Elasticity of \(\text{Mg}_2\text{SiO}_4 \) ringwoodite at mantle conditions

Li Li \(^a\), Donald J. Weidner \(^b\), John Brodholt \(^a\), Dario Alfè \(^a\), G. David Price \(^a\)

\(^a\) Department of Earth Sciences, University College London, Gower Street, London WC1E6BT, UK
\(^b\) Mineral Physics Institute, Department of Geosciences, University of New York at Stony Brook, Stony Brook, NY 11790, USA

Received 31 January 2006; received in revised form 14 March 2006; accepted 5 April 2006

Abstract

The thermoelastic properties of \(\text{Mg}_2\text{SiO}_4 \) ringwoodite at mantle pressure and temperature conditions are reported based on ab initio molecular dynamic simulations. A third-order Birch–Murnaghan equation at a reference temperature of 2000 K is defined by \(K_0 = 138 \) GPa, \(K'_0 = 5.2 \), and \(V_0(2000 \text{ K}) = 560.3 \text{ Å}^3 \). The Grüneisen parameter is determined to be \(\gamma(V) = \gamma_0(V/V_0(298 \text{ K}))^{\delta T} \) with \(\gamma_0 = 1.22 \) and \(\delta T = 1.44(5) \), with \(V_0(298 \text{ K}) = 524.56 \text{ Å}^3 \). The thermal expansion is determined to be \((\alpha/\alpha_0) = (V/V_0(298 \text{ K}))^{\delta T} \) in which \(\alpha_0 = 2.74 \times 10^{-5} \text{ K}^{-1} \) and \(\delta T = 5.2(1) \). The bulk modulus is temperature independent at constant volume, while the shear moduli vary with temperature at constant volume. Elastic anisotropy decreases with both pressure and temperature becoming isotropic by the bottom of the upper mantle.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Ringwoodite; Elasticity; First principle; Molecular dynamics; High pressure and high temperature

1. Introduction

Ringwoodite is the most abundant mineral in the Earth’s transition zone between the 520 and 660 discontinuities (Anderson and Bass, 1986). The elastic properties of ringwoodite are of primary interest for understanding the transition zone structure and dynamics (Duffy and Anderson, 1989). The elastic anisotropy of this mineral is also crucial in understanding the seismic anisotropy in the deep mantle (Fischer and Wiens, 1996; Karato, 1998). The elastic properties of ringwoodite have been studied extensively both experimentally and theoretically, but in a limited pressure \(P \) and temperature \(T \) range. Reported ultrasonic data (Li, 2003; Rigden et al., 1991) give both shear and longitudinal sound velocity at high \(P \) but at room \(T \). Brillouin spectroscopy has been used to measure single crystal elastic moduli at either room \(P \)–room \(T \) (Sasaki et al., 1982; Weidner et al., 1984); or high \(P \)–room \(T \) and high \(T \)–room \(P \) (Jackson et al., 2000; Sinogeikin et al., 2001, 2003), none of which reached mantle \(P \)–\(T \) conditions. Stress measurements of ringwoodite in the diamond-anvil cell (Kavner, 2003; Kavner and Duffy, 2001) were conducted at room \(T \) with a clear goal of identifying the elastic anisotropy but are possibly contaminated by the presence of plastic anisotropy (Weidner et al., 2004). The equation of state of ringwoodite was determined at both high \(P \) and \(T \) (up to 700 K) (Meng et al., 1993) using an externally heated diamond anvil cell but with a lack of information on elastic anisotropy and at relatively low \(T \) compared with mantle conditions. Despite the large number of experimental data, there is still a lack of information of the elasticity of this phase at mantle \(P \)–\(T \). Theoretically calculated elastic properties have also been reported. Elastic properties of ringwoodite at...
$T=0\,\text{K}$ were calculated using the plane-wave pseudopotential method up to 30 GPa (Kiefer et al., 1997). Elastic properties at high P–T were calculated using molecular dynamic (MD) simulations with a Breathing shell model (BSM) (Matsui, 1999) which depends on an empirical pair potential. Recent publications (Oganov et al., 2001a,b; Stackhouse et al., 2004) have shown that the ab initio molecular dynamics (AIMD) method is powerful for predicting the thermoelastic properties of silicate minerals (e.g. MgSiO$_3$ perovskite) at mantle P–T conditions. We apply the same methodology to calculate the thermoelasticity of Mg$_2$SiO$_4$ ringwoodite. We present a complete equation of state which allows the calculation of sound velocities in the mantle P–T range. Our results indicate a quasi harmonic approximation would bias the shear modulus in this temperature range. We find that ringwoodite is nearly isotropic throughout its region of stability in the mantle.

2. Methodology

The elastic constants of Mg$_2$SiO$_4$ ringwoodite were calculated using ab initio molecular dynamics (AIMD) simulations with the VASP code (Kresse and Furthmüller, 1996). We used the projector-augmented-wave (PAW) (Blöchl, 1994; Kresse and Joubert, 1999) implementation of density functional theory (DFT) and the implementation of an efficient extrapolation for the charge density (Alfè, 1999). All calculations were performed using a 56-atom unit-cell. A plane-wave cut-off energy 500 eV was used. Increasing the plane-wave cut-off to 600 eV caused the value of the elastic constants to change by an average of 0.5 percent. The Γ point was used for sampling the Brillouin zone. The time step used in the dynamical simulation was 1 fs. The core radii are 2.0 a.u. for Mg (core configuration 1$s^2$2s^2), 1.9 a.u. for Si (1$s^2$2$s^2$2p^6) and 1.52 a.u. for O (1s^2). The equilibrium structure was obtained after the stresses on atom positions, vibration velocities and temperature. It takes at least 2 ps calculation to reach the equilibrium. Applying positive and negative strains (1%, 1.5% and 2.5%) to the equilibrated structure, stresses were averaged values over 1 ps simulation. Tests show that the effect of longer simulation on the calculated results is small.

3. Elastic constants at $0\,\text{K}$

A 56-atom cell with $Fd\overline{3}m$ atom positions was used in these calculations. We defined the relaxed atom positions and calculated the elastic constants at 0 K and room pressure which we can compare with the reported results (Kiefer et al., 1997; Weidner et al., 1984) as listed in Table 1. Our results are consistent with the experimental results of the previous study (Weidner et al., 1984) as are the reported calculations (Kiefer et al., 1997). The differences among the two calculations are to be expected owing to the different exchange-correlation potential used. Our 0 K elastic constants are slightly larger than the experimental data (largest 6% for c_{12}) which is expected since the experimental temperature is 300 K.

It is well known that the GGA model tends to overestimate the pressure when compared with experiments. We have taken an approach to define, empirically, a pressure off-set between the calculated pressure and the measured pressure for a given volume (Li et al., submitted for publication; Oganov et al., 2001b). This preserves that the calculations provide the correct physical property as a function of volume and temperature. We corrected the

<table>
<thead>
<tr>
<th>c_{11} (GPa)</th>
<th>c_{12} (GPa)</th>
<th>c_{44} (GPa)</th>
<th>K (GPa)</th>
<th>μ (GPa)</th>
<th>V_P (km s$^{-1}$)</th>
<th>V_S (km s$^{-1}$)</th>
<th>A</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>361</td>
<td>118</td>
<td>134</td>
<td>199</td>
<td>129</td>
<td>10.08</td>
<td>5.94</td>
<td>1.10</td>
<td>Kiefer et al. (1997)</td>
</tr>
<tr>
<td>327</td>
<td>112</td>
<td>126</td>
<td>184</td>
<td>119</td>
<td>9.79</td>
<td>5.77</td>
<td>1.17</td>
<td>Weidner et al. (1984)</td>
</tr>
<tr>
<td>315</td>
<td>106</td>
<td>127</td>
<td>176</td>
<td>118</td>
<td>9.83</td>
<td>5.85</td>
<td>1.21</td>
<td>This study</td>
</tr>
</tbody>
</table>

K and μ are calculated as Voigt–Reuss–Hill averages.
pressure by combining our bulk modulus \((K)\)–volume \((V)\) relationship with the experimental volume \((V_0)\). We fitted our \(V\)–\(K\) data at 0 K using a Birch Murnaghan equation of state with a reference room temperature volume \(V_0 = 524.56 \text{ Å}^3\) (Sasaki et al., 1982), we derived \(K_0 = 198 \text{ GPa}\) and \(K' = 4.07\). With this equation of state, we calculated the pressure at the investigated volumes. The three 0 K data yield a consistent \(5.3(\pm 0.1) \text{ GPa}\) offset, supporting our assumption of a constant pressure offset. Our previous studies have shown that this offset is insensitive to temperature as well (Li et al., submitted for publication). In the following text, we used corrected pressure \((P_c)\) to represent the pressure term, \(P_c = P - 5.3 \text{ GPa}\) where \(P\) is the pressure calculated by VASP for the model volume and temperature.

4. Thermoelastic parameters and \(P\)–\(V\)–\(T\) equation of state

The goal of this study is to calculate the \(P\)–\(V\)–\(T\) equation of states and elastic moduli of Mg\(_2\)SiO\(_4\) ringwoodite at mantle \(P\)–\(T\). We performed our simulations at three temperatures: 1500, 2000 and 3000 K and two volumes (493.04 and 512.00 \(\text{ Å}^3\)). Table 2 lists the calculated results. Fig. 1 illustrates the dependence of the elastic moduli on temperature at each volume. The calculated single crystal elastic modulus \(c_{11}\) decreases with temperature at fixed volume, the largest gradient \((\partial c_{11}/\partial T)_V = -0.01 \text{ GPa K}^{-1}\) at \(V = 493.04 \text{ Å}^3\), while \(c_{12}\) increases with temperature yielding a nearly constant bulk modulus, \(K\), as a function of temperature with fixed volume. The shear modulus, \(c_{44}\), demonstrates the strongest temperature dependence at constant volume of all of the elastic moduli with values around \((\partial c_{44}/\partial T)_V = -0.012 \text{ GPa K}^{-1}\). The shear modulus, \(c_s\), also decreases with temperature, but at a much slower rate than \(c_{44}\) yielding a decreasing deviation from isotropy with increasing temperature. As shown in Fig. 2 the bulk modulus \(K = (c_{11} + 2c_{12})/3\) is independent of temperature at constant volume within the uncertainty of the calculation, while the shear modulus (Voigt–Reuss–Hill average), \(G\), decreases with temperature at constant volume indicating anharmonic contributions to the shear modulus.

![Fig. 1. Elastic moduli \(c_{ij}\) vs. temperature \(T\) for: (a) \(V = 512.00 \text{ Å}^3\), (b) \(V = 493.04 \text{ Å}^3\). Anisotropy (A) is given by the ratio of \(c_{44}\) and \(c_s\). For both volumes, A converges to 1. At low temperature, A is the greatest for the lower pressure.](image-url)
The experimental data are measured at either room temperature or high pressure (symbol SS) or at elevated temperature–high pressure (symbol JJ). All data are plotted as a function of V/V_0 where $V_0 = 524.56 \, \text{Å}^3$ (Sasaki et al., 1982). The theoretical calculations agree very well with the experimental observations; supporting the quasi-harmonic contention that bulk modulus depends only on volume.

The thermal parameters are calculated and listed in Table 3. Thermal expansion α is obtained from $(\partial P/\partial T)_V/K_T$. Since the bulk modulus K_T appears to be insensitive to temperature at constant volume within the error of calculated pressure (as listed in Table 2), the thermal expansion also becomes temperature insensitive at constant volume in the calculated P–T conditions. The Grüneisen parameter, $\gamma(V)$, is calculated from the thermal pressure and thermal energy: $\gamma(V) = P_{th}(V, T)V/E_{th}(V, T)$, where the thermal energy $E_{th} = 3(N - 1)k_b T$, with k_b is the Boltzmann constant, N is the number of atoms in the supercell, $N = 56$ in this study. Fitting the relation: $\gamma = \gamma_0 (V/V_0)^q$, we obtain $\gamma_0 = 1.22$ and $q = 1.44 \pm 0.05$. The Anderson Grüneisen parameter, δ_T, is given by $\delta_T = (\partial \ln \alpha/\partial \ln V)_T$. Our best-fit values are $\delta_T = 5.2 \pm 0.05$ and $\alpha_0 = 2.74 \times 10^{-5} \, \text{K}^{-1}$.

Finally, we model the pressure–volume relationship with a third order Birch–Murnaghan equation of state. Since our calculations are mostly at high temperature (above the Debye temperature) and the Earth’s mantle is also at high temperature, we define the reference condition for the equation of state as zero pressure and 2000 K. We fit the Reuss–Voigt–Hill averaged shear modulus with a third order Eulerian strain equation of state (Bina and Helffrich, 1992) given by

$$
\mu = \mu_0 (1 + 2f)^{5/2} \left[1 - f \left[5 - 3(\partial \mu / \partial P)(K_0 / \mu_0) \right] \right]
$$

(1)

where $f = (1/2)(V_0/V)^{2/3} - 1$ and μ_0 represents the 2000 K room pressure value of the shear modulus. The best fit is for μ_0 of 90.5 GPa and $\partial \mu_0 / \partial P$ of 2.07. Table 4 summarizes all calculated thermoelastic properties at 2000 K and room pressure. These values allow us to calculate the thermoelasticity at relevant mantle pressures and temperatures. The finite strain equation of state allows us to interpolate between the pressures and temperatures of the VASP calculations.

The values in Table 4 are based on the high temperature, high pressure AIMD calculations with one adjustable parameter used to correct the pressure so as to yield the experimental room pressure value. From the parameters in Table 4, we can calculate the properties along the geotherm where Mg$_2$SiO$_4$ ringwoodite is stable. We can also calculate these properties at P–T conditions for which experimental data have been reported.
Table 4
2000 K, room pressure thermodynamic properties of ringwoodite

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (Å³)</td>
<td>560(3)</td>
</tr>
<tr>
<td>a (K⁻¹)</td>
<td>3.85×10^{-5}</td>
</tr>
<tr>
<td>δ</td>
<td>5.2</td>
</tr>
<tr>
<td>γ</td>
<td>1.34</td>
</tr>
<tr>
<td>η</td>
<td>1.44</td>
</tr>
<tr>
<td>K_T^0 (GPa)</td>
<td>138(6)</td>
</tr>
<tr>
<td>$(\partial K_T/\partial T)_V$ (GPa/K)</td>
<td>5.2(3)</td>
</tr>
<tr>
<td>$(\partial K_T/\partial P)_T$ (GPa)</td>
<td>0</td>
</tr>
<tr>
<td>μ^0 (GPa)</td>
<td>90.5</td>
</tr>
<tr>
<td>$(\partial \mu/\partial P)_T$ (GPa/K)</td>
<td>2.07</td>
</tr>
<tr>
<td>$(\partial \mu/\partial T)_V$ (GPa/K)</td>
<td>-0.0086</td>
</tr>
</tbody>
</table>

A Birch–Murnaghan fitting of the AIMD bulk modulus vs. volume and corrected-pressure vs. volume yield these 2000 K reference volume state and bulk modulus variables. Shear modulus is derived from a third order Eulerian finite strain fit.

Li (2003) report room temperature P and S velocities to pressures up to 12 GPa; Sinogeikin et al. (2003) report single-crystal sound velocities at room temperature up to 17 GPa and room pressure at temperatures up to 650 °C, while Jackson et al. (2000) report such data to 600 °C.

In Fig. 4 we illustrate the experimental measurements of aggregate acoustic velocities that have been deduced from these studies. The values of the velocities that are calculated using the parameters in Table 4 are illustrated by solid lines. Even though the experimental velocities were not used as constraints on the AIMD model, we see that the agreement is excellent. We thus expect that the AIMD calculations will provide excellent predictions of the acoustic velocities at P and T conditions along the geotherm where experimental data are not available.

5. Geophysical implications

One of the key variables for interpreting the seismic anisotropy (Deuss and Woodhouse, 2001; Fischer and Wiens, 1996; Montagner and Kennett, 1996; Revenaugh and Jordan, 1991; Shearer, 1990) is the elastic anisotropy of the minerals. Cubic materials require only one parameter, A, to express the elastic anisotropy. A is typically defined as the ratio of two shear moduli, c_{44} and $(1/2)(c_{11} - c_{12})$. The calculated value of A is 1.1 ± 0.1 in the calculated P–T range, and is compared with observations in Fig. 5. The elastic anisotropy decreases with volume in these calculations. Previous studies (Kiefer et al., 1997) have also shown that the elastic anisotropy of ringwoodite is small in the pressure range of 0–30 GPa.

Table 5 lists the computed maximum and minimum P and S velocities at $T = 0$ K (for $V = 539.67$ Å³), and $T = 2000$ K (for $V = 512.00$ and 493.04 Å³). The direction

Fig. 4. Measured and calculated acoustic velocities as a function of P (a) and T (b). The curve labelled calculated are the values calculated from the properties in Table 4. The experimental data points labelled L are from Li (2003), SS is from Sinogeikin et al. (2003), and JJ is from Jackson et al. (2000).

Fig. 5. Anisotropy $A = 2c_{44}/(c_{11} - c_{12})$ vs. (V/V_0).

Table 5

<table>
<thead>
<tr>
<th>Property</th>
<th>Maximum Value</th>
<th>Minimum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (Å³)</td>
<td>539.67</td>
<td>493.04</td>
</tr>
<tr>
<td>V_0 (Å³)</td>
<td>512.00</td>
<td>493.04</td>
</tr>
<tr>
<td>c_{11} (GPa)</td>
<td>261.0</td>
<td>245.0</td>
</tr>
<tr>
<td>c_{12} (GPa)</td>
<td>185.0</td>
<td>169.0</td>
</tr>
<tr>
<td>c_{44} (GPa)</td>
<td>115.0</td>
<td>109.0</td>
</tr>
<tr>
<td>μ (GPa)</td>
<td>90.5</td>
<td>88.5</td>
</tr>
<tr>
<td>$(\partial \mu/\partial P)_T$ (GPa/K)</td>
<td>2.07</td>
<td></td>
</tr>
<tr>
<td>$(\partial \mu/\partial T)_V$ (GPa/K)</td>
<td>-0.0086</td>
<td></td>
</tr>
</tbody>
</table>
Table 5
Computed maximum and minimum P and S velocities at $T=0$ K (for $V=539.67$ Å3); and $T=2000$ K (for $V=512.00$ and 493.04 Å3)

<table>
<thead>
<tr>
<th>V (Å3)</th>
<th>$V_{P\text{max}}$ (km/s)</th>
<th>$V_{P\text{min}}$ (km/s)</th>
<th>$V_{P\text{max}}/V_{P\text{min}}$</th>
<th>$V_{S\text{max}}$ (km/s)</th>
<th>$V_{S\text{min}}$ (km/s)</th>
<th>$V_{S\text{max}}/V_{S\text{min}}$</th>
<th>$(V_{SH}/V_{SV})_{\text{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>539.67</td>
<td>10.00</td>
<td>9.56</td>
<td>1.05</td>
<td>6.07</td>
<td>5.50</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td>512.00</td>
<td>10.06</td>
<td>10.03</td>
<td>1.00</td>
<td>5.67</td>
<td>5.62</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td>493.04</td>
<td>10.55</td>
<td>10.40</td>
<td>1.01</td>
<td>5.53</td>
<td>5.53</td>
<td>1.04</td>
<td>1.04</td>
</tr>
</tbody>
</table>

The propagation direction for maximum P wave velocity is (1 1 1), for minimum P velocity the direction is (1 0 0), the maximum S wave velocity is in the (1 1 0) direction polarized in the (1 − 1 0) direction, as dictated by the cubic symmetry of ringwoodite.

for the maximum P wave velocity is (1 1 1); for the minimum P wave direction is (1 0 0); for the maximum S wave direction is (1 0 0) (polarized in the (0 1 0) direction); the minimum S wave direction is (1 1 0) (polarized in the (1 − 1 0) rather than (0 0 1) directions) as dictated by the cubic symmetry of ringwoodite. Our results, after taking the temperature into account, indicate that ringwoodite is remarkably isotropic at mantle $P–T$ conditions. In contrast to olivine and other mantle minerals, ringwoodite will not provide a seismic signal of mantle flow.

Using the 1873 K (at 660 km depth) geotherm of Brown and Shankland (1981) we calculate the longitudinal and shear wave velocities for the magnesium end member of ringwoodite and compare these values to those of PREM (Dziewonski and Anderson, 1981) in Fig. 6. The pure magnesium ringwoodite is significantly faster than PREM in its stability field from 550–660 km depth. Indeed, both iron substitution for magnesium and the presence of garnet will lower the absolute velocities. However, the gradient induced by pressure in ringwoodite is much shallower than that for PREM for the entire transition zone. The origin of this steep gradient in PREM will be difficult to reconcile with models of uniform composition and phase over most of the transition zone.

Acknowledgements

This work is support by NERC (Grant Nos. NER/T/S/2001/00855; NER/O/S/2001/01227), and computer facilities provided by NERC at University College London, and the High Performance Computing Facilities of the University of Manchester (CSAR) and the Daresbury Laboratory (HPCx). DJW acknowledges the Leverhulme Trust for support through the visiting Professor program. DJW and LL acknowledge NSF EAR-9909266, EAR0135551, EAR00135550.

References

Li, L., et al. Elasticity of CaSiO$_3$ perovskite at high pressure and high temperature, PEPI, submitted for publication.
Matsui, M., 1999. Computer simulation of the Mg (sub 2) SiO (sub 4) phases with application to the 410 km seismic discontinuity. PEPI 116 (1–4), 9–18.
Sinogeikin, S.V., Bass, J.D., Katsura, T., 2001. Single-crystal elasticity of gamma-(Mg$_{0.91}$Fe$_{0.09}$)$_2$SiO$_4$ to high pressures and to high temperatures. Geophys. Res. Lett. 28 (22), 4335–4338.