060 0.8050 0.7195 0.1023 0.8021
O 16f 0.7129 0.9150 0.7021 0.7150 0.9106 0.7000
O 16f 0.4373 0.1628 0.4687 0.4412 0.1617 0.4680
O 16f 0.3977 0.2145 0.7824 0.3960 0.2080 0.7851
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the calculated phonon band structures and corresponding densi-
ties of vibrational states for each of the structures considered here,
calculated at 0 and 15 GPa. The high symmetry directions in the
Brillouin zone used in the band structure plots correspond to those
listed by Setyawan and Curtarolo (2010).

The forsterite structure has D2h (mmm) point group symmetry,
and its vibrational modes can thus be classified according to the
irreducible representations of this point group. The primitive cell
of this structure contains 28 atoms, giving raise to 84 vibrational
modes, of which 3 will be acoustic modes having zero frequency
at the Brillouin zone centre. Using group theory and with the help
of program SAM (Kroumova et al., 2003) from the Bilbao Crystallo-
graphic server (Aroyo et al., 2006a,b, 2011) it is easy to see that the
lattice vibrations of this structure can be decomposed into the fol-
lowing irreducible representations:

Cvib ¼ 11Ag � 10Au � 7B1g � 14B1u � 11B2g � 10B2u � 7B3g � 14B3u:

ð1Þ

For an orthorhombic structure such as forsterite, several choices of
cell orientation are possible, which result from the different possible
alignments of lattice vectors with symmetry elements. In this work
we use the standard Pnma setting (see above), but it is not infrequent
to see forsterite described in the non-standard Pbnm setting. While
the actual choice of setting is of course physically irrelevant, it does
affect the classification of the vibrational modes into irreducible rep-
resentations of the space group. This should be borne in mind when
comparing our data to that of previous calculations by other authors.
Modes symmetric with respect to the inversion symmetry element of
the structure (i.e. those pertaining to an irreducible representation
with g sub-index) are Raman active, while those that are anti-sym-
metric (with a u sub-index) are Infrared (IR) active, with the
exception of modes having Au symmetry, which are neither Raman
nor IR active (silent modes). The three acoustic modes have
B1u � B2u � B3u symmetries; the remaining 81 modes are optic. Bear-
ing in mind all the above we can conclude that forsterite should have
a total of 36 Raman-active modes and 38 IR-active modes (35 after
excluding the three acoustic modes). In Table 8 we list the 0 GPa pres-
sure calculated Raman mode frequencies. For comparison, we also
list in the table the results of earlier theoretical calculations by Li
et al. (2007) and Noel et al. (2006), as well as experimental results
by Iishi (1978), Chopelas (1991a) and Gillet et al. (1991). Together
with the phonon frequencies we list their pressure derivatives and
Grüneisen parameter, ci ¼ �d logmi=d log V . Previous theoretical/
experimental values for these are also provided when available. Also
listed are the estimated frequencies at the experimental volume. Cal-
culated values for the IR-active modes are listed in Table 9.

Let us first compare our results for the Raman active modes to
the vibrational data obtained in previous theoretical studies, start-
ing with that of Li et al. (2007). On average, our frequencies are
� 20 cm�1 lower than their calculated values; lower frequencies
are in better agreement, differing usually by less than 10 cm�1,
although the discrepancy increases with frequency, reaching
� 30 cm�1 for the higher frequency modes. The fact that our calcu-
lated frequencies are smaller than the corresponding ones
obtained by Li et al. (2007) is attributable in part to the fact that
our calculated equilibrium volume (296.9 Å

3
) is larger than the

LDA predicted value, but also to the use of different exchange-cor-
relation functionals (LDA in their case, GGA in ours). Since we have
evaluated the phonon frequencies at a series of volumes, it is pos-
sible to estimate the frequencies that we would obtain at the LDA
equilibrium volume, 289:5 Å

3
, according to Li et al. (2007). This

exercise results in frequencies that agree with the LDA results
much better than those listed in Tables 8 and 9, but still retaining
an average mismatch of � 10 cm�1, which is thus likely to be
attributable to the different functionals employed, as well as to
other technical differences between the calculations (treatment
of core electrons, etc). Li et al. (2007) also calculated the mode
Grüneisen parameters, ci; their reported values are in very good
agreement with our own. There is overall good agreement between
the LDA results of Li et al. (2007) and those obtained with the
B3LYP hybrid functional by Noel et al. (2006), so much of what
can be said about the comparison of our results with those of the
former applies also to the comparison against the results of the
latter.

Concerning the comparison with experimentally measured
Raman spectra, on average our theoretical values are smaller by
� 25 cm�1 than the corresponding frequencies reported by Iishi
(1978) and those of Chopelas (1991a); agreement is also good with
the values of Gillet et al. (1991), though the latter authors did not
observe the complete series of Raman resonances. As in the compar-
ison with other theoretical data in the previous paragraph, the
agreement is better at low frequencies, and discrepancies increase
with frequency. Likewise, a better comparison is achieved when
we compare the experimental data with the theoretical frequencies
interpolated at the experimental volume, reducing the average mis-
match to about� 15 cm�1. It is worth noticing that this level of mis-
match is not significantly larger than that existing between the
different experimental reports. A second point of comparison is pro-
vided by the pressure derivatives of the mode frequencies and the
mode Grüneisen parameters, ci ¼ �d log mi=d log V . Chopelas
(1990) reported such data for a number of Raman-active modes
(see Table 8), and the agreement between our calculated data for
these parameters and their experimental values is reasonable; per-
haps more important than the level of agreement itself is the fact
that the observed trends are reproduced by the calculated values,
i.e. oscillations in the experimental values of dmi=dP and ci are
reproduced by the calculated values.



Fig. 5. Phonon band structures and vibrational densities of states at 0 and 15 GPa, calculated for the polymorphs of Mg2SiO4 stoichiometry.
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With regard to the IR-active modes, let us first observe that we
have not calculated the longitudinal-transversal splitting of IR
optic modes (LO-TO splitting) expected in polar structures such
as the ones considered here. The calculation of such splittings
requires determining the Born effective charges for the chemical
species involved, which we have not done. The LO-TO splitting is
noticeable essentially at the centre of the Brillouin zone, and
though it can be considerable for high frequency modes, its impact
on the thermodynamic properties of the material is expected to be
negligible (Alfè, 2009), since these result from an integration over
the whole Brillouin zone, and the contribution to these properties
of high frequency modes is reduced by the corresponding Boltz-
mann factor. The relevant comparison is thus between our data
and the TO-modes from previous theoretical or experimental stud-
ies. The appropriate data is listed in Table 9. There it can be seen
that the level of agreement we find with the earlier theoretical
results of Li et al. (2007) and Noel et al. (2006) is very similar as
already found for the Raman active mode frequencies; on average,
our calculated frequencies are smaller than the corresponding TO
ones in those theoretical studies by an average of � 20 cm�1. The
discrepancy is smallest (usually less than 10 cm�1) in the low fre-
quency range, and increases with frequency to an upper limit of
30–40 cm�1. Comparison with experimental data reveals that there
exists an average discrepancy of � 25 cm�1 (our frequencies being
usually lower) with the IR data of Iishi (1978) and � 30 cm�1 with
that of Hofmeister (1987). It should be noticed, however, that the



Fig. 6. Phonon band structures and vibrational densities of states at 0 and 15 GPa obtained for the MgSiO3 polymorphs considered in this study.
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correct assignment of experimental frequencies is not always obvi-
ous and in some particular cases it may be seen to be dubious
(cases particularly noteworthy, where there is a consistent dis-
agreement between all theoretical data and experiments, or even
between different experimental results, are highlighted in Tables
8 and 9 by daggers on the experimental data). If it is borne in mind
that the level of mismatch between different sets of experimental
data is also in this range, we feel justified in considering our results
to be in reasonable agreement with the empirical data.
The level of agreement between our calculated frequencies and
experimental data can be better appreciated in Fig. 7, where we
have plotted our theoretical frequencies in the pressure range 0–
20 GPa. Raman-active mode frequencies are compared to the
experimental data of Chopelas (1990), and IR modes to that of
Wang et al. (1993). As already observed in Tables 8 and 9, the
agreement is certainly not quantitative, neither in the magnitude
of the frequencies nor in their pressure derivatives, but there is
an overall agreement. The theoretical data displayed in Fig. 7 is



Table 8
Raman active modes of forsterite Mg2SiO4. Frequencies are quoted in cm�1, and their pressure derivatives in cm�1 GPa�1. mi and miðVexpÞ are calculated frequencies at the predicted
T ¼ 0 K equilibrium volume and at the experimental volume (Hazen, 1976), respectively. Our values are compared with the theoretical calculations of (a) Li et al. (2007) and (b)
Noel et al. (2006), and experimental data is taken from (c) Iishi (1978), Chopelas (1991a), (e) Gillet et al. (1991) and (f) Chopelas (1990).

Mode symmetry This work Other theory Experiment

mi miðVexpÞ dmi=dP ci mi ci mi dmi=dP ci

(a), (b) (a) (c), (d), (e) (f) (f)

B3g 169 175 0.94 0.87 174, 183 0.09 142, 175, 171
Ag 171 181 1.70 1.53 188, 188 0.30 183, 183, 183 3.03 2.09
B1g 172 189 2.81 2.52 195, 190 1.11 226y;286y , –
B2g 208 219 1.91 1.37 222, 225 0.81 192, 220, –
Ag 212 220 1.36 0.92 222, 234 0.75 227, 226, 232 1.20 0.67
B3g 224 243 3.11 2.03 249, 253 1.07 244, 242, 244 2.30 1.21
B2g 237 251 2.38 1.48 256, 260 0.94 224, 274, –
B1g 278 292 2.27 1.16 284, 303 0.73 272, 315y , –
Ag 280 301 3.51 1.85 316, 307 1.21 305, 304, 307 3.90 1.63
B2g 295 320 3.95 1.86 327, 317 1.20 260, 318, –
B3g 300 321 3.40 1.63 329, 324 1.24 324, 323, –
Ag 302 326 3.86 1.81 333, 329 1.21 329, 329, 334 3.00 1.16
B1g 302 321 3.00 1.39 320, 322 1.07 318, 374y;376y

B2g 333 354 3.47 1.52 360, 367 1.16 318, 351, –
Ag 334 360 4.05 1.64 357, 345 1.19 340, 339, 341 4.98 1.87
B3g 348 365 2.83 1.13 370, 373 1.04 368, 365, –
B1g 353 374 3.42 1.40 383, 381 0.94 376, 410, 414 3.18 0.99
B2g 353 374 3.30 1.28 384, 391 0.90 418y , 383, –
B1g 399 425 4.15 1.35 418, 421 1.14 412, 435, 426 4.74 1.40
Ag 406 437 4.85 1.57 436, 425 1.36 424, 422, 426 4.75 1.43
B2g 417 445 4.35 1.39 444, 442 1.23 434, 434, 443
B3g 426 459 5.19 1.58 450, 451 1.27 441, 439, – 5.50 1.60
Ag 516 530 2.16 0.55 529, 560 0.77 546, 545, 548 2.25 0.53
B2g 540 564 3.70 0.93 569, 596 0.61 583, 582, 585
B3g 560 574 2.18 0.54 568, 608 0.57 588, 586, – 3.00 0.66
B1g 568 584 2.50 0.61 577, 609 0.58 595, 592, 593
Ag 577 598 3.24 0.76 596, 618 0.69 609, 608, 610 3.35 0.70
B2g 594 618 3.71 0.86 618, 645 0.68 632, 632, –
Ag 789 810 3.32 0.60 618, 645 0.68 632, 632, –
B2g 801 822 3.47 0.61 829, 835 0.48 839, 838, –
B2g 822 844 3.52 0.61 858, 866 0.40 866, 866, –
Ag 827 845 3.04 0.53 850, 856 0.42 856, 856, 856 3.27 0.49
B3g 846 865 3.03 0.50 877, 883 0.40 884, 881, 882 3.03 0.44
B1g 888 906 2.79 0.44 914, 927 0.36 922, 920, 920 2.75 0.38
Ag 930 960 4.80 0.71 965, 967 0.59 966, 965, 967 4.99 0.66
B2g 939 969 4.69 0.69 975, 979 0.59 976, 975, –
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that obtained at the predicted equilibrium volume; as already
pointed out above, a slightly better match can be obtained by cal-
culating the phonon frequencies at the experimental volume. In
any case, it can be seen that calculated frequencies fall in the right
range of values, and their pressure dependence is compatible with
that of the observed experimental values.

Next, we consider the perovskite structure as representative of
the phases with MgSiO3 composition. In Tables 10 and 11 we list
our calculated Raman and IR-active frequencies, respectively,
together with their pressure-derivatives and Grüneisen parame-
ters. Our data is once more compared to previous theoretical
results, in this case as obtained by Karki et al. (2000) and
Parlinski and Kawazoe (2000). We also compare our results to
the available experimental data. The perovskite structure of
MgSiO3 is orthorhombic (space group Pnma, though frequently
given in the non-standard setting of Pbnm). The atomic arrange-
ment within the primitive unit cell of the structure has D2h

(mmm) point group symmetry. It contains 4 formula units, giving
raise to 60 vibrational modes, 3 of which are acoustic, and the
remaining ones optic. A symmetry analysis of the atomic displace-
ments results in the following classification of the vibrational
modes:

Cvib ¼ 7Ag � 8Au �5B1g �10B1u �7B2g � 8B2u � 5B3g �10B3u; ð2Þ
of which the three acoustic modes transform according to irreduc-
ible representations B1u � B2u � B3u. As occurred in the case of for-
sterite, symmetric modes with respect to inversion (i.e. Ag ;B1g ;B2g

and B3g modes) are Raman-active, while the antisymmetric ones
are IR-active, with the exception of the Au modes, which are silent.
Thus there are a total of 24 Raman-active modes, and 25 optic IR-
active modes. In practice, as we shall see, the number of modes
actually observed in experiments is lower.

Comparing our phonon frequencies with previous predictions
by Karki et al. (2000) and by Parlinski and Kawazoe (2000), both
of whom used the LDA approximation, we can see that, as occurred
in the case of forsterite, our results approach the LDA frequencies
from below. The average discrepancy between our calculated fre-
quencies and the LDA results is � 20 cm�1, both for the Raman
and IR-active modes. Again, the agreement is better in the lower
frequency range, and gradually deteriorates with increasing fre-
quency (reaching values of � 30 cm�1), and much of the observed
discrepancy is attributable to the difference in predicted equilib-
rium volumes. It is revealing to note that, even though the theoret-
ical studies of Karki et al. (2000) and Parlinski and Kawazoe (2000)
used the same LDA exchange-correlation functional, their results
are not in perfect agreement with each other. Indeed, there is an
average discrepancy of � 15 cm�1 between them, which is not that
much smaller than the measured discrepancy to our own results,



Table 9
Infrared active modes of forsterite Mg2SiO4. mi and miðVexpÞ are calculated frequencies at the predicted T ¼ 0 K equilibrium volume and at the experimental volume (Hazen, 1976),
respectively. Only the transversal modes are given; frequencies are quoted in cm�1, and their pressure derivatives in cm�1 GPa�1. Our values are compared with the theoretical
calculations of Li et al. (2007) (a) and Noel et al. (2006) (b), and experimental data is taken from Iishi (1978) (c), Hofmeister (1987) (d) and Wang et al. (1993) (e).

Mode symmetry This work Other theory Experiment

mi miðVexpÞ dmi=dP ci mi ci mi dmi=dP ci

(a), (b) (a) (c), (d), (e) (e) (e)

B3u 128 139 1.86 2.32 146, 143 1.06 144, 142
B1u 185 203 2.90 2.29 205, 206 1.16 201, 201
B2u 189 192 0.56 0.62 194, 207 0.63 201, 276y

B2u 245 260 2.52 1.62 278, 278 0.57 224, 293
B1u 251 263 2.11 1.36 277, 275 0.57 224, 275
B3u 257 273 2.70 1.58 282, 277 0.80 224, 268
B3u 265 285 3.31 1.79 295, 292 0.74 280, 290
B1u 268 281 2.17 1.30 296, 294 1.04 274, 294
B2u 271 286 2.57 1.48 296, 290 0.81 274, 309
B2u 292 320 4.43 2.02 316, 313 1.11 296, 365
B1u 302 320 2.86 1.31 321, 322 1.12 293, 309
B3u 327 355 4.56 1.95 363, 350 1.27 294, 300
B1u 366 393 4.34 1.61 398, 388 1.13 320, 319y

B3u 376 397 3.37 1.25 398, 403 1.11 352, 345
B1u 385 412 4.18 1.45 407, 412 1.07 378, 377
B2u 387 410 3.72 1.38 426, 420 1.24 365, 412
B2u 404 435 4.96 1.65 428, 428 1.38 423, 463
B3u 405 431 4.16 1.38 427, 432 1.20 400, 398
B3u 435 461 4.07 1.27 463, 465 1.14 421, 418
B2u 452 475 3.47 1.00 475, 490 0.96 483, 502
B1u 452 480 4.31 1.29 482, 476 1.00 403, 405y

B3u 476 495 2.99 0.88 502, 517 0.74 465, 452
B1u 481 506 4.00 1.13 508, 513 0.89 498, 434
B2u 489 513 3.59 0.93 504, 514 0.87 502, 543, 517 2.02 0.50
B1u 515 538 3.56 0.92 531, 540 0.86 562, 505
B3u 516 542 4.05 1.04 530, 535 0.86 510, 504
B1u 580 598 2.71 0.64 593, 614 0.61 601, 601
B3u 602 623 3.36 0.77 617, 638 0.66 537, 520, 614 2.57 0.54
B3u 805 825 3.24 0.58 825, 835 0.48 838, 828
B1u 806 826 3.26 0.58 824, 838 0.48 838, 841, 846 2.58 0.39
B3u 833 854 3.18 0.53 868, 870 0.43 882, 865
B2u 842 861 2.99 0.50 870, 874 0.40 885, 865, 887 2.71 0.39
B1u 923 945 3.44 0.53 954, 962 0.41 957, 950, 962 2.38 0.32
B1u 943 972 4.59 0.67 975, 982 0.61 980, 897
B3u 950 981 4.75 0.69 985, 989 0.59 987, 984, 992 5.01 0.65

E.R. Hernández et al. / Physics of the Earth and Planetary Interiors 240 (2015) 1–24 11
obtained with a different functional. These differences should not
be surprising, however. It should be observed that there are
enough technical differences in the performance of the calculations
to account for these small discrepancies, such as the fact that both
studies used different implementations of DFT, obtained the pho-
non frequencies in different ways and accounted for core electrons
differently. It can thus be seen that our calculated phonon frequen-
cies are in good agreement with earlier theoretical results.

Let us now compare the calculated phonon frequencies against
experimental data. Raman and IR spectra of MgSiO3 perovskite
have been published by a number of authors, but as already men-
tioned above, not all the active modes are actually detectable; this
is particularly the case of the Raman data, where only up to 11
modes out of the expected 24 have been resolved in the experi-
ments of Durben and Wolf (1992). In some other reports, such as
that of Williams et al. (1987) only 4 peaks are clearly discernible.
Theoretical calculations of Raman peak intensities in MgSiO3

perovskite (Caracas and Cohen, 2006) have shown that peak inten-
sities can vary over more than two orders of magnitude, and are
sensitive to the excitation frequency employed and to other exper-
imental factors. Thus it is not surprising that not all modes can be
readily detected. The situation is slightly better in the case of IR
data, but here also it is not infrequent for some modes to go unde-
tected. Focusing on the Raman data first, we can see in Table 10
that the experimentally detectable modes are frequently Ag modes;
while modes of other irreducible representations are sometimes
seen, they tend to have lower intensities. Our calculated frequen-
cies are on average shifted down by some 20 cm�1 from the exper-
imental values. Again, part of this discrepancy can be attributed to
the difference in equilibrium volumes.

Table 11 lists, together with our calculated frequencies, exper-
imental TO frequencies as reported by Lu et al. (1994) and
Williams et al. (1987). The earlier study of Williams et al.
(1987) only observed 4 frequencies, while Lu et al. (1994)
detected 23 signals, only two short of the theoretical maximum
of 25 IR-active modes allowed by symmetry (see above). How-
ever, out of these 23 modes, one has a reported frequency of
877 cm�1, which seems to be significantly above any of the calcu-
lated frequencies in either this or previous theoretical studies
(Karki et al., 2000; Parlinski and Kawazoe, 2000). Our highest IR
frequency is calculated to be 767 cm�1, to be compared with
781 and 809 cm�1, as reported by Karki et al. (2000) and
Parlinski and Kawazoe (2000), respectively. While there are dis-
crepancies among the calculated highest frequencies, these
remain within the expected bounds, and this leads us to suspect
that the reported experimental mode frequency at 877 cm�1 may
be due to an empirical artefact. Because the number of observed
modes is lower than the calculated ones, it is not always possible
to find an unambiguous correspondence between the two. This is
particularly the case for the experimental modes falling in the
range 450–700 cm�1. So as to highlight that more than one corre-
spondence between calculated and experimental data is possible,



Fig. 7. Calculated Raman and infrared active phonon mode frequencies of forsterite vs. pressure. The left panel displays Raman active modes, Ag (red), B1g (blue), B2g (green)
and B3g (yellow); the black dots are obtained by interpolation from linear fits to the experimental Raman data of Chopelas (1990). In the right panel the frequencies of
infrared-active modes are shown; Au (red), B1u (blue), B2u (green) and B3u (yellow); black dots are obtained from linear fits to the experimental data of Wang et al. (1993). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 10
Raman active modes of perovskite MgSiO3. Frequencies are quoted in cm�1, and their pressure derivatives in cm�1 GPa�1. Our values are compared with the theoretical
calculations of Karki et al. (2000) (a) and Parlinski and Kawazoe (2000) (b), and experimental data is taken from Durben and Wolf (1992) (c) and Chopelas (1996) (d).

Mode symmetry This work Other theory Experiment

mi miðVexpÞ dmi=dP ci mi ci mi dmi=dP ci

(a), (b) (a) (c), (d) (d) (d)

Ag 209 219 1.14 3.01 234, 247 2.66 249, 245 2.01 2.14
B3g 233 250 2.73 1.93 258, 230 2.39 254, 251 1.98 2.06
B1g 258 275 2.54 2.15 277, 287 2.15
Ag 265 277 1.83 1.58 281, 275 1.54 282, 279 1.49 1.39
B2g 269 280 1.66 1.32 286, 266 1.23
B2g 315 327 2.04 1.09 331, 320 1.89 338, 327 1.77 1.41
B1g 323 337 2.08 1.71 338, 345 1.15 343, 334 2.09 1.63
B2g 352 367 2.39 1.35 376, 366 1.81 369, 370 1.50 1.06
Ag 365 381 2.73 1.13 380, 363 1.50 381, 379 1.76 1.21
Ag 376 394 2.74 1.76 400, 384 1.54 392, 387 1.99 1.34
B1g 414 439 3.86 1.90 445, 429 2.00
B3g 417 434 2.89 0.84 438, 429 1.21
Ag 475 501 4.01 1.72 518, 495 2.06 501, 499 3.44 1.80
B2g 490 510 2.85 1.63 512, 492 1.26
B3g 490 525 5.61 2.05 518, 537 2.46
B1g 497 533 5.69 2.20 541, 544 2.33
Ag 521 552 4.80 2.11 549, 558 1.86 542a

B2g 599 622 3.56 1.44 616, 613 1.29
B3g 602 623 3.23 1.25 623, 619 1.21
Ag 628 651 3.44 1.46 658, 648 1.29 666a

B2g 637 660 3.54 1.37 660, 649 1.28
B1g 753 789 6.08 0.95 783, 819 1.35
B2g 790 817 4.00 1.28 827, 835 1.25
B3g 808 837 4.35 1.29 848, 855 1.32
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when necessary, we list the relevant empirical frequencies
repeatedly in Table 11. The pressure behaviour of the mode fre-
quencies is displayed in Fig. 8, where it is compared to the exper-
imental data of Chopelas (1996) (Raman) and Williams et al.
(1987) (IR data). As with the case of forsterite seen above, the
agreement between calculated and experimental data in terms
of frequencies and pressure behaviour is not quantitative, but
falls in line with what is expected from the computational meth-
odologies that we have employed. This is true not only for the
mode frequencies themselves, but is reflected also in their pres-
sure derivatives and mode Grüneisen parameters (shown in
Tables 10 and 11), as was also the case for forsterite.



Table 11
Infrared-active modes of perovskite MgSiO3. For completeness the silent Au modes are also listed. Frequencies are quoted in cm�1, and their pressure derivatives in cm�1 GPa�1.
Theoretical values by Karki et al. (2000) (a) and Parlinski and Kawazoe (2000) (b) are also listed. Experimental data is from references Lu et al. (1994) (c), Williams et al. (1987) (d)
and Lu and Hofmeister (1994) (e). The assignment of experimentally measured frequencies to actual theoretical modes is not unambiguous; in such cases experimental
frequencies have been listed more than once (see text).

Mode symmetry This work Other theory Experiment

mi miðVexpÞ dmi=dP ci mi ci mi ci

(a), (b) (a) (c)

B2u 158 176 2.83 2.16 182, 157 3.05 180
B3u 230 243 2.01 1.78 251, 239 1.92 222 1:40e

B1u 247 262 2.32 1.80 272, 254 1.81 247 1:76e

B2u 288 304 2.37 1.66 309, 292 1.64 262 1:29e

B1u 301 319 2.62 1.91 326, 303 1.90 386 1:49e

B3u 327 348 3.18 1.90 348, 324 1.98 317 1:17e

B3u 364 385 3.17 1.72 391, 380 2.06 343 1:28e

B3u 408 425 2.71 0.99 422, 426 1.22 388
B1u 418 434 2.56 0.75 435, 434 1.08 415
B2u 419 448 5.06 0.59 446, 452 1.97 430
B1u 448 470 3.29 1.78 475, 458 1.87 444
B2u 459 488 4.60 1.76 486, 478 1.72 466, 484
B3u 464 489 3.97 1.78 504, 485 1.81 466, 484
B1u 487 515 4.36 2.04 511, 505 1.67 484, 496
B3u 508 533 3.73 1.86 549, 506 1.72 534
B1u 544 566 3.59 1.25 574, 566 1.54 534, 544d 1:44� 1:57d

B2u 559 576 2.60 1.24 598, 604 1.37 614, 614d

B1u 564 584 2.91 1.71 597, 591 1.38 597
B3u 631 652 3.11 1.26 675, 606 1.39 679, 683d 1:39� 1:52d

B2u 671 705 5.23 1.92 710, 701 1.80 679, 683d 1:15� 1:29d

B1u 692 710 2.80 0.97 711, 722 0.93 705
B2u 699 731 4.80 1.79 723, 745 1.67 721
B3u 716 742 3.83 1.78 761, 748 0.96
B1u 749 779 4.52 1.60 776, 794 1.26 771
B3u 762 783 3.13 1.03 781, 809 1.52 780, 797d 1:21� 1:30d

Au 181 187 0.98 1.10 180b

Au 252 267 2.28 2.02 253
Au 341 355 2.18 0.60 368
Au 369 382 2.12 0.86 383
Au 465 493 4.59 1.65 495
Au 582 604 3.49 1.03 617
Au 630 667 5.69 2.31 685
Au 712 744 4.91 1.74 763
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3.3. Theoretical phase diagrams of Mg2SiO4 and MgSiO3

As detailed for the particular cases of forsterite and the perov-
skite structure of MgSiO3 above, we have also computed the total
energies and phonon frequencies of wadsleyite and ringwoodite
(Mg2SiO4), and of akimotoite and majorite (MgSiO3), together with
those of MgO periclase and SiO2 stishovite. This was done at a ser-
ies of volumes approximately corresponding to a zero-temperature
pressure range of ��20 to 30 GPa. As noted above, in the interest
of space we will not discuss the results obtained for the remaining
structures here (numerical values of phonon frequencies, their
pressure derivatives and Grüneisen parameters are provided in
the appendix for structures wadsleyite, ringwoodite and akimoto-
ite; those of majorite are listed in the accompanying supplemen-
tary information file, where we also give plots of the vibrational
band structures of MgO periclase and SiO2 stishovite); suffice it
to say that for all structures results were obtained of comparable
quality to those of forsterite and the perovskite phase. This mass
of data allows us to extend the zero-temperature phase diagram
that can be deduced from the enthalpies of the various phases con-
templated here, as seen in Fig. 2, to finite temperatures, by resort-
ing to the quasi-harmonic approximation to the vibrational free
energy. Let us first describe briefly our calculation procedure to
do this.

As noted in Section 2, equilibrium volumes and relaxed config-
urations were determined for each structure at pressure intervals
corresponding to approximately 2.5 GPa in a pressure range of
�20 to 30 GPa. At each volume the phonon frequencies were calcu-
lated as detailed above, over a dense grid of wave vectors spanning
the 1st Brillouin zone. This allowed us to calculate the Helmholtz
free energy within the quasi-harmonic approximation, as well as
other thermal properties such as the entropy and constant volume
heat capacity at each volume. The Helmholtz free energy of a
defect-free lattice can be split as (Gillan et al., 2006):

FðT;VÞ ¼ FlattðT;VÞ þ Fv ibðT;VÞ; ð3Þ

where Flatt is the free energy of the perfect (non-vibrating) lattice,
and Fvib is the contribution due to the atomic dynamics. In the case
of non-metallic systems, at temperatures at which electron excita-
tions into conduction bands are negligible, the first term reduces to
the total energy of the perfect lattice, which is then temperature-
independent. All the systems considered in this study have sizeable
gaps (see Section 2), and thus fall in this category. The second term
can be easily estimated within the harmonic approximation, by
viewing the dynamical lattice as an ensemble of harmonic oscilla-
tors, for which the free energy can be evaluated analytically as:

FvibðT;VÞ � FqhðV ; TÞ ¼ kBT
X
n;k

ln 2 sinh
�hxnk

2kBT

� �� �
; ð4Þ

where kB is Boltzmann’s constant, �h ¼ h=2p;h being Plank’s con-
stant, and the sum extends over all vibrational modes and wave



Fig. 8. Calculated Raman and infrared active phonon mode frequencies of MgSiO3 perovskite vs. pressure. The left panel displays Raman active modes, Ag (red), B1g (blue), B2g

(green) and B3g (yellow); the black dots show experimental Raman data by Chopelas (1996), with the black dot-dash lines being linear interpolations to it. In the right panel
the frequencies of infrared-active modes are shown; Au (red), B1u (blue), B2u (green) and B3u (yellow); black dots are obtained from the experimental data of Williams et al.
(1987). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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vectors within the 1st Brillouin zone. The neglect of anharmonicity
is a reasonable approximation at low and moderate temperatures,
but it is not valid close to the melting point, where anharmonicity
effects make a substantial contribution to the free energy. The cal-
culation of anharmonic corrections is possible, for example by
resorting to thermodynamic integration techniques (Hernández
et al., 2007), but we have not done so in this study. Eq. (4) can be
further simplified when �hxnk � kBT , corresponding to the classical
limit of the ensemble of harmonic oscillators, in which case we
have:

FclðV ; TÞ ¼ kBT
X
n;k

ln
�hxnk

kBT

� �
: ð5Þ

Thus, our calculations of phonon frequencies in this study, together
with Eqs. (4) [or (5) in the classical limit] allowed us to tabulate the
Helmholtz free energy on a T-V grid for each structure considered in
this study. From this it is straight-forward to obtain other thermal
properties, such as the entropy, S, or pressure, P, given by

SðT;VÞ ¼ � @F
@T

� �
V

; ð6Þ

PðT;VÞ ¼ � @F
@V

� �
T

: ð7Þ

The latter expression contains a thermal contribution to the pres-
sure coming from Fv ib in Eq. (3). Evaluating FðV ; TÞ using Eqs. (3)
and (4), and PðT;VÞ according to Eq. (7), it is a straight-forward mat-
ter to compute the Gibbs free energy,

GðT; PÞ ¼ FðT;VÞ þ PðT;VÞV ; ð8Þ

which is actually the relevant thermodynamic potential required to
analyse the stability of the various phases of a material in the tem-
perature-pressure domain. At any given pressure and temperature,
the thermodynamically stable phase is that having the lowest Gibbs
free energy. Once the Gibbs free energy is available for each phase,
there are other properties that become easily accessible, such as the
specific heat, CP , and the thermal expansion coefficient, a, which are
useful in order to gauge the degree of fidelity with which our com-
putations reproduce the actual materials of relevance to this study.

In practice our numerical procedure was as follows: for each
structure and volume, the Helmholtz free energy was tabulated
on a thin temperature grid, ranging up to 3000 K, using Eqs. (3)
and (4). Then, for every structure, FðT;VÞ was fitted to a 5rd-order
Chebyshev polynomial in V along the isotherms in the T-V grid. The
behaviour of FðT;VÞ was always very smooth, and such a polyno-
mial expression was found to be perfectly adequate. From this fit
GðT; PÞ was derived using Eqs. (7) and (8), and tabulated over a
T-P grid spanning the same temperature range as FðT;VÞ, and pres-
sures from 0 to 30 GPa (in the low temperature limit). As noted
above, from the tabulated FðT;VÞ and GðT; PÞ data, appropriately
manipulated, it is possible to obtain the materials properties, such
as the thermal expansion coefficient, a or the specific heat at con-
stant pressure, CP , defined respectively as

a ¼ 1
V

@V
@T

� �
P

; ð9Þ

CP ¼
@H
@T

� �
P
; ð10Þ

where H ¼ GðT; PÞ þ ST is the enthalpy. These properties and a few
others are presented in Figs. 9 and 10, with numerical values at
ambient conditions given in Table 12, where they are compared
against both results from other theoretical studies and experimen-
tal data. In fact this comparison provides an independent means
through which to gauge the accuracy and reliability of our theoret-
ical results. Specifically, Table 12 lists values of a, the entropy S, and
the specific heats (calculated at constant volume and constant pres-
sure), evaluated at ambient conditions, namely T ¼ 300 K and
P ¼ 0 GPa. The data shown in Table 12 makes clear that there is a
general consistency between the theoretical data. Small differences
between calculated data exist; one discernible trend is that our cal-
culated values for thermal expansion coefficient, entropy and spe-
cific heats tend to be slightly larger than those predicted by other
functionals that result in smaller equilibrium volumes (LDA,



Fig. 9. Some thermal properties of the minerals with Mg2SiO4 composition vs. temperature at 0, 10 and 20 GPa pressure. Results are shown for the thermal expansion
coefficient, a, the molar entropy, S and the specific heat at constant pressure, CP . Experimental data is from Suzuki (1975), Anderson and Suzuki (1983), Matsui and
Manghnani (1985), Chopelas (1990), Chopelas (1991b), Akaogi et al. (2007), Chopelas (2000), Chopelas et al. (1994) and Watanabe (1982).
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B3LYP). But generally these differences are small. As regards com-
parison with the experimental data, let us first take the case of
the thermal expansion. It can be seen that our theoretical values
tend to be larger than the empirical ones, with differences that
sometimes reach �20%. We note however that the discrepancies
between different experimental reports can also be of the same
order of magnitude, and is not infrequent for the calculated values
to fall within the range spanned by the experimental data (this



Fig. 10. Some thermal properties of the minerals with MgSiO3 composition vs. temperature at 0, 10 and 20 GPa pressure. Results are shown for the thermal expansion
coefficient, a, the molar entropy and the specific heat at constant pressure. Experimental data is from Chopelas (2000), McMillan and Ross (1988), Hofmeister and Ito (1992),
Watanabe (1982), Ashida et al. (1988), Yusa et al. (1993), Akaogi and Ito (1993) and Akaogi et al. (2008).
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occurs e.g. for fo and wa). A noticeable trend in the phases with
Mg2SiO4 composition is that a diminishes along the fo-wa-ri
sequence, i.e. a is smaller the higher the pressure at which the cor-
responding phase becomes stable. This trend is discernible both in
the theoretical results as well as the experimental data.
As with the thermal expansion coefficients, our calculated
entropies are also found to be larger (typically by �10%) than their
measured counterparts. This is not surprising in view of the fact
that our equilibrium volumes are also predicted to be larger. How-
ever, entropy differences between phases generally fall within the



Table 12
Some thermal properties of the different materials considered in this study. All properties have been evaluated at 300 K and 0 GPa on the basis of the quasi-harmonic
approximation. a is the thermal expansion coefficient, S is the molar entropy, and Cv ;Cp are the specific heat at constant volume and constant pressure, respectively. For each
structure, the first row lists calculated results from this work and other theoretical studies, while the second row lists available experimental values. Calculated data reported by
other authors: (a) Ottonello et al. (2009) (B3LYP); (b) Li et al. (2007) (LDA); (c) Wu and Wentzcovitch (2007) (LDA); (d) Yu and Wentzcovitch (2006) (LDA); (e) Karki (2002) (LDA);
(f) Karki et al. (2000) (LDA); (g,h) Yu et al. (2011) (g LDA, h PBE); (i) Karki et al. (2000b) (LDA); (j) Oganov et al. (2005) (LDA). Experimental data is quoted from the following
references: (k) Chopelas (1996) (l) Chopelas (2000) (m) Kroll et al. (2012), Matsui and Manghnani (1985) (o) Trots et al. (2012) (p) Chopelas (1990) (q) Chopelas (1991b), Chopelas
et al. (1994), (s) Akaogi et al. (1984) (t) quoted by Chopelas (2000) from other sources; (u) Robie et al. (1982).

Structure a� 105 ðK�1Þ S (JK�1mol�1) Cv (JK�1mol�1) Cp (JK�1mol�1)

fo 2.93, 2:86a;2:64b 101.3, 92:5a;95:9b 120.50 122.65, 116:8a;119:3b

2:47k;2:6m;2:81n;3:23o 94:29p;95:18s;95:85u 116:4r
116:21i;119:1u

wa 2.51, 2:6a;2:21c 93.40, 85:7a;88:67c 119.00 122.21, 116:8a;118:1c

1:89k;2:14� 2:34o 85:87q;87:4f 113:2t 112:2s

ri 1.90, 1:76a;1:97d 88.90, 80:23a;85d 119.41 120.57, 113:2a . 116:9d

1:84k 77:4	 0:6r ;84:98s 112:1t 113	 0:3r ;110:71s

ak 2.13, 1:88e;1:92h 59.50, 52:66e
82.07, 80:1h 83.19, 78:4e;82:7h

1:75� 2:44l 77:4t

mj 2.15, 2:5g ;2:9h 63.20 83.58 85.65, 83:0g ;79:8h

2:24l 79:9t

pv 2.25, 2:15f ;2:19h 63.20 83.58 85.65, 81:85f ;82:61h

1:75l 58:2	 0:3k 81:9t 82:7	 0:06k

st 1.25 25.70, 26:81j 42.24, 36:58j 42.73

1:36l 41:4t

pe 3.41, 3:10i 29.48, 26:65s 37.64 38.63, 37:06s

2:79� 3:10k 36:4t
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experimental error bounds, as can be appreciated in Table 13,
where we list the entropy and enthalpy differences at ambient con-
ditions found in the Mg2SiO4 phases, comparing them to the calo-
rimetric data of Akaogi et al. (2007). One exception to this rule is
observed in the case of the wa-ri entropy difference, which we cal-
culate to be �2:4 J/mol/K, a value which appears to be significantly
smaller (in absolute value) than the experimental value of
�3:7	 0:6 J/mol/K.

Having evaluated GðT; PÞ [Eq. (8)] over a dense grid of T-P values
as indicated above, determining the T-P phase diagram of Mg2SiO4

was then a simple matter of looping over all points in the T-P grid
and checking, on each of them, which was the phase predicted to
have the lowest Gibbs free energy value. Due to the different stoi-
chiometries considered here, to the Gibbs free energies of akimot-
oite, majorite and the perovskite phase of MgSiO3, that of periclase
(MgO) at the same temperature and pressure conditions has to be
added so as to make all phases chemically consistent. In the partic-
ular case of stishovite, it is necessary to add the Gibbs free energy
of two formula units of MgO. We have thus obtained two phase
diagrams for Mg2SiO4, one based on the full (quantum) quasi-har-
monic approximation to the Helmholtz free energy [Eq. (4)], and a
second one based on its classical limit [Eq. (5)]. Only the first is
shown in Fig. 11, as they are indistinguishable except at low tem-
peratures. Altogether, six stability fields are displayed in the figure,
corresponding to forsterite (green), wadsleyite (light blue), ring-
woodite (purple), akimotoite plus periclase (red), perovskite plus
periclase (dark blue), and stishovite plus periclase (yellow). The
phase boundaries appear as white lines, and within each stability
field the colour intensity increases in proportion to the free energy
difference between the most stable phase and the second most sta-
ble phase. Contour lines (every 0.025 eV/f.u.) quantify the magni-
tude of such free energy differences. The small energy interval
for the contour lines testifies to the difficulties involved in accu-
rately determining stability fields and phase boundaries: indeed,
small inaccuracies in relative free energies can considerably shift
the position of a phase boundary in temperature and/or pressure.
In constructing the phase diagram displayed in Fig. 11 we have
for clarity omitted to include the data for phase majorite (plus peri-
clase). Our results indicate that this phase would have a stability
field coming down to �2000 K, which would then wipe out the
wadsleyite-perovskite-plus-periclase phase boundary and also
the wadsleyite-ringwoodite-perovskite-plus-periclase triple point.
Although a stability field of majorite-plus-periclase in this range of
temperatures cannot be entirely ruled out, and one may indeed
exist at slightly higher temperatures [see Stixrude and Lithgow-
Bertelloni (2011)], we take the view that a stability field of majorite
at temperatures as low as �2000 K is probably an artefact due to
the neglect of anharmonicity effects in this temperature range,
or, perhaps more likely the result of neglecting the effects of cation
disorder in the octahedral sites in this structure. Indeed, Belmonte
(2013) has argued that small amounts of cationic disorder would
be sufficient to significantly raise the stability field of majorite in
temperature.

Excluding, as indicated above, the stability field of majorite plus
periclase, the predicted phase diagram displayed in Fig. 11 repro-
duces qualitatively the expected topology in the true phase dia-
gram of Mg2SiO4, as deduced from experiments. At low
temperatures the sequence of phases found as pressure is
increased matches that found at zero temperature and obtained
on the basis of enthalpy alone [see Fig. 2]. According to the data
displayed in Fig. 11, we can see that the ri–ak+pe–pv+pe triple
point occurs at T ¼ 1565 K and P ¼ 22:9 GPa; a second triple point,
between phases wa–ri–pv+pe, is predicted to occur at T ¼ 2452 K
and P ¼ 19:3 GPa. The stability field of the st+pe combination is
found to be rather small, extending only up to low temperatures.
Indeed, as can be appreciated in Fig. 11, a triple point between
phases ak+pe–pv+pe–st+2pe is to be found approximately at
T ¼ 125 K, P ¼ 27:8 GPa, and even at temperatures below this,
the paleness of colour in the stability field of st+2pe indicates that
this combination is not predicted to be strongly dominant any-
where in the phase diagram of Mg2SiO4.

The slopes of phase boundaries are of particular interest, as
these are often estimated experimentally, thus providing a means
to gauge the degree of accord between simulation predictions and



Table 13
Entropy and enthalpy differences at ambient conditions (298 K and 0 GPa) between
the various phases of Mg2SiO4 considered in this study. Calorimetry results are
quoted from Akaogi et al. (2007).

Transition DS (J/mol/K) DH (kJ/mol)

fo–wa this work �8:2 30.2
exp. �7:7	 0:4 27:2	 3:6
wa–ri this work �2:4 12.3
exp. �3:7	 0:6 12:9	 3:3
fo–ri this work �10:6 42.5
exp. �11:4	 0:5 40:1	 3:1

Fig. 11. Theoretical phase diagram of Mg2SiO4. The colour coding is: green:
forsterite; light blue: wadsleyite; purple: ringwoodite; red: akimotoite plus
periclase; dark blue: perovskite plus periclase, and yellow: stishovite plus periclase.
Phase boundaries are marked in white, and the intensity of colour within each
stability field is proportional to the local free energy difference between the most
stable and second most stable phase. Marked contour lines quantify this difference,
in units of eV/f.u. Symbols represent experimental phase determinations carried out
at temperature and pressure conditions indicated by the coordinates of each
symbol, and are coloured according to the same code indicated above. Square
symbols represent data from Katsura et al. (2003); circles, data from Suzuki et al.
(2000); upward-pointing triangles, data from Fei et al. (2004); diamonds, data from
Morishima et al. (1994); right-pointing triangles, data from Ito and Takahashi
(1989), and left-pointing triangles, data from Ono et al. (2001). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 12. Theoretical phase diagram of MgSiO3. The colour coding is: gray: majorite;
red: akimotoite; blue: perovskite. Phase boundaries are marked in white, and the
intensity of colour within each stability field is proportional to the local free energy
difference between the most stable and second most stable phase. Marked contour
lines quantify this difference, in units of eV/f.u. Symbols represent experimental
phase determinations carried out at temperature and pressure conditions indicated
by the coordinates of each symbol, and are coloured according to the same code
indicated above. The diamond is from Presnall et al. (1998); circles, data from
Hirose et al. (2001); upward-pointing triangles, data from Fei et al. (2004); left-
pointing triangles, data from Ono et al. (2001), and right-pointing triangles, data
from Chudinovskikh and Boehler (2001). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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experimental results. As can be seen in Fig. 11, the phase bound-
aries that result from our calculations are not simple straight lines,
and thus do not have a constant slope. For example, the slope of the
fo–wa coexistence line at T ¼ 1000 K and P ¼ 13:8 GPa is 2.4 MPa/
K, while at T ¼ 1500 K, P ¼ 14:9 GPa it is 2.1 MPa/K. Experimen-
tally determined slope values for this phase boundary range
between 1.8 and 4 MPa/K (Akaogi et al., 1989; Katsura and Ito,
1989; Morishima et al., 1994; Katsura et al., 2004). Our own values
fall towards the lower end of this range. Comparing to other theo-
retical calculations, Yu et al. (2008) obtained a slope value of
2.5 MPa/K, employing a similar computational approach to the
one used here. This value is very close to the one we obtain at
T ¼ 1500 K. For the wa–ri phase transition we obtain slope values
of 2.8 and 3 MPa/K at 1500 and 1700 K, respectively. These appear
to be somewhat lower than the range of experimental values
reported in the literature, 4.1–6.1 MPa/K (Suzuki et al., 2000;
Inoue et al., 2006). A previous theoretical estimate by Yu et al.
(2008) (3.5 MPa/K) is more in line with our own, but still slightly
larger than it.

The slope of the ri–pv+pe post-spinel transition is of great geo-
physical interest, as this phase transition is widely believed to be
the main contributor to the seismic discontinuity marking the
boundary between the transition zone and the lower mantle. Fur-
thermore, the slope of this coexistence line could determine the
nature of convection in the mantle (Christensen, 1995). A large
slope would suggest that the 660 km discontinuity poses a signif-
icant barrier to global mantle convection. Conversely, a shallow
slope would favour a global mantle convection model. At 1873 K
we obtain a coexistence pressure of P ¼ 22:1 GPa with a slope of
�3:4 MPa=K. Averaging over the entire calculated coexistence line
we obtain a mean slope value of �3:9	 1:3 MPa=K. Experimental
estimations of the slope of this coexistence line seem to fall into
two different ranges. Measurements by Ito and Takahashi (1989),
Akaogi and Ito (1993), Irifune et al. (1998), Shim et al. (2001),
Chudinovskikh and Boehler (2001) and Ye et al. (2014) favour val-
ues in the range �3 to �2:6 MPa=K. On the other hand, Katsura
et al. (2003), Fei et al. (2004) and Litasov et al. (2005) favour values
in the range �1:3 to �0:4 MPa=K. This apparent discrepancy
among different empirical results testifies to the practical difficul-
ties involved in extracting an accurate estimate of the slope when
the phase boundary itself is insufficiently constrained. Our results
tend to favour the larger (in absolute value) slope range, in agree-
ment with previous theoretical results by Yu et al. (2007)
(�2:9 MPa=K at 1900 K using GGA). As yet unpublished results
from an all-electron B3LYP study by Belmonte (2013) find a value
of �3:6 MPa=K, in very good agreement with our own value.

The slope of ri–pv+re post-spinel transition is also used in seis-
mic studies to estimate the temperature anomalies associated with
plumes and slabs. High temperatures would result in a shallow
transition and the opposite for cold. Our results suggest that the
deflection of the 660 km discontinuity should be as large or even
greater than for the 410 km. Moreover, recent studies have seen
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deflections on the order of 34 km or so Day and Deuss (2013). If our
large slope is correct, this can be the result of an anomaly of only
350 K. The much lower slope of 1 MPa/K found in some studies
would require unrealistic temperature anomalies of over 1000 K.

For the ilmenite-perovskite transition we obtain a mean slope
of �3:5	 0:8 MPa=K, averaged over the whole ak+pe–pv+pe phase
boundary. Closer to the ri–ak+pe–pv+pe triple point the slope
increases (in absolute value) to values comparable to those of the
ri–pv+pe coexistence line, i.e. � �4 MPa=K. This transition has
been investigated experimentally by Ito and Takahashi (1989),
who extracted a slope estimate of �2:5 MPa=K. Later, Ono et al.
(2001) reported a slope of �2:9	 2 MPa=K using Au as the
pressure standard, and a value of �3:5	 2:4 MPa=K using the Pt
pressure standard. Similar experiments were conducted by
Hirose et al. (2001), who reported a slope estimate of
�2:7 MPa=K. Chudinovskikh and Boehler (2004) have obtained a
slope of �4	 0:2 MPa=K using diamond-anvil cell measurements.
Our result falls closer to the more negative values found by Ono
et al. (2001) and by Chudinovskikh and Boehler (2004), but is not
incompatible with the less negative ones found by other authors,
and falls within the range of experimentally reported values. Yu
et al. (2011) calculate a steeper Clapeyron slope of �6	 1 MPa=K
for this transition.
Table A.14
Raman-active vibrational modes of wadsleyite. Frequencies are given in ðcm�1Þ, and their
experimental volume quoted by Hazen et al. (2000). Other theoretical data is quoted fro
Tentative mode assignments are based on best matchings between calculated data at the

Mode symmetry This work

mi miðVexpÞ dmi=dP ci

B2g 194 197 1.06 0.68
B1g 207 217 4.03 2.25
B3g 220 226 2.39 1.27
Ag 249 258 3.52 1.65
B1g 251 260 2.53 1.42
B3g 263 269 2.46 0.99
B2g 264 270 1.52 0.91
Ag 275 282 1.90 1.02
B3g 285 295 2.51 1.31
B1g 286 295 1.90 1.04
B2g 312 325 3.38 1.56
Ag 330 341 2.74 1.24
B1g 339 350 3.10 1.25
B3g 343 357 3.09 1.47
B2g 349 358 3.11 1.09
B1g 361 379 3.73 1.71
B2g 377 398 3.69 1.78
B3g 382 395 3.02 1.25
Ag 386 400 3.91 1.39
B3g 413 425 2.51 0.98
Ag 420 431 3.68 1.25
Ag 431 447 3.65 1.32
B1g 435 448 1.68 0.87
B3g 465 477 3.43 0.95
B2g 473 484 2.46 0.85
B3g 509 529 4.77 1.47
Ag 542 560 5.35 1.33
B2g 554 563 2.66 0.65
B3g 564 582 3.09 1.01
B2g 589 613 4.62 1.38
Ag 607 618 4.46 0.99
Ag 692 710 3.49 0.80
B3g 747 770 5.31 1.13
B3g 803 822 4.42 0.86
Ag 849 873 5.21 1.02
B1g 854 877 5.43 0.97
B2g 872 895 5.47 0.95
Ag 882 902 4.22 0.76
B3g 893 917 5.40 0.96
We are not aware of any previous experimental report on the
ri–ak+pe phase boundary and its slope. Contrary to the cases of
wa–pv+pe and ri–pv+pe boundaries, where the slope is found to
be negative, the slope of the ri–ak+pe phase boundary is positive,
with an average value of 1:65	 0:6 MPa=K. Yu et al. (2011) have
estimated a Clapeyron slope of 1.2 MPa/K for this transition, which
is slightly shallower than ours but falls within our estimated error
bars for this slope.

Finally, in Fig. 12 we illustrate the phase diagram of MgSiO3 in
the neighbourhood of the mj-ak-pv triple point. This phase dia-
gram has been calculated from the same data and following the
same procedure as for that of Mg2SiO4 [see Fig. 11], but considering
only the relevant MgSiO3 phases. According to our results, the mj-
ak-pv triple point is located at 20.5 GPa and 2040 K. This value is
reasonably close to that quoted by Hirose et al. (2001), 20 GPa
and 2193 K. On the other hand, Yu et al. (2011) calculate the posi-
tion of the triple point to be 21.8 GPa and 1840 K using a similar
computational procedure to the one we have employed, while
Belmonte (2013) using and all-electron B3LYP calculation locate
it at 21:09	 0:13 GPa and 2247	 31 K. We calculate the value of
the slope of the mj-pv boundary to be 1.1 MPa/K. This value is in
very good agreement with that of a previous theoretical calculation
by Yu et al. (2011) (1.2±0.3 MPa/K using a GGA functional); it is
pressure derivatives in ðcm�1 GPa�1Þ. The third column lists data interpolated at the
m Wu and Wentzcovitch (2007). The experimental data is from Chopelas (1991b).
experimental equilibrium volume and experimental frequencies.

Other theory Experiment

mi ci mi dmi=dP ci

201 0.60 199
230 1.69 214 2.1 1.7
232 1.34 231 1.68 1.25
267 1.48 252 1.18 0.81
264 1.66 262 1.80 1.19
275 0.69 273 1.40 0.88
270 1.04
285 1.18 279 1.02 0.63
303 1.59 297
297 1.18 311 1.60 0.89
334 1.66 326 3,02 1.59
344 1.34 341 2.68 1.36
360 1.34 360
361 1.41
367 1.45 370 1.58 0.74
386 1.82 382 3.48 1.58
400 1.82 398 3.15 1.37
401 1.62
406 1.58
425 1.08 426 2.40 0.97
424 1.39 443 3.47 1.35
455 1.29
448 0.94 460
482 0.96
484 0.92 491 1.95 0.69
544 1.34
557 1.32 553 4.31 1.34
564 0.75
578 1.02 580 3.50 1.04
625 1.51 610
607 0.77 620 2.48 0.69
712 0.91 723 3.37 0.80
786 1.16 778 4.83 1.07
829 0.92 812
895 1.02 845 3.98 0.81
891 1.05 885
914 0.99
911 0.91
935 0.98 919 4.40 0.83



Table A.15
Infrared-active vibrational modes in wadsleyite. The Au modes (7 in total) are silent, and have been listed separately. There are 13 B1u modes, 12 B2u modes and 10 B3u modes.
Other theoretical data is quoted from Wu and Wentzcovitch (2007). Experimental data is quoted from Cynn and Hofmeister (1994).

Mode symmetry This work Other theory Experiment

mi miðVexpÞ dmi=dP ci mi ci mi dmi=dP ci

B3u 173 180 2.45 1.59 191 1.24 192 0.46 0.41
B2u 194 202 3.89 2.19 216 1.47 210 0.18 0.15
B3u 247 248 0.99 0.23 252 0.17 265 0.00 0.00
B1u 247 256 3.44 1.56 267 1.33
B1u 275 285 4.76 1.84 300 1.41 290 2.13 1.26
B2u 275 281 2.11 0.92 285 1.30
B3u 280 288 2.63 1.26 295 1.26
B2u 302 307 2.05 0.78 313 0.84 315 2.29 1.30
B3u 314 324 3.19 1.38 332 1.62
B1u 326 336 4.08 1.44 354 1.58 336
B2u 340 354 3.59 1.53 359 1.44 345
B1u 341 358 3.77 1.71 358 1.37
B3u 343 355 2.86 1.22 359 1.40
B1u 357 375 3.16 1.61 380 1.75 375
B3u 389 407 3.01 1.44 411 1.51 407
B2u 401 418 4.07 1.57 427 1.50
B1u 410 425 3.80 1.33 431 1.54
B2u 437 452 3.09 1.16 455 1.20 461 2.67 0.96
B2u 446 460 2.85 1.08 462 1.05
B1u 452 468 3.83 1.29 469 1.32
B3u 462 481 4.34 1.42 488 1.26
B1u 479 493 2.54 0.96 498 1.11 501 1.51 0.52
B2u 498 513 2.93 0.98 514 1.07 513 2.79 0.93
B3u 507 524 4.25 1.25 535 1.25
B3u 525 547 3.22 1.26 551 1.18 541 3.6 1.13
B1u 547 561 5.57 1.24 553 1.23
B2u 557 581 5.35 1.50 590 1.26 584 2.99 0.86
B1u 585 595 3.57 0.82 587 1.09
B1u 675 695 4.56 1.05 699 1.16 690 4.06 1.00
B2u 756 779 5.23 1.10 794 1.14 760
B2u 806 825 4.39 0.87 833 0.94
B1u 838 860 5.00 0.98 872 0.98 868
B1u 873 895 5.08 0.91 910 0.93 890 4.10 0.77
B2u 906 929 4.68 0.89 947 0.94 935 4.91 0.90
B3u 882 903 4.94 0.87 918 0.96

Au 205 209 1.63 0.93
Au 264 276 3.15 1.67
Au 355 369 3.12 1.40
Au 374 386 2.86 1.17
Au 539 549 2.38 0.68
Au 876 898 5.30 0.92
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also in good agreement with the experimental value determined
by Hirose et al. (2001) (1.3 MPa/K). As for the mj-ak phase bound-
ary, this is calculated to have a slope of 7.2 MPa/K, a value which is
in very good agreement with that previously reported by Yu et al.
(2011), who found a value of 7:4	 0:5 MPa=K.
4. Summary and conclusions

We have conducted a thorough computational study of the rel-
ative stability of various geophysically relevant phases of MgSiO3

and Mg2SiO4 composition. Total energies and relaxed structures
have been obtained on the basis of DFT calculations. Harmonic
phonon frequencies have been obtained and classified for each
structure at a range of volumes, and quasi-harmonic free energies
have been derived from them. The Gibbs free energy for each phase
has been tabulated on a fine temperature-pressure grid spanning
the range of environmental conditions relevant to the bottom of
the upper mantle, the transition zone and the top of the lower
mantle. While the quasi-harmonic treatment is expected to break
down at high temperatures, it is nevertheless expected to provide
a qualitatively correct picture of the phase diagrams. The actual
location of phase boundaries is very sensitive to relative errors in
the free energies, but the slopes of coexistence lines are expected
to be more robust. Our calculated phase diagrams for Mg2SiO4
and MgSiO3 seem to reproduce the major features of the corre-
sponding phase diagrams obtained from experimental measure-
ments and thermodynamic models (Stixrude and Lithgow-
Bertelloni, 2011), and is also in general good agreement with the-
oretical results obtained previously for individual coexistence lines
(Wentzcovitch et al., 2010 and refs. therein).
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Appendix A. Vibrational properties of Wadsleyite

Wadsleyite has an orthorhombic structure with space group
Imma. The arrangement of atoms within the primitive cell has
point group symmetry D2h (mmm). Using this information, together
with the data reported in Table 4, the lattice phonons at the zone



Table B.16
Ringwoodite vibrational modes symmetric with respect to inversion. The A1g ; Eg (doubly degenerate) and T2g (triply degenerate) modes are Raman active; the T1g (triply
degenerate) mode is silent (Raman and IR inactive). Frequencies are given in ðcm�1Þ, and their pressure derivative in ðcm�1 GPa�1Þ. The second column, headed by miðVexpÞ, gives
the frequency of the corresponding mode interpolated at the experimental volume given by Hazen et al. (1993) (see Table 2). Other theoretical results are quoted from Yu and
Wentzcovitch (2006) (a) and Piekarz et al. (2002) (b); experimental data is from references Chopelas et al. (1994) (c) and McMillan and Akaogi (1987) (d).

Mode symmetry This work Other theory Experiment

mi miðVexpÞ dmi=dP ci mi mi mi mi

(a) (b) (c) (d)

T2g 281 292 2.88 1.68 309 282 302 302
T1g 329 339 2.43 1.23 317
Eg 357 366 2.43 1.12 375 343 372 370
T2g 574 584 2.65 0.75 586 571 600 600
T2g 765 789 6.37 1.37 817 778 796 794
A1g 795 816 5.33 1.11 831 805 834 836
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centre can be decomposed into the following irreducible
representations:

Cwa ¼ 11Ag � 7Au � 7B1g � 14B1u � 9B2g � 13B2u � 12B3g � 11B3u:

ðA:1Þ

This translates into a total of 39 Raman active modes (Ag ;B1g ;B2g

and B3g), and 38 infrared active modes (B1u;B2u and B3u), including
the three acoustic modes, with species B1u � B2u � B3u. The Au modes
are silent.

Tables A.14 and A.15 list our calculated Raman-active and IR-
active mode frequencies, respectively. The data is presented fol-
lowing a similar pattern to that used for the cases of forsterite
and the perovskite structures (see text). Comparison is presented
with both previous theoretical calculations and experimental data.

Appendix B. Vibrational properties of Ringwoodite

The spinel structure of ringwoodite has space group Fd�3m. As
discussed in the text, Mg ions occupy 16d Wyckoff positions, with
Si ions located at 8a and oxygens at 32e positions. The primitive
cell of such an atomic arrangement has point group symmetry
Ohðm�3mÞ, and applying a group theoretical analysis to such a struc-
ture results in the following mechanical representation:

Cri ¼ A1g � 2A2u � Eg � 2Eu � T1g � 5T1u � 3T2g � 2T2u; ðB:1Þ

of which the A1g ; Eg and T2g modes are Raman active, while the T1u

modes are IR active; one of the latter modes is acoustic. The remain-
ing modes (T1g ;A2u; Eu and T2u) are silent. The increased symmetry
in this structure as compared to those of forsterite and wadsleyite
Table B.17
Inversion antisymmetric vibrational modes in ringwoodite. The triply-degenerate T1u mode
and their pressure derivative in ðcm�1 GPa�1Þ. The second column, headed by miðVexpÞ, give
given by Hazen et al. (1993) (see Table 2). Theoretical results by other authors are quoted
results are from (c) Akaogi et al. (1984), where some of the signals were described as sho

Mode symmetry This work

mi miðVexpÞ dmi=dP

T2u 194 206 3.43
T1u 333 342 2.82
Eu 335 348 4.12
T1u 389 404 3.75
T2u 421 437 4.11
T1u 502 515 3.83
Eu 531 546 3.62
A2u 560 572 3.25
T1u 768 791 6.01
A2u 781 801 5.37
results in a number of degeneracies; indeed modes of irreducible
species EgðuÞ are doubly degenerate, while those of species T1ð2ÞgðuÞ
are triply degenerate.

Our calculated phonon frequencies for ringwoodite are listed in
Tables B.16 (inversion-symmetric modes) and B.17 (antisymmetric
modes). Comparison with previous calculation results and experi-
mental data is also provided.

Appendix C. Vibrational properties of Akimotoite

The ilmenite structure of akimotoite has space group R�3, with
Mg and Si cations occupying 6c sites, and oxygens located at the
general 18f positions. The point group symmetry of the primitive
cell of this structure is C3ið�3Þ. A group analysis of this structure
results in the following mechanical representation:

Cak ¼ 5Ag � 5Au � 5Eg � 5Eu: ðC:1Þ

Discounting the three acoustic modes, of species Au � Eu, this struc-
ture has a total of 18 optical modes, of which 9 are doubly degener-
ate (5Eg � 4Eu). The inversion-symmetric g modes are Raman active,
while antisymmetric u ones are IR active. Raman and IR active
modes are listed in Tables C.18 and C.19, respectively, where our
results are compared to existing theoretical and experimental data
from the literature.

Appendix D. Vibrational properties of Majorite

The majorite structure has space group I41=a with Mg cations
occupying Wyckoff sites 8c, 8e and 16f; Si cations are found at posi-
s are infrared active; the remaining modes are silent. Frequencies are given in ðcm�1Þ,
s the frequency of the corresponding mode interpolated at the experimental volume
from refs. (a) Yu and Wentzcovitch (2006) and (b) Piekarz et al. (2002); experimental
ulder (sh) or weak (w).

Other theory Experiment

ci mi mi mi

(a) (b) (c)

3.47 223
1.26 345 350 350(w)
1.99 355
1.64 423 396 395(sh), 445
1.66 407
1.26 549 475 510(sh), 545(w)
1.15 523
0.95 563
1.30 829 761 785(sh), 830
1.14 790



Table C.18
Raman-active modes in ilmenite Akimotoite. Frequencies are in ðcm�1Þ, and their pressure derivative in ðcm�1 GPa�1Þ. LDA calculated data is from Karki (2002). Experimental data
is quoted from Reynard and Rubie (1996).

Mode symmetry This work Other theory Experiment

mi miðVexpÞ dmi=dP ci mi ci mi dmi=dP ci

Ag 268 286 2.40 1.94 294 1.92 294 2.1 1.60
Eg 326 339 1.74 1.18 343 1.15 351 1.7 1.10
Eg 383 400 2.22 1.24 400 1.32 402 2.2 1.24
Ag 391 406 1.96 1.10 414 1.02 413 2.3 1.26
Eg 458 478 2.73 1.27 488 1.25 484 2.7 1.24
Ag 476 496 2.67 1.19 490 1.27 499 3.1 1.40
Eg 583 601 2.47 0.92 614 0.85 620 2.4 0.88
Ag 644 672 3.62 1.20 680 1.18 680 3.3 1.10
Ag 756 784 3.74 1.06 783 1.09 798 3.7 1.04
Eg 762 794 4.32 1.21 795 1.24

Table C.19
Infrared-active modes in ilmenite akimotoite. Frequencies are in ðcm�1Þ, and their pressure derivative in ðcm�1 GPa�1Þ. LDA calculated data is from Karki (2002). Experimentally
determined frequency ranges are as given by Hofmeister and Ito (1992).

Mode symmetry This work Other theory Experiment

mi miðVexpÞ dmi=dP ci mi ci mi

Au 304 325 2.81 2.00 330 1.93 384–421
Eu 317 340 3.05 2.03 346 2.07 337–364
Eu 419 435 2.15 1.11 439 1.06 450–482
Au 485 514 3.87 1.68 509 1.74 526–552
Eu 554 585 4.15 1.59 595 1.54 623–642
Eu 621 651 3.86 1.31 648 1.33 670–820
Au 683 703 2.65 0.84 702 0.79 735–820
Au 759 783 3.16 0.90 768 1.00
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tions 4a, 4b, 8d and 16f while oxygen anions are located at six dif-
ferent 16f orbits. The primitive cell contains a total of 80 atoms,
and has point group symmetry C4hð4=mÞ. The mechanical represen-
tation of this structure is

Cmj ¼ 25Ag � 34Au � 27Bg � 31Bu � 28Eg � 34Eu: ðD:1Þ

Of these, the modes with E species are doubly degenerate. The Ag ;Bg

and Eg modes are Raman active, while the Au and Eu modes are IR
active; Bu modes are silent. The three acoustic modes pertain to
irreducible species Au and Eu; the remaining modes are optic. The
large number of vibrational modes in this structure (237 optical
modes) makes impractical their full listing here; nevertheless we
provide a listing of all modes, together with their pressure deriva-
tive and Grüneisen parameters, in the supplementary information
file that accompanies this paper.

Appendix E. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.pepi.2014.10.007.
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