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a b s t r a c t

The Earth’s solid inner core consists mainly of iron (Fe), alloyed with lighter elements, such as silicon (Si).
Interpretation of seismic anisotropy and layering requires knowledge of the stable crystal structure in the
inner core. We report ab initio density functional theory calculations on the free energy and vibrational
stability of pure iron and Fe–Si alloys at conditions representative of the Earth’s inner core. For pure Fe the
stable phase is already known to be hexagonal close-packed (hcp). However, with the addition of ∼7 wt.%
Si at high temperatures, we observe a transition to the face-centred cubic (fcc) phase. We also produce a
phase diagram for the Fe–Si system and show that the inner core may exist in the two-phase region, with
coexisting fcc and hcp. This may also explain the low S-velocities observed in the inner core.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Constraining the crystalline phase in the inner core has a long
history (e.g. Anderson, 1985; Boehler, 1986; Saxena et al., 1993;
Saxena and Dubrovinsky, 2000; Stixrude and Cohen, 1995; Andrault
et al., 1997; Alfè et al., 2000a,b; Lin et al., 2002; Vočadlo et al.,
1997, 1999, 2003; Belonoshko et al., 2003, 2008; Dubrovinsky, 2007;
Côté et al., 2008a,b). Under ambient conditions, the iron crystal
has a body-centred cubic (bcc) structure. Increasing temperature at
ambient pressure causes a transformation to the face-centred cubic
(fcc) phase above ∼1150 K. At pressures above ∼11 GPa (at room
temperature), it adopts a hexagonal close-packed (hcp) structure
which persists to Earth’s inner core pressures. Pure Fe in the bcc
phase was previously excluded as a possible crystal structure in the
core, because it is mechanically unstable at high pressures (Stixrude
et al., 1994; Söderlind et al., 1996). However, the effect of tempera-
ture has proven to be very important, and the stable phase at core
pressures and temperatures remains ambiguous. High temperature
has been shown to decrease the free energy difference between
bcc and hcp phases (Vočadlo et al., 2003), and molecular dynam-
ics calculations have found bcc to be mechanically stable at core
conditions (Belonoshko et al., 2003; Vočadlo et al., 2003). Recently
the face-centred cubic (fcc) phase was proposed as a third possible
structure in the inner core, with a free energy between those of bcc
and hcp (Vočadlo et al., 2008). Since the core is likely to be an iron
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alloy, the effect of alloying elements on the crystal structure has to
be considered. In a previous ab initio study we showed that at core
pressure and zero temperature, light elements (Si, S, C, O) tend to
stabilise the bcc phase with respect to hcp, but hcp still remains the
most stable phase (Côté et al., 2008a,b). Here we present the results
of ab initio lattice dynamics (LD) calculations, to evaluate the effect
of temperature on the crystal structure of iron and Fe–Si alloys at
core pressures.

2. Computational methods

The density functional theory (DFT) calculations in this work
were carried out using the VASP code (Kresse and Furthmuller,
1996), which incorporates the projected augmented wave (PAW)
method (Blöchl, 1994). The exchange-correlation energy was rep-
resented by the generalised gradient approximation (GGA) (Wang
and Perdew, 1991). VASP calculates the ground state (T = 0) for each
set of ionic positions and the electronic free energy is taken as the
quantity to be minimised. Care was taken when choosing the k-
point sampling grid and cutoff energies in order to have an energy
convergence of no more than 1 meV/atom. Specifically, we used a
400 eV cutoff energy throughout the calculations. For pure iron bcc
and fcc in the 2-atom cells, 12 × 12 × 12 (equivalent to 56 k-points
in the irreducible Brillouin zone (IBZ)) and 12 × 12 × 8 (84 k-points
in the IBZ) k-point grids were used respectively. For hcp a 4-atom
cell was used, with a 15 × 9 × 9 grid (200 k-points in the IBZ). Larger
primitive cells (8–16 atoms) were used for the alloyed structures,
and correspondingly smaller k-point sampling grids.
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We calculated the phonon frequencies for different structures
and examined their vibrational stability. The phonon calculations
were carried out using the code PHON (Alfè, 2009), which uses the
small displacement method to construct force-constant matrices.
The force-constant matrix !is˛, jtˇ is the central quantity in the cal-
culation of the phonon vibrational frequencies, since the (squares of
the) frequencies at wavevector k are the eigenvalues of the dynam-
ical matrix Ds˛,tˇ, defined as

Ds˛, tˇ(k) = 1√
MsMt

∑

i

˚is˛,jtˇexp
[
ik · (R0

j + !t − R0
i − !s)

]
(1)

where R0
i is a vector of the lattice connecting different primitive

cells and !s is the position of the atom s in the primitive cell. If we
have the complete force-constant matrix, then Ds˛, tˇ and hence
the frequencies ωsk can be obtained at any k. In principle, the
elements of !is˛, jtˇ are nonzero for arbitrarily large separations∣∣R0

j + !t − R0
i − !s

∣∣, but in practice they decay rapidly with sepa-
ration, so PHON neglects all the elements beyond a certain cutoff
distance resulting in a force-constant matrix of finite extent.

Our calculations were extended to nonzero temperatures by
using the quasi-harmonic approximation, where the volume and
temperature dependence of the Helmholtz free energy F(V,T) was
calculated as a sum of the contributions due to static compression,
F0(V), thermal excitation of electrons, Fel(V,T) and thermal excita-
tion of phonons, Fvib(V, T):

F(V, T) = F0(V) + Fel(V, T) + Fvib(V, T) (2)

The last term in (2) is defined as

Fvib(V, T) = kBT
∑

s,k

ln
[

2 sinh
(

hωsk
2kBT

)]
(3)

where kB is the Boltzman constant, and ωsk is the frequency of the
phonon mode for wave vector k and volume V.

The contribution to the free energy from electronic excitations
at different electronic temperatures Fel(V,T) was included by using a
Fermi smearing function when calculating the ground-state energy
in VASP.

The Gibbs free energy was then obtained by

G(P, T) = F(V, T) + PV (4)

In order to account for the contribution of thermal pressure at
different temperatures and obtain the last term of (4) accurately,
we performed free energy calculations at 6 different volumes, cor-
responding to pressures in the range of 200–400 GPa. We then fitted
the results to an E(V) equation of state, from where we were able to
find the correct volume for any pressure at various temperatures.
The total free energies for core pressures and temperatures could
thus be evaluated.

It should be noted that the calculations are quasi-harmonic and,
therefore, neglect anharmonicity. The melting temperature of Fe
under core pressures is about 6000 K so anharmonicity may start
to become important after about 4000 K or so. However, the total
anharmonic contribution to the free energy of hcp Fe at 6000 K is
only of the order of 60 meV/atom (Alfè et al., 2001). Since fcc is
a close-packed structure like hcp, it should be affected by anhar-
monicity in a similar way. It is thus unlikely for the free energy
differences to be larger than 10 meV/atom or so, even at very high
temperatures. BCC, however, is not close packed, and so the anhar-
monic contribution to the free energy may be higher.

3. Results

3.1. Vibrational stability

To get accurate results in the harmonic approximation, very
accurate forces are needed. We therefore used a very low toler-
ance criterion for the total energy (10−7 eV), and an added grid in
the Fourier transform mesh which serves to reduce the noise in the
forces, which were set to converge below 10−5 eV/Å. The atoms were
displaced a small distance (0.01 Å) from their equilibrium positions,
in order for the forces to remain within the harmonic approxima-
tion, and the forces were calculated. For all cases, the calculations
were performed on supercells large enough to avoid self-interaction
due to the periodic boundary conditions, typically 3 times the size
of the primitive unit cell in each direction. The resulting supercells
contained up to 288 atoms.

Firstly we calculated phonon frequencies for pure Fe at different
pressures and electronic temperatures. The calculated dispersion
relations for bcc Fe for certain special directions of the 1st Brillouin
zone are displayed in Fig. 1.

As reported previously (Vočadlo et al., 2003), at low temper-
atures the bcc phase (Fig. 1a) becomes vibrationally unstable at
high pressures above ∼200 GPa. Furthermore, as can be seen from
Fig. 1b, at pressures below 250 GPa, high electronic temperatures
contribute to destabilising the structure. This is manifested in a
soft mode in the [1 1 0] (M-#) direction, which starts from zero
pressure, and is due to bcc transforming to the fcc phase. Approach-
ing core pressures, high temperatures do act towards eliminating
some imaginary frequencies in certain directions and stabilising the
structure, but overall the bcc phase remains dynamically unstable.
High pressures in combination with electronic excitations at high
temperatures also act to suppress magnetic moments, and this was
confirmed by spin polarised calculations in this work, as well as in
previous studies (Vočadlo et al., 2003).

The hcp and fcc phases of pure iron are both dynamically
stable at core pressures, and the phonon dispersion relations at
Tel = 5500 K and 330 GPa are presented in Fig. 2.

We then substitutionally inserted small concentrations of sili-
con at high pressure in all three phases. As can be seen in Fig. 3,
the imaginary frequencies in the bcc phase disappear with increas-
ing Si concentration, making the Fe–Si alloy vibrationally stable at
10.4 wt.% (12.5 at.%) and above. This is consistent with the experi-
mental results for FeSi, where a bcc (B2) structure is stable at core
conditions (Dobson et al., 2002). In contrast, we find that increasing
Si concentration destabilises the hcp structure; at 25 at.% Si, hcp is
completely unstable. It should be noted that in the alloyed struc-
ture, magnetic moments disappear with high pressure even at low
temperatures.

3.2. Thermodynamical stability

To compare the thermodynamical stability of bcc, hcp and fcc we
used a 10.4 wt.% iron–silicon alloy (3 Si atoms and 13 Fe atoms), a
concentration at which all three structures are vibrationally stable.
As there is more than one possible Si defect, a number of trials were
performed with all the different configurations of the defect atoms
in all phases, and the most favourable configurations at high pres-
sure were chosen. They are shown in Fig. 4. The Gibbs free energy
vs. temperature at a pressure of 330 GPa is plotted in Fig. 5, relative
to the hcp phase.

It is clear that the free energy difference between hcp and the
other two phases diminishes significantly with increasing tempera-
ture. The free energy difference between hcp and bcc with 10.4 wt.%
Si reduces to only 36 meV/atom at 330 GPa and 5500 K, although
the free energies are still in favour of hcp. More interestingly, fcc
becomes the most stable structure at temperatures above 4000 K.
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Fig. 1. Phonon dispersion relations of pure bcc Fe at (a) 500 K and (b) 5500 K, and a range of pressures. It can be seen that temperature has an important effect on the structure’s
vibrational stability. At relatively low temperatures, pressure is the main stability factor, but that changes at core temperatures. At inner core conditions, high temperature
acts towards stabilising the structure. Magnetism was included in all the pure iron calculations.

We then focused on hcp and fcc – thermodynamically the most
stable structures – at three different Si concentrations, 3.2 wt.%,
6.7 wt.% and 10.4 wt.%. We repeated the phonon calculation for all
concentrations and derived the free energies. We can see from Fig. 6
that as the Si concentration increases, fcc becomes the most stable

phase at concentrations greater than ∼7 wt.% (∼13 at.%), at inner
core pressures and temperatures.

Fig. 6 represents the pseudounivariant at 5500 K, where one
phase directly transforms into the other, but in reality the two
phases would mix to form a solid solution. Thus, the free energy of
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Fig. 2. Phonon dispersion of (a) hcp and (b) fcc phases of pure iron at Earth’s inner core conditions.

Fig. 3. Phonon dispersion relations for the bcc phase at 330 GPa for (a) pure iron, (b) 6.7 wt.% Si, and (c)10.4 wt.% Si. For this calculation no electronic temperature was used.
It is clear that the addition of Si vibrationally stabilises the structure.

Fig. 4. The most stable configurations used for (a) bcc, viewed along 〈1 0 1〉, (b) fcc, viewed along 〈1 1 0〉, and (c) hcp, viewed along 〈1 1 0〉. The periodic boundary conditions
are not shown. The substituted silicon atoms are enlarged for clarity.

Fig. 5. Relative Gibbs free energies of the bcc and fcc structures with respect to hcp, at 330 GPa. Increasing temperature decreases the energy difference, and above 4000 K,
fcc becomes the most stable structure at the 10.4 wt.% Si concentration.
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Fig. 6. Gibbs free energy of fcc and hcp at Earth’s inner core conditions, relative to pure hcp Fe. At Si concentrations above 7 wt.% (13 at.%), fcc is found to be the most stable
structure thermodynamically.

the solid solution was derived by adding the configurational term
kBT(cSiln(cSi) + cFeln(cFe)) to the energies of the individual phases,
where c represents the atomic % concentration. The solid solution
energies were then fitted to a polynomial for different concentra-
tions, and by taking the common tangent of the two curves, the
coexisting compositions of the fcc and hcp phases were calculated.
Using these, we derived an approximate phase diagram for the Fe–Si
system, shown in Fig. 7, for 330 GPa and 360 GPa. Also plotted in
Fig. 7 are the Fe–Si solid solution melting temperatures and compo-
sitions, predicted by Alfè et al. (2002). Note that the narrow width
of our predicted two-phase region is completely consistent with
the narrow solid solution melting curve inferred from Alfè et al.’s
results. The phase diagram is also consistent with experiments by
Asanuma et al. (2008), and data from that study are added in Fig. 7
with open circles. It should be pointed out, however, that subse-

Fig. 7. Compositional phase diagram for the Fe–Si system (at.%) at the inner core
boundary pressure (330 GPa). Superimposed with dashed lines is the same diagram
for the centre of the core (360 GPa). The fcc and hcp coexisting compositions were
calculated in this study (see text). The open circles, at 150 GPa, were derived from
the study of Asanuma et al. (2008). Equivalent points with that study are marked
with A and A′ . The open squares and open diamond are taken from the ab initio data
of Alfè et al. (2002).

quent experimental studies were not able to observe fcc (Lin et al.,
2009; Kuwayama et al., 2009).

4. Discussion

Earlier ab initio finite temperature molecular dynamics cal-
culations using the technique of thermodynamic integration to
calculate free energies (Vočadlo et al., 2003) showed that the ther-
modynamically stable phase of pure iron at core conditions is the
hcp phase. This study confirms that result. Earlier ab initio stud-
ies also showed that light elements act to decrease the free energy
difference bcc and hcp, but these were only performed at 0 K, and
hcp still remained the stable phase (Côté et al., 2008a,b). It was,
however, hypothesised that the combination of high temperature
and light elements may be sufficient to make either bcc or fcc sta-
ble over the hcp phase. This is what we have tested here. We find
that at a concentration of ∼7 wt.% silicon, the combination of high
temperatures (over 4000 K) and light element enrichment act to
make the fcc phase thermodynamically stable at core conditions.
hcp remains the stable phase at lower pressures and temperatures,
as seen in a recent experimental study by Lin et al. (2009) where
they used a concentration of ∼8 wt.% silicon and reached pressures
of 240 GPa and temperatures of 3000 K. We also find that the bcc
structure becomes vibrationally stable as more light elements are
added, so depending on the concentration of the alloying element
and the effect of anharmonicity, it cannot be discarded as an inner
core phase.

The light element concentration is generally thought to be about
4 wt.% (7.7 at.%) for the inner core and about 10 wt.% (18.1 at.%) for
the outer core (Lin et al., 2002; Badro et al., 2007; Chen et al., 2008).
First of all, Fig. 7 shows that even if Si was the only light element in
the inner core, a composition of ∼8 at.% places the inner core firmly
in the hcp-field. The fcc phase does not become stable until the con-
centration of Si reaches 11 at.%. Secondly, the higher concentration
of light element in the outer core could mean that the core is crys-
tallising fcc and hcp at the eutectic. However, this would predict
an inner composition that would be too high. Taken at face value,
Fig. 7 predicts that the inner core must be in the hcp phase and
that fcc is not stable. However, this phase diagram is for two com-
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ponents only. The other light elements are also known to stabilise
bcc, so they may also stabilise fcc. If so, the width of the two-phase
region could widen, and it only needs to widen by ∼3 at.% for the
inner core to enter the two-phase field. This is supported by the
results of Lao and Cohen (presented at APS, 2009) who also showed
that nickel (Ni) also strongly stabilises the fcc phase, and pushes the
core into the two-phase region. We suggest, therefore, that the inner
core may exist in the two-phase region, with hcp and fcc coexisting
throughout the core. The phase diagram also shows that the pro-
portion of fcc to hcp changes slightly with temperature; the deeper
inner core may, therefore, contain a greater proportion of fcc that
the shallower inner core.

Finally, the S-wave velocity of the inner core is known to be less
than that of all possible candidate phases, including the effect of
light elements; this motivated Vočadlo (2007) to suggest that the
inner core contains a small fraction of partial melt. However, the
coexistence of fcc and hcp may allow the elastic velocities to be
reduced via the mechanism proposed by Li and Weidner (2008) for
the Earth’s mantle. Li and Weidner showed that P-wave velocities
of a material will be significantly lowered if the pressure increase
during the passage of the wave causes a small amount of the mate-
rial to transform from one phase to another. When the two phases
are coexisting, this can be a very efficient process, as they showed
for the olivine to wadsleyite transition. Although Li and Weidner
demonstrated this for compressional waves, shear waves should
have an analogous, and potentially larger effect. This mechanism
may well occur between fcc and hcp during the passage of a seis-
mic wave in the inner core, effectively reducing the velocity from its
elastic, unrelaxed values, and explaining the low observed S-wave
velocities in the inner core.
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