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Elasticity of Mg2SiO4 ringwoodite at mantle conditions
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bstract

The themoelastic properties of Mg2SiO4 ringwoodite at mantle pressure and temperature conditions are reported based on ab
nitio molecular dynamic simulations. A third-order Birch–Murnaghan equation at a reference temperature of 2000 K is defined by

0 = 138 GPa, K′
0 = 5.2, and V0(2000 K) = 560.3 Å3. The Grűneisen parameter is determined to be γ(V) = γ0(V/V0(298 K))q with

3 δT

0 = 1.22 and q = 1.44(5), with V0(298 K) = 524.56 Å . The thermal expansion is determined to be (α/α0) = (V/V0(298 K)) in
hich α0 = 2.74 × 10−5 K−1 and δT = 5.2(1). The bulk modulus is temperature independent at constant volume, while the shear
oduli vary with temperature at constant volume. Elastic anisotropy decreases with both pressure and temperature becoming

sotropic by the bottom of the upper mantle.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Ringwoodite is the most abundant mineral in the
arth’s transition zone between the 520 and 660 disconti-
uities (Anderson and Bass, 1986). The elastic properties
f ringwoodite are of primary interest for understanding
he transition zone structure and dynamics (Duffy and
nderson, 1989). The elastic anisotropy of this mineral

s also crucial in understanding the seismic anisotropy
n the deep mantle (Fischer and Wiens, 1996; Karato,
998). The elastic properties of ringwoodite have been
tudied extensively both experimentally and theoreti-

ally, but in a limited pressure (P) and temperature (T)
ange. Reported ultrasonic data (Li, 2003; Rigden et al.,
991) give both shear and longitudinal sound velocity
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h pressure and high temperature

at high P but at room T. Brillouin spectroscopy has
been used to measure single crystal elastic moduli at
either room P–room T (Sasaki et al., 1982; Weidner
et al., 1984); or high P–room T and high T–room P
(Jackson et al., 2000; Sinogeikin et al., 2001, 2003),
none of which reached mantle P–T conditions. Stress
measurements of ringwoodite in the diamond-anvil cell
(Kavner, 2003; Kavner and Duffy, 2001) were conducted
at room T with a clear goal of identifying the elastic
anisotropy but are possibly contaminated by the pres-
ence of plastic anisotropy (Weidner et al., 2004). The
equation of state of ringwoodite was determined at both
high P and T (up to 700 K) (Meng et al., 1993) using
an externally heated diamond anvil cell but with a lack
of information on elastic anisotropy and at relatively
low T compared with mantle conditions. Despite the

large number of experimental data, there is still a lack
of information of the elasticity of this phase at man-
tle P–T. Theoretically calculated elastic properties have
also been reported. Elastic properties of ringwoodite at
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T = 0 K were calculated using the plane-wave pseudopo-
tential method up to 30 GPa (Kiefer et al., 1997). Elastic
properties at high P–T were calculated using molecular
dynamic (MD) simulations with a Breathing shell model
(BSM) (Matsui, 1999) which depends on an empiri-
cal pair potential. Recent publications (Oganov et al.,
2001a,b; Stackhouse et al., 2004) have shown that the
ab initio molecular dynamics (AIMD) method is power-
ful for predicting the thermoelastic properties of silicate
minerals (e.g. MgSiO3 perovskite) at mantle P–T condi-
tions. We apply the same methodology to calculate the
thermoelasticity of Mg2SiO4 ringwoodite. We present a
complete equation of state which allows the calculation
of sound velocities in the mantle P–T range. Our results
indicate a quasi harmonic approximation would bias the
shear modulus in this temperature range. We find that
ringwoodite is nearly isotropic throughout its region of
stability in the mantle.

2. Methodology

The elastic constants of Mg2SiO4 ringwoodite
were calculated using ab initio molecular dynamics
(AIMD) simulations with the VASP code (Kresse and
Furthmüller, 1996). We used the projector-augmented-
wave (PAW) (Blöchl, 1994; Kresse and Joubert, 1999)
implementation of density functional theory (DFT) and
the implementation of an efficient extrapolation for the
charge density (Alfè, 1999). All calculations were per-
formed using a 56-atom unit-cell. A plane-wave cut-off
energy 500 eV was used. Increasing the plane-wave cut-
off to 600 eV caused the value of the elastic constants
to change by an average of 0.5 percent. The Γ point
was used for sampling the Brillouin zone. The time step
used in the dynamical simulation was 1 fs. The core
radii are 2.0 a.u. for Mg (core configuration 1s22s2),
1.9 a.u. for Si (1s22s22p6) and 1.52 a.u. for O (1s2). The
equilibrium structure was obtained after the stresses on

three principle axis are equal (within ±0.5 GPa) and the
off-diagonal stresses are zero. The convergence of the
stresses on each axis is carefully checked to be within
±0.5 GPa. The computation time to reach equilibration

Table 1
Comparisons of elastic moduli, cij; bulk modulus, K; shear modulus, µ; sound v
results (at T = 0 K) and experimental measurement (T = 300 K)

c11 (GPa) c12 (GPa) c44 (GPa) K (GPa) µ (GPa)

361 118 134 199 129
327 112 126 184 119
315 106 127 176 118

K and µ are calculated as Voigt–Reuss–Hill averages.
tary Interiors 157 (2006) 181–187

varies among configurations. It depends on the starting
atom positions, vibration velocities and temperature. It
took at least 2 ps calculation to reach the equilibrium.
Applying positive and negative strains (1%, 1.5% and
2.5%) to the equilibrated structure, stresses were aver-
aged values over 1 ps simulation. Tests show that the
effect of longer simulation on the calculated results is
small. The linearity between stress and strain was care-
fully checked for the strains applied. A primary test of
stress calculation using a 112-atom cell with box size
of 1 × 1 × 2 or 1 × √

2 × √
2 give identical results on

the principle and off-diagonal stresses within ±0.5 GPa,
which is of the same order of the statistical error, indi-
cating that an increase of box size by a fact of two has
little effect on calculated results. The acoustic velocities
as a function of crystallographic direction were derived
from the calculated single-crystal elastic constants using
the Christoffel equation (Nye, 1957).

3. Elastic constants at 0 K

A 56-atom cell with Fd3m atom positions was used
in these calculations. We defined the relaxed atom posi-
tions and calculated the elastic constants at 0 K and room
pressure which we can compare with the reported results
(Kiefer et al., 1997; Weidner et al., 1984) as listed in
Table 1. Our results are consistent with the experimental
results of the previous study (Weidner et al., 1984) as are
the reported calculations (Kiefer et al., 1997). The dif-
ferences among the two calculations are to be expected
owing to the different exchange-correlation potential
used. Our 0 K elastic constants are slightly larger than the
experimental data (largest 6% for c12) which is expected
since the experimental temperature is 300 K.

It is well known that the GGA model tends to overesti-
mate the pressure when compared with experiments. We
have taken an approach to define, empirically, a pressure
off-set between the calculated pressure and the measured

pressure for a given volume (Li et al., submitted for
publication; Oganov et al., 2001b). This presumes that
the calculations provide the correct physical property as
a function of volume and temperature. We corrected the

elocities, VP and VS; anisotropy A = 2c44/(c11 − c12) among theoretical

VP (km s−1) VS (km s−1) A References

10.08 5.94 1.10 Kiefer et al. (1997)
9.79 5.77 1.17 Weidner et al. (1984)
9.83 5.85 1.21 This study
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Table 2
Calculated cij, K, µ, A, VP and VS at Pc and T

Pc (GPa) V (Å3) T (K) c11 (GPa) c12 (GPa) c44 (GPa) K (GPa) µ (GPa) A VP (km s−1) V� (km s−1) VS (km s−1)

−5.3 539.67 0 315 106 127 176 118 1.21 9.83 7.15 5.85
14.2 493.04 0 422 168 128 253 128 1.01 10.59 8.19 5.82

5.3 512.00 0 376 140 127 219 123 1.08 10.27 7.76 5.82
22.1(2) 493.04 1500 428 176 130 260 128 1.03 10.69 8.30 5.83
13.3(3) 512.00 1500 357 149 122 219 115 1.17 10.11 7.76 5.62
24.7(3) 493.04 2000 408 177 124 254 121 1.08 10.49 8.20 5.66
15.9(3) 512.00 2000 365 135 116 207 111 1.01 10.05 7.64 5.65
29.8(4) 493.04 3000 409 181 113 257 113 0.99 10.40 8.26 5.47

217

P pressur
e % error

p
(
fi
e
u
K
w
T
o
s
o
s
c
P
V

4
e

e
w
a
v
c
e
c
w
e
c
s
w
s
s
a
l
s

uncertainty of the calculation, while the shear modulus
(Voigt–Reuss–Hill average), G, decreases with temper-
ature at constant volume indicating anharmonic contri-
butions to the shear modulus.
21.0(3) 512.00 3000 353 148 105

c is the corrected pressure Pc = P − 5.3 GPa. Error analysis for the
lsewhere (Allen and Tildesley, 1997). Elastic constants are within 10

ressure by combining our bulk modulus (K)–volume
V) relationship with the experimental volume (V0). We
tted our V–K data at 0 K using a Birch Murnaghan
quation of state with a reference room temperature vol-
me V0 = 524.56 Å3 (Sasaki et al., 1982), we derived
0 = 198 GPa and K′ = 4.07. With this equation of state,
e calculated the pressure at the investigated volumes.
he three 0 K data yield a consistent 5.3(±0.1) GPa
ffset, supporting our assumption of a constant pres-
ure offset. Our previous studies have shown that this
ffset is insensitive to temperature as well (Li et al.,
ubmitted for publication). In the following text, we used
orrected pressure (Pc) to represent the pressure term,
c = P − 5.3 GPa where P is the pressure calculated by
ASP for the model volume and temperature.

. Thermoelastic parameters and P–V–T
quation of state

The goal of this study is to calculate the P–V–T
quation of states and elastic moduli of Mg2SiO4 ring-
oodite at mantle P–T. We performed our simulations

t three temperatures: 1500, 2000 and 3000 K and two
olumes (493.04 and 512.00 Å3). Table 2 lists the cal-
ulated results. Fig. 1 illustrates the dependence of the
lastic moduli on temperature at each volume. The
alculated single crystal elastic modulus c11 decreases
ith temperature at fixed volume, the largest gradi-

nt (∂c11/∂T)V = −0.01 GPa K−1at V = 493.04 Å3, while
12 increases with temperature yielding a nearly con-
tant bulk modulus, K, as a function of temperature
ith fixed volume. The shear modulus, c44, demon-

trates the strongest temperature dependence at con-

tant volume of all of the elastic moduli with values
round (∂c44/∂T)V = −0.012 GPa K−1. The shear modu-
us, cs also decreases with temperature, but at a much
lower rate than c44 yielding a decreasing deviation
104 1.03 9.89 7.72 5.36

es was performed by reblocking the data, as described for examples
.

from isotropy with increasing temperature. As shown
in Fig. 2 the bulk modulus K = (c11 + 2c12)/3 is inde-
pendent of temperature at constant volume within the
Fig. 1. Elastic moduli cij vs. temperature T for: (a) V = 512.00 Å3, (b)
V = 493.04 Å3. Anisotropy (A) is given by the ratio of c44 and cs. For
both volumes, A converges to 1. At low temperature, A is the greatest
for the lower pressure.
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Fig. 2. Elastic moduli vs. temperature (T) at two volumes (V1 = 512.00
and V2 = 493.04 Å3). The bulk moduli (K) are temperature inde-
pendent at fixed volumes, while Reuss–Voigt–Hill average shear

Table 3
Thermal expansion α and Grűneisen parameter γ at high pressure and
temperature

T (K) Pc (GPa) V (Å3) α (∂P/∂T)V (GPa K−1) γ

1500 22.1(2) 493.04 1.99 0.00516 1.13
2000 24.7(3) 493.04 1.99 1.12
3000 29.8(4) 493.04 1.99 1.11
1500 13.3(3) 512.00 2.42 0.00525 1.19
modulus (GVRH) decrease with temperature at the two cal-
culated volumes. The temperature derivative of shear modulus
∂G/∂T(V = 493.04 Å3) = 9.7 × 10−3 GPa K−1; ∂G/∂T(V = 512.00 Å3) =
7.5 × 10−3 GPa K−1.

The comparison between the calculated bulk mod-
ulus, K, and experimental values are plotted in Fig. 3.
The experimental data are at either room temperature
or high pressure (symbol SS) or at elevated tempera-
ture and room pressure (symbol JJ). All data are plot-
ted as a function of V/V0 where V0 = 524.56 Å3 (Sasaki
et al., 1982). The theoretical calculations agree very
well with the experimental observations; supporting the
quasi-harmonic contention that bulk modulus depends
only on volume.

The thermal parameters are calculated and listed

in Table 3. Thermal expansion α is obtained from
(∂P/∂T)V/KT. Since the bulk modulus KT appears
to be insensitive to temperature at constant volume
within the error of calculated pressure (as listed in

Fig. 3. Calculated bulk modulus (K) vs. volume (V/V0) at high
pressure and temperature (P–T). JJ represents data at elevated
temperature–room pressure (Jackson et al., 2000); SS represents data
at room-temperature—high pressure (Sinogeikin et al., 2003).
2000 15.9(3) 512.00 2.42 1.18
3000 21.0(3) 512.00 2.42 1.17

Table 2), the thermal expansion also becomes temper-
ature insensitive at constant volume in the calculated
P–T conditions. The Grűneisen parameter, γ(V), is cal-
culated from the thermal pressure and thermal energy:
γ(V) = Pth(V, T)V/Eth(V, T), where the thermal energy
Eth = 3(N − 1)kbT, with kb is the Boltzmann constant,
N is the number of atoms in the supercell, N = 56 in
this study. Fitting the relation: γ = γ0(V/V0)q, we obtain
γ0 = 1.22 and q = 1.44 ± 0.05. The Anderson Grűneisen
parameter, δT, is given by δT = (∂ ln α/∂ ln V)T. Our best-
fit values are �T = 5.2 ± 0.05 and α0 = 2.74 × 10−5 K−1.

Finally, we model the pressure–volume relationship
with a third order Birch–Murnaghan equation of state.
Since our calculations are mostly at high temperature
(above the Debye temperature) and the Earth’s mantle is
also at high temperature, we define the reference condi-
tion for the equation of state as zero pressure and 2000 K.
We fit the Reuss–Voigt–Hill averaged shear modulus
with a third order Eulerian strain equation of state (Bina
and Helffrich, 1992) given by

µ = µ0(1 + 2f )5/2{1 − f [5 − 3(∂µ0/∂P)(K0/µ
0)]}

(1)

where f = (1/2)[(V0/V)2/3 − 1] and µ0 represents the
2000 K room pressure value of the shear modulus. The
best fit is for µ0 of 90.5 GPa and ∂µ0/∂P of 2.07. Table 4
summarizes all calculated thermoelastic properties at
2000 K and room pressure. These values allow us to
calculate the thermoelasticity at relevant mantle pres-
sures and temperatures. The finite strain equation of state
allows us to interpolate between the pressures and tem-
peratures of the VASP calculations.

The values in Table 4 are based on the high tem-
perature, high pressure AIMD calculations with one
adjustable parameter used to correct the pressure so as
to yield the experimental room pressure volume. From

the parameters in Table 4, we can calculate the proper-
ties along the geotherm where Mg2SiO4 ringwoodite is
stable. We can also calculate these properties at P–T con-
ditions for which experimental data have been reported.
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Table 4
2000 K, room pressure thermoelastic properties of ringwoodite

Property Value

V (Å3) 560(3)
α (K−1) 3.85 × 10−5

δ 5.2
� 1.34
q 1.44
K0

T (GPa) 138(6)
(∂KT/∂P)T 5.2(3)
(∂KT/∂T)V (GPa/K) 0
µ0 (GPa) 90.5
(∂µ/∂P)T 2.07
(∂µ/∂T)V (GPa/K) −0.0086

A Birch–Murnaghan fitting of the AIMD bulk modulus vs. volume and
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Fig. 4. Measured and calculated acoustic velocities as a function of P
(a) and T (b). The curve labelled calculated are the values calculated
from the properties in Table 4. The experimental data points labelled L
are from Li (2003), SS is from Sinogeikin et al. (2003), and JJ is from
Jackson et al. (2000).
orrected-pressure vs. volume yield these 2000 K reference volume
tate and bulk modulus variables. Shear modulus is derived from a
hird order Eulerian finite strain fit.

i (2003) report room temperature P and S velocities to
ressures up to 12 GPa; Sinogeikin et al. (2003) report
ingle-crystal sound velocities at room temperature up to
7 GPa and room pressure at temperatures up to 650 ◦C,
hile Jackson et al. (2000) report such data to 600 ◦C.

n Fig. 4 we illustrate the experimental measurements
f aggregate acoustic velocities that have been deduced
rom these studies. The values of the velocities that are
alculated using the parameters in Table 4 are illustrated
y solid lines. Even though the experimental velocities
ere not used as constraints on the AIMD model, we see

hat the agreement is excellent. We thus expect that the
IMD calculations will provide excellent predictions of

he acoustic velocities at P and T conditions along the
eotherm where experimental data are not available.

. Geophysical implications

One of the key variables for interpreting the seismic
nisotropy (Deuss and Woodhouse, 2001; Fischer and
iens, 1996; Montagner and Kennett, 1996; Revenaugh

nd Jordan, 1991; Shearer, 1990) is the elastic anisotropy
f the minerals. Cubic materials require only one param-
ter, A, to express the elastic anisotropy. A is typi-
ally defined as the ratio of two shear moduli, c44 and
1/2)(c11 − c12). The calculated value of A is 1.1 ± 0.1
n the calculated P–T range, and is compared with obser-
ations in Fig. 5. The elastic anisotropy decreases with
olume in these calculations. Previous studies (Kiefer et
l., 1997) have also shown that the elastic anisotropy of

ingwoodite is small in the pressure range of 0–30 GPa.
able 5 lists the computed maximum and minimum
and S velocities at T = 0 K (for V = 539.67 Å3), and
= 2000 K (for V = 512.00 and 493.04 Å3). The direction Fig. 5. Anisotropy A = 2c44/(c11 − c12) vs. (V/V0).
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Table 5
Computed maximum and minimum P and S velocities at T = 0 K (for
V = 539.67 Å3); and T = 2000 K (for V = 512.00 and 493.04 Å3)

V = 539.67 Å3 V = 512.00 Å3 V = 493.04 Å3

VPmax (km s) 10.00 10.06 10.55
VPmin (km/s) 9.56 10.03 10.40
VPmax/VPmin 1.05 1.00 1.01
VSmax (km/s) 6.07 5.67 5.75
VSmin (km/s) 5.50 5.62 5.53
VSmax/VSmin 1.10 1.01 1.04
(VSH/VSV)max 1.10 1.01 1.04

The propagation direction for maximum P wave velocity is (1 1 1), for
minimum P velocity the direction is (1 0 0), the maximum S velocity

propagates in the (1 0 0) direction with any polarization direction, the
minimum S wave velocity is in the (1 1 0) direction polarized in the
(1 −1 0) direction, as dictated by the cubic symmetry of ringwoodite.

for the maximum P wave velocity is (1 1 1); for the mini-
mum P wave direction is (1 0 0); for the maximum S wave
direction is (1 0 0) (polarized in the (0 1 0) direction);
the minimum S wave direction is (1 1 0) (polarized in
the (1 −1 0) direction); the maximum S wave anisotropy
direction is (1 1 0) (polarized in the (1 −1 0) rather than
(0 0 1) directions) as dictated by the cubic symmetry of
ringwoodite. Our results, after taking the temperature
into account, indicate that ringwoodite is remarkably
isotropic at mantle P–T conditions. In contrast to olivine
and other mantle minerals, ringwoodite will not provide
a seismic signal of mantle flow.

Using the 1873 K (at 660 km depth) geotherm of
Brown and Shankland (1981) we calculate the longi-

tudinal and shear wave velocities for the magnesium
end member of ringwoodite and compare these values
to those of PREM (Dziewonski and Anderson, 1981) in
Fig. 6. The pure magnesium ringwoodite is significantly

Fig. 6. Acoustic velocities for ringwoodite along a geotherm compared
with PREM (Dziewonski and Anderson, 1981) in the transition zone.
The geotherm is at 1873 K at 660 km depth with the gradient from
Brown and Shankland (1981). Ringwoodite calculations are interpo-
lated using a third order Eulerian finite strain model with the parameters
given in Table 4.
tary Interiors 157 (2006) 181–187

faster than PREM in its stability field from 550–660 km
depth. Indeed, both iron substitution for magnesium and
the presence of garnet will lower the absolute veloci-
ties. However, the gradient induced by pressure in ring-
woodite is much shallower than that for PREM for the
entire transition zone. The origin of this steep gradient in
PREM will be difficult to reconcile with models of uni-
form composition and phase over most of the transition
zone.
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