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Abstract

In order to predict the stable polymorph of iron under core conditions, calculations have been performed on all the
Ž . Ž .candidate phases proposed for inner core conditions, namely, body-centred cubic bcc , body-centred tetragonal bct ,

Ž . Ž .hexagonal close-packed hcp , double-hexagonal close-packed dhcp and an orthorhombically distorted hcp polymorph. Our
simulations are ab initio free energy electronic structure calculations, based upon density functional theory, within the
generalised gradient approximation; we use Vanderbilt ultrasoft non-normconserving pseudopotentials to describe the core
interactions, and the frozen phonon technique to obtain the vibrational characteristics of the candidate structures. Our results
show that under conditions of hydrostatic stress, the orthorhombic, bcc and bct structures are mechanically unstable. The
relative free energies of the remaining phases indicate that dhcp and fcc Fe are thermodynamically less stable than hcp Fe,
therefore, we predict that the stable phase of iron at core conditions is hcp-Fe. q 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The inferred density of the Earth’s inner core
suggests that it is made predominantly of iron with
some lighter alloying elements. In order to under-
stand the inner core and interpret the observed seis-
mic anisotropy, we would ideally like to have infor-
mation on all multiphase systems containing iron and
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candidate lighter elements at core conditions. How-
Ž .ever, even the high pressure P , high temperature

Ž .T phase diagram of pure iron presents major prob-
lems, which must be resolved before the more com-
plex phases can be properly understood. Direct ob-
servation of the high PrT behaviour of iron is
extremely difficult, with experimental groups getting
conflicting results. In particular, the possibility of a
solid–solid phase transition from hexagonal close-

Ž .packed hcp to a structurally ill-defined b-phase has
been observed above ;35 GPa and ;1500 K

Ž .through in situ X-ray diffraction XRD experiments
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ŽBoehler, 1993; Saxena et al., 1996; Andrault et al.,
.1997 . It has been suggested that the crystal structure

of this phase could be double-hexagonal close-packed
Ž .dhcp-Fe Saxena et al., 1996 or an orthorhombically

Ž .distorted hcp polymorph Andrault et al., 1997 .
However, more recent in situ XRD experiments by
another group have observed no such phase transi-

Ž .tion Shen et al., 1998 with hcp-Fe remaining stable
at high P and T until the onset of melting. More-
over, the existence of another solid–solid phase
boundary above ;200 GPa and ;4000 K has been
suggested to reconcile data from static and shock

Ž . Ž .experiments Anderson and Duba, 1997 Fig. 1 .
Although the structure of this phase is unknown, it
has been suggested that it might be body-centred

Ž . Ž .cubic bcc -Fe Bassett and Weathers, 1990 ; this is
supported by classical molecular dynamics calcula-

Ž .tions Matsui, 1993 , but the results of such calcula-
tions are hampered by the validity of using parame-
terised potentials beyond the range of their empirical
fitting. More recently, however, the very latest shock

Ž .experiments Nguyen and Holmes, 1998 indicate
that hcp-Fe remains stable at very high PrT under-
going no such phase change, in contrast to the earlier

Ž .results of Brown and McQueen 1986 .
The uncertainties in the iron phase diagram can be

resolved in principle by using ab initio calculations,
which provide an accurate means of calculating the
thermoelastic properties of materials at high P and T
by solving from first principles for the electronic
structure of the system of interest. High pressure
phases of iron have been studied extensively and
successfully using a number of first principles tech-

Žniques e.g., Stixrude et al., 1994; Stixrude and
Cohen, 1995; Sodelind et al., 1996; Vocadlo et al.,¨ ˇ

.1997 . However, high P and T calculations on iron
are significantly more difficult since they require
substantially more computer resources. Using ab ini-
tio calculations to parameterise a tight-binding model,

Ž . Ž .Wasserman et al. 1996 and Stixrude et al. 1997
have modelled both fcc and hcp-Fe at core P and T.
By using a statistical mechanical scheme, they were

Fig. 1. The phase diagram of iron which shows the experimentally inferred solid–solid phase transformations to high PrT polymorphs of
unknown structure.
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able to obtain a number of thermodynamic properties
at high P and T for these two phases. However,
they did not consider the dhcp or orthorhombic
phase.

In contrast to this previous work, in this paper, we
present fully ab initio calculations on all the candi-
date structures of iron, performed on the Cray T3E at
Edinburgh, in order to determine their relative free
energies, and therefore, the stable phase of iron at
core conditions. We have used density functional

Ž .theory DFT and the pseudopotential methodology
for calculating the energy of the perfect lattice, and
the frozen phonon technique for obtaining the vibra-
tional characteristics of the phases at high tempera-
tures.

In Section 2, we describe the methodology used
in our pseudopotential calculations and describe the
way in which we obtain the free energies. We then
present the results of these simulations and show
how they lead to relative free energy curves, which
determine the stable structure at core conditions.
Finally, we discuss the validity of our technique and
the possible sources of uncertainty.

2. Simulation techniques for calculating free ener-
gies

2.1. Density functional theory and the pseudopoten-
tial method

In first principles simulations, the solid is repre-
sented as a collection of electrons and atomic nuclei,
and ideally, we would like to calculate the energy
and forces on every ion as a function of atomic
position by solving Schrodinger’s equation explic-¨
itly. However, this is impracticable, if not impossi-
ble, and the formidable task is made more feasible
by the use of DFT. In DFT, an approximation is
made for the electronic exchange and correlation;
each electron is treated as a single particle wavefunc-
tion with the interaction between them represented
by an effective potential. DFT can be applied either
through all-electron calculations, in which the full
electronic structure of the system is calculated, or
through the use of pseudopotentials, in which only
the valence electrons are treated explicitly, with the

interaction between these and the ionic cores being
represented by an ab initio pseudopotential. In both
cases, the accuracy with which the material is de-
scribed is governed by the approximation used for
the exchange-correlation energy. The pseudopoten-
tial approach can be as accurate as all-electron meth-
ods but is computationally much less demanding
Ž .see, for example, Vocadlo et al., 1997 . The simula-ˇ
tions presented have been carried out using DFT,
with the exchange-correlation energy being treated

Ž .by the generalised gradient approximation GGA
Ž .Perdew et al., 1992 . We have used Vanderbilt
non-normconserving ultrasoft pseudopotentials
Ž .Vanderbilt, 1990 as implemented in the VASP

Žcode Vienna ab initio simulation package, Kresse
.and Furthmuller, 1996 . Details of the construction¨

of the pseudopotentials can be found in Kresse and
Ž .Hafner 1994 , and specific information about iron

pseudopotentials can be found in Moroni et al.
Ž .1997 . The non-normconserving condition of these
pseudopotentials allows the wavefunction of the
pseudoatom and exact atom at some specified radius
to be different; the advantage of this is that it allows
the pseudowavefunction to be significantly smoother,
and therefore, the number of coefficients required to
describe the pseudowavefunction are reduced, mak-
ing the calculations more efficient yet maintaining
high accuracy. Another advantage of using these
pseudopotentials is that it is possible to describe
lower lying core states as valence states. This is very
important in calculations on iron since we have
previously found that in order to accurately model
the properties of solid iron, it is essential to treat the

w x 33 p states as valence states with a Ne 3s core
Ž .Vocadlo et al., 1997 .ˇ

The quality of our chosen pseudopotential has
Ž .been reported previously Vocadlo et al., 1997 ,ˇ

where we found very good agreement with both
Žall-electron calculations Stixrude et al., 1994; Sode-¨

. Ž .lind et al., 1996 and experiment Mao et al., 1990
for the density variation as a function of pressure for

Ž .hcp-Fe to core pressures Fig. 2 . We also accurately
reproduced the magnetic and elastic behaviour of

Žbcc-Fe and the bcc™hcp phase transition a mag-
netic moment of 2.25 mratom compared with the
experimental value of 2.12 mratom, an incompress-
ibility, K , of 184 GPa compared to the experimental
value of 173 GPa, and a transition pressure of ;10
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ŽFig. 2. The equation of state of bcc and hcp iron; the pseudopotential method shows very good agreement with both theory Sodelind et al.,¨
. Ž .1996 and experiment Mao et al., 1990 .

GPa compared to the experimental value of 10–15
.GPa .

2.2. Calculating free energies

The most stable structure of any material at a
given P and T is the one with the lowest Gibbs free
energy, G, given by:

GsUqPVyTSsFqPV

where U is the internal energy, V is the volume, S is
the entropy and F is the Helmholtz free energy.

Ž .Our aim is to calculate G P,T . In order to do
this, we start by calculating the Helmholtz free en-
ergy of the crystal as a function of both V and, as
discussed below, T. This may be written:

F V ,T sF V ,T qF V ,TŽ . Ž . Ž .total perfect vibrational

where F is the energy of the rigid perfectperfect

lattice, and F is the free energy due tovibrational

atomic vibrations. At zero temperature, F is theperfect

total energy of the perfect lattice, U , but at high T ,0

it also contains a contribution to the free energy from
electronic excitations:

F V ,T sU V qU V ,T yTS V ,TŽ . Ž . Ž . Ž .perfect 0 el el

In DFT, this contribution is calculated by minimising
the Mermin functional in the Kohn–Sham formalism
Ž .see, for example de Wijs et al., 1998a,b .

Within the harmonic approximation, the vibra-
tional component of the free energy, including the
zero point energy, is obtained from the calculated
phonon frequencies, v , via the standard statisticali

thermodynamics formula:

hv i

hv k Ti BF V ,T sk T q ln 1yeŽ . Ývibrational B ž /2k Tž /Bi

Finally, the pressure term in the free energy is
obtained from the volume dependence of F using
the relation:

EF
Psy ž /EV T
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where P has a contribution from the external pres-
sure, P , and the thermal pressure, P :ext th

P V ,T sP qPŽ . ext th

Ž .The Gibbs free energy, G V,T , may then be ob-
tained from F, P and V.

To calculate the vibrational frequencies, we used
the frozen phonon technique, whereby atoms are
fixed in positions which are slightly displaced from

Ž .their perfect equilibrium lattice sites by ;1% , and
the resulting forces on all the atoms are calculated.
The number and direction of these displacements is
governed by symmetry, and if the displacements are
sufficiently small and are assumed to be harmonic,
the forces are proportional to the displacements; a
force-constant matrix may then be constructed, and
the phonon frequencies obtained by standard lattice

Ž .dynamics calculations e.g., Born and Huang, 1954 .
We have calculated this ab initio force constant

matrix at three densities representative of the inner
core: 13.00, 13.44 and 13.64 g cmy3. We used

Žsupercells containing 16 or 32 atoms the current

.limit of available resources , with an electronic k-
points sampling grid of 6 to 48 k-points in the
irreducible Brillouin zone, and with planewave cut-
offs chosen to give a convergence in the energy
difference between iron phases of better than 0.004
eVratom. Such high convergence criteria are neces-
sary since the energy difference between the struc-
turally similar phases at core conditions is very small
Ž .;0.05–0.01 eV atom .

The phonon frequencies were calculated explicitly
at the gamma points, zone boundaries and a mid
point position, with interpolation of the dynamical
matrix throughout a 19=19=19 grid; the disper-
sion curves of each phase were obtained by interpo-
lation along specific symmetry directions. We have
assessed the effect of supercell size on the calculated
phonon frequencies, and find that this is both sys-

Žtematic and small -0.3% between 16 and 32 atoms
.of hcp-Fe . Therefore, the influence of supercell size

on the free energy difference between the poly-
morphs is very likely to be negligible.

Ž .The Gibbs free energy, G V,T , at each volume is
then obtained from the perfect and vibrational contri-

Fig. 3. Calculated phonon dispersion curve for magnetic bcc-Fe under ambient conditions compared with inelastic neutron scattering
Ž .experiments open circles .
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Žbutions to the Helmholtz free energy F qperfect
.F , and the pressure calculated from the ther-vibrational

Ž .mal and external contributions P qP . As de-ext th

tailed below, analysis of how the total pressure
varies as a function of temperature at each volume,

Ž .in conjunction with how G V,T varies as a function

y1 Ž . Ž . Ž .Fig. 4. Calculated vibrational phonon spectrum at core densities of 13 g cm for a hcp-Fe, b dhcp-Fe and c fcc-Fe.
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Ž .Fig. 4 continued .

Ž .of temperature, allows the construction of G P,T
along isobars at pressures spanning those thought to
exist in the inner core.

3. Results

3.1. Mechanical stability

Fully spin-polarised calculations were performed
Žon all the candidate phases at core pressures which

.range from ;325 to 360 GPa . These revealed, in
Ž .agreement with Sodelind et al. 1996 , that under¨

these conditions bcc and body-centred tetragonal
Ž . Žbct -Fe had only a small magnetic moment ;1r2

.m ratom and all other phases had zero magneticB

moment. We found that at these pressures, the bcc,
bct and the recently suggested orthorhombic poly-

Ž .morph of iron Andrault et al., 1997 are mechani-
cally unstable. The bcc and bct phases continuously
transform to the more stable fcc phase with increas-
ing cra ratio, confirming the findings of Stixrude

Ž . Ž .and Cohen 1995 ; indeed, Stixrude et al. 1998
suggest the bct phase is only stable in a local
minimum as a function of cra geometry, and there-

fore, never a viable stable structure of iron. The
experimentally observed orthorhombic phase sponta-
neously transforms to the hcp phase when allowed to
relax to a state of isotropic stress. In contrast, hcp-,

Ž .dhcp- space group P6 rmmc and fcc-Fe remain3

mechanically stable at core pressures with cra ratios
of 1.600 for hcp- and 3.207 for dhcp-Fe; we were
therefore, able to calculate their phonon frequencies
and free energies.

3.2. Thermodynamic stability

In order to assess the quality of our frozen phonon
methodology, we first calculated the phonon disper-
sion curve for fully spin-polarised bcc-Fe at ambient
pressure and compared the results with inelastic neu-

Ž .tron scattering experiments see Gao et al., 1993 .
Our calculated phonon spectrum is in excellent

Ž .agreement with the experimental data Fig. 3 , there-
fore supporting the accuracy of our methodology.
We then went on to calculate the phonon spectrum
for the remaining mechanically stable phases at core

Ž y3 .conditions i.e., at a density of 13 g cm . Our
predicted phonon spectra for fcc-, hcp-, and dhcp-Fe
are shown in Fig. 4a,b and c.
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˚3 Ž .Fig. 5. Calculated temperature dependence of the Helmholtz free energy as a function of temperature at Vs7.134 A lower curve and
˚3 Ž .Vs6.8 A upper curve .

From the calculated phonon frequencies, we may
now calculate free energies as a function of tempera-
ture. The temperature dependence of the Helmholtz

Ž Ž .free energy and the thermal pressure i.e., P V,Ttotal
Ž ..yP V,Ts0 are shown in Figs. 5 and 6. Theperfect

thermal pressure at core conditions has been esti-

Fig. 6. Calculated thermal pressure as a function of temperature; fcc-Fe is thermodynamically destabilised with respect to the other two
phases due to its relatively high thermal pressure.
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Ž .mated to be 58 GPa Anderson, 1995 and G50 GPa
Ž .Stixrude et al., 1997 ; this is in excellent agreement
with our calculated thermal pressure for the hcp and

Ždhcp structures 58 and 49 GPa, respectively at 6000
.K . However, the calculated thermal pressure is con-

siderably higher for fcc-Fe; this makes the PV term
in the Gibbs free energy for this phase very large
Ž3.0 eV at 6000 K compared to 2.2 and 2.5 eV for

.dhcp and hcp, respectively and we find that this,
therefore, thermodynamically destabilises fcc-Fe at
core conditions with respect to dhcp and hcp-Fe.

Ž .This far, we have calculated G V,T but in order
to make any predictions about the relative stability of

Ž .hcp- and dhcp-Fe at core conditions, G P,T is
required. An indication that these two phases are
going to have very similar free energies is evidenced

Ž .from their vibrational density of states Fig. 7 ,
where it can be seen that the vibrational structure is
very similar for these two polymorphs which differ
only in their third neighbour packing sequence. In

Ž .order to obtain G P,T we proceed as follows: we
have P as a function of T for both phases at three

Ž .separate volumes Fig. 8a and b ; by analysing these,
we may see at what temperature Ps325 GPa and

Ž .Ps360 GPa spanning inner core pressures . We
Ž .may then analyse the data for G V,T as a function

Ž .of T Fig. 9a and b , and obtain the free energy
associated with each of the previously obtained tem-
peratures. These, therefore, must be the free energies
at Ps325 GPa and Ps360 GPa for each of three

Ž .volumes for both phases; i.e., we have G P,T along
Ž .two isobars Fig. 10a . An additional constraint on

the free energy curve may be obtained from the
Ž .calculated value for G P,Ts0 . The free energy

curves were fitted to an exponential function satisfy-
Ž .ing the entropic requirement that EGrET s0Ts0

Ž . Ž .and EGrET s S . Over the wholeTs0 total calculated

P–T space investigated, hcp-Fe has the lower free
Ž .energy Fig. 10b and c ; therefore, we predict that

the stable structure of iron at core conditions is
hcp-Fe.

3.3. Thermoelastic properties

From our calculations on hcp-Fe of P as a func-
Ž .tion of T Fig. 7a , we were able to obtain a value

for the incompressibility, K , of this phase at coreT

conditions via the relation:
D P

K syVT ž /DV

At core temperatures, this yields a value for K at anT

average density of 13.22 g cmy3 of 1356.3 GPa.

Fig. 7. Calculated vibrational density of states for the hcp and dhcp-Fe which illustrate the structural similarity between these two
polymorphs.



( )L. Vocadlo et al.rPhysics of the Earth and Planetary Interiors 117 2000 123–137ˇ132

˚3Ž . Ž .Fig. 8. Total pressure as a function of temperature for a hcp-Fe and b dhcp-Fe at each of the three volumes, 7.134, 6.9 and 6.8 A . Using
this figure, we can see the temperature for which Ps325 and 360 GPa for each structure.

We are also able to determine the thermal expan-
sion coefficient, a , at constant pressure from Fig.
10a and the relation:

1 DV
as

DTV

and this gives a value at ;5–6000 K and 325 GPa
of ;0.96=10y5 Ky1, in excellent agreement with
the values inferred from both shock experiments
Ž .Duffy and Ahrens, 1993 and thermoelasticity calcu-

Ž . y5lations Wasserman et al., 1996 of ;0.9=10
Ky1.
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Ž . Ž .Fig. 9. Gibbs free energy at constant volume as a function of temperature, G V,T . From this figure, we can obtain G P,T along the
isobars of 325 and 360 GPa.

A value for the Gruneisen parameter may be¨
obtained from:

P Vth
gs

Eth

where E is the thermal contribution to the internalth

energy. This gives a value for g of 1.7 at 6000 K, in
good agreement with the calculations of Wasserman

Ž .et al. 1996 who obtain gs1.6–1.7 between 1000
and 3000 K at core pressures, and with the high
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temperature acoustic g determined for the inner core
Ž .of 1.5 see Anderson, 1995 .

Ž .From K sK 1qgaT , we obtain a K ofS T S
Ž . 2 y21489 GPa, and a F sK rr of 114 km s . ThisS

Ž .Fig. 10. Calculated Gibbs free energy for hcp-Fe and dhcp-Fe as a function of temperature at Ps325 GPa lower curves and Ps360 GPa
Ž .upper curves ; hcp-Fe is more stable throughout the whole PrT space shown, as illustrated in the magnifications of the Ps325 GPa

Ž . Ž .curves via b and c .
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Ž .Fig. 10. continued .

compares well with the PREM value of 105y8 km2

sy2 for the inner core, which contains lighter ele-
ments and which would therefore be expected to
have a slightly lower value for the seismic parameter
than that for the pure iron system calculated here.

4. Discussion

The free energy differences between the hcp and
dhcp phases is very small as we would expect for
two structures that are so similar. At Ps325 GPa,
we calculate a DG, which is never less than ;0.05
eVratom throughout the whole temperature range.
At Ps360 GPa, we calculate a DG which ranges
from ;0.05 eVratom at 4000 K to ;0.01
eVratom at 8000 K. Although these differences are
small, they are within the precision of our calcula-

Ž .tions discussed earlier -0.004 eVratom .
One source of imprecision could be the use of

fixed electronic temperature in our calculations. It is
possible that there will be a thermal contribution to
the electron density and resulting interatomic forces
due to electronic excitations, which will affect the
phonon frequencies. However, although it is rela-
tively straightforward to calculate F as a func-perfect

tion of electronic temperature, it is impracticable to
calculate phonon frequencies of large supercells as a
detailed function of electronic temperature. There-
fore, the supercell calculations were all performed
with an electronic temperature of 6000 K, which we
consider to be representative of the possible range of
temperatures to be found in the inner core. To ensure

that the use of fixed electronic temperature did not
affect the result, we performed fixed electronic tem-
perature calculations in the expected range of core

Ž .temperatures between 4000 and 8000 K . By
analysing the D F between dhcp and hcp-Fe, wetotal

found that the effect of electronic temperature on
free energy is generally significantly smaller than the
free energy differences between the phases. D Ftotal

varied by a maximum of 16% between 4000 and
7000 K, which remains within the precision of the

Ž .calculation; only at the highest pressure 360 GPa
Ž .and temperatures ;8000 K did the difference in

D F between dhcp and hcp-Fe become compara-total

ble in magnitude with D F itself.total

As indicated above, these calculations do not take
into account possible anharmonic effects. Over much

Ž .of the P,T range investigated, we believe that we
are justified in assuming that the motion of the atoms
can be treated as harmonic vibrations, and that all
thermodynamic properties can reasonably be calcu-
lated from the energy of the static perfect crystal and

Žthe harmonic lattice vibrational frequencies Matsui
.et al., 1994 . This assumption is validated by our

calculated thermal expansion coefficient for hcp-Fe
discussed earlier, which was in excellent agreement
with the values inferred from shock experiments
Ž .Duffy and Ahrens, 1993 and thermoelasticity calcu-

Ž .lations Wasserman et al., 1996 . At the highest
temperatures, however, anharmonic effects may be-
come significant, but given the structural similarity
of hcp and dhcp-Fe, we would expect anharmonic
effects on both phases to be comparable and we
suggest that they would have a small, or even negli-
gible, effect on the relative stability of these two
polymorphs.

ŽFinally, it has been suggested Matsui and Ander-
.son, 1997 that although not mechanically stable at

zero Kelvin, the bcc phase could be entropically
stabilised at high T in the inner core, since bcc
retains some magnetic moment at core pressures
Ž .Sodelind et al., 1996 , and it is therefore conceiv-¨
able that magnetic entropy effects may be non-

Ž .negligible. However, Moroni and Jarlborg 1996
have estimated that the maximum contribution of
magnetic entropy at core conditions is of the order of
0.3 R per mole at 6000 K. The maximum likely
contribution to vibrational entropy is comparable to

Ž .the melting entropy Stixrude et al., 1994 , which
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tends to Rln2 for close-packed metals at high pres-
Ž .sures see Poirier, 1991 . Therefore, the total maxi-

mum entropic contribution is ;R. We calculate that
the metastable enthalpy difference between bcc-Fe
and hcp-Fe at a density of 13 grcm3 is ;1.1 eV.
For this lattice energy difference to be over come,
the entropy difference between the phases would
need to exceed ;2 R, and it is therefore improbable
that the magnetic and vibrational entropy could over-
come this at core conditions.

In conclusion, therefore, our calculations, com-
bined with other evidence, indicate that hcp is the
thermodynamically most stable phase of Fe at the
conditions believed to exist in the Earth’s inner core.

ŽFurthermore, from our calculated free energies Fig.
.10a , it can be seen that the free energy difference

between the phases increases as the temperature
decreases, and increases as the pressure decreases.
This implies that DG between the phases would
increase significantly as P and T approached the
experimentally determined part of the iron phase
diagram. Therefore, hcp-Fe would be even more
stable with respect to dhcp-Fe at lower P and T.
This is in direct conflict with the experimentally
determined solid–solid phase transition above 35

Ž .GPa Saxena et al., 1996 , yet in agreement with the
Ž .more recent experiments of Shen et al. 1998 . How-

ever, fully ab initio molecular dynamics calculations
are required that sample the entire P–T space of the
iron phase diagram in order to definitively resolve
this issue.

Finally, there remains some possibility that an as
yet undiscovered phase of iron may exist at inner
core conditions; ideally constant stress ab initio
molecular dynamics could resolve this issue, but
such a calculation is beyond the scope of this paper.

This work provides the basis of further study in
which we will determine the effect of anharmonicity
on the stability of the iron polymorphs, and establish
the equations of state and thermodynamic stability of
the iron alloys thought to exist in the inner core.
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