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Abstract

Ab initio molecular dynamic (AIMD) simulations were performed to calculate the equation of state (EOS) of CaSiO3 per-
ovskite at mantle pressure–temperature conditions. At temperatures above 2000 K, even though the hydrostatic crystal structure
is metrically tetragonal in the pressure range of 13–123 GPa, the symmetry of the elastic moduli is consistent with cubic sym-
metry. Our results show that elastic constants and velocities are independent of temperature at constant volume. Referenced to
room pressure and 2000 K, we find: Grűneisen parameter is γ(V) = γ0(V/V0)q with γ0 = 1.53 and q = 1.02(5), and the Anderson
Grűneisen parameter is given by (α/α ) = (V/V )δT in which α = 2.89 × 10−5 K−1 and δ = 4.09(5). Using the third order Birch
0 0 0 T

Murnaghan equation of state to fit our data, we have for ambient P and T, K0 = 236.6(8) GPa, K′
0 = 3.99(3), and V0 = 729.0(6) Å3.

Calculated acoustic velocities show the following P–T dependence: (∂ln VP/∂V)T or P = −1.9 × 10−3; (∂ln VS/∂V)T or P = −1.5 × 10−3;
(∂ln VΦ/∂V)T or P = −2.4 × 10−3; (∂ln VS/∂ln VP)T or P = 0.79; (∂ln VS/∂ln VΦ)T or P = 0.63, indicating that the variations in bulk modulus
overpower the variations in shear modulus.

The bulk modulus of CaSiO3 perovskite is up to 10% lower than MgSiO3 perovskite under lower mantle conditions. The difference
diminishes with pressure and temperature. The shear modulus of CaSiO3 perovskite is almost 25% lower compared with MgSiO3

perovskite for shallow lower mantle pressures and temperatures and about 3% lower at the base of the lower mantle. The difference
in density of these two perovskite is about 3–4% for all conditions. Both the density and bulk modulus differ from PREM by less
than 2% throughout the lower mantle. The shear modulus is ∼10% lower at shallow depths grading to ∼5% by the core-mantle
boundary. Thus, the seismic velocity of CaSiO3 perovskite will be lower (0–6%) than PREM.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

CaSiO3 perovskite is one of the most significant min-
erals in the earth (Funamori et al., 2000; Hirose et
al., 1999; Liu and Ringwood, 1975; Mao et al., 1977;
McDonough and Sun, 1995; Wood, 1997). Experimen-
0031-9201/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.pepi.2005.12.006
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tal investigations of the elastic properties of CaSiO3
perovskite give various results: a cubic Pm3m struc-
ture with high bulk modulus (K0 ≥ 275 GPa) (Mao et
al., 1989; Tamai and Yagi, 1989; Tarrida and Richet,
1989; Yagi et al., 1989), a cubic structure with signif-
icantly lower bulk modulus (K0 ∼ 232 GPa) (Shim and
Duffy, 2000; Shim et al., 2000; Wang et al., 1996), a
tetragonal structure with K0 = 255(5) GPa (Shim et al.,
2002), and an even lower K0 = 212(7) GPa was pre-
dicted from perovskite analogues (Sinelnikov et al.,
1998). Some studies (Hama and Suito, 1998; Shim et
al., 2002; Wang et al., 1996; Wentzcovitch et al., 1995)
suggested that CaSiO3 perovskite can be regarded as
invisible in modelling the lower mantle, while oth-
ers (Sinelnikov et al., 1998) suggest that CaSiO3 per-
ovskite cannot be ignored due to an estimated shear
modulus that is 37% lower than (Mg, Fe)SiO3 per-
ovskite. CaSiO3 perovskite has stimulated a number
of theoretical calculations (Akber-Knutson et al., 2002;
Caracas and Wentzcovitch, 2005; Chizmeshya et al.,
1996; Hemley et al., 1987; Jung and Oganov, 2005;
Karki and Crain, 1998; Magyari-Kope et al., 2002a;
Magyari-Kope et al., 2002b; Sherman, 1993; Stixrude et
al., 1996; Warren et al., 1998; Wentzcovitch et al., 1995;
Wolf and Bukowinski, 1987). The debate among the
results from theoretical calculation is as contentious as
those from experiments; see review in Jung and Oganov
(2005).

In general, there are two critical issues: what are the
stable structures and what are their elastic properties

2. Computational method

Ab initio molecular dynamics simulations were per-
formed to calculate the elastic constants of CaSiO3
perovskite using VASP code (Kresse and Furthmüller,
1996a; Kresse and Furthmüller, 1996b). The exchange-
correlation functional Exc used was the PW91 form of
the generalized gradient approximation (GGA) (Perdew
et al., 1992; Wang and Perdew, 1991). We used projector-
augmented-wave (PAW) implementation of density
functional theory and the implementation of an efficient
extrapolation for the charge density (Alfè, 1999; Blöchl,
1994; Kresse and Joubert, 1999). All calculations were
performed using an 80-atom super-cell. A plane-wave
cut-off energy 500 eV was shown to be sufficient for the
elastic constants to converge. Increasing the plane-wave
cut-off to 1000 eV caused the calculated enthalpy differ-
ence of the two phases to change by less than 0.5 meV
per atom and the absolute value of the elastic constants
to differ by an average of 0.6%. The calculations were
therefore considered converged. Γ point was used for
sampling the Brillouin zone. The time step used in the
dynamical simulation was 1 fs. The core radii used were
2.3 a.u. for Ca (core configuration 1s2 2s2 2p6), 1.9 a.u.
for Si (1s2 2s2 2p6) and 1.52 a.u. for O (1s2). The equi-
librium structure was obtained after at least 2ps of sim-
ulation (Fig. 1). Applying positive and negative strains
(1 and 2%) to the equilibrated structure, stresses were
calculated after 1ps simulation. Tests show that longer
simulation has little effect on the calculated results. The
including both bulk and shear moduli. Since CaSiO3 per-
ovskite is not stable below 1 GPa and 1100 K (Gasparik
et al., 1994; Swamy and Dubrovinsky, 1997) and is
unquenchable, resolving the structure and elastic prop-
erties of CaSiO3 perovskite demands high-resolution
experimental tools (Shim and Duffy, 2000; Shim et al.,
2002). The structural and energy differences between
several structures are small (Akber-Knutson et al., 2002;
Caracas and Wentzcovitch, 2005; Jung and Oganov,
2005) making theory difficult to assess the stable struc-
ture even at 0 K. In the past decade, the predictive
power of the first-principle calculations has been con-
tinuingly growing. Using ab initio molecular dynamics
(AIMD), elastic constants of materials can be calculated
by monitoring the stress–strain relations (Oganov et al.,
2001a; Oganov et al., 2001b; Stackhouse et al., 2004).
Recent studies using density functional theory (DFT)
have explored the stable structures for CaSiO3 perovskite
at 0 K. This paper extends these studies to provide single
crystal elastic moduli to high temperature (5000 K) for
the stable phases using density functional theory coupled
with molecular dynamics.
kinetic pressure correction was used in our calculations.
Error analysis for the stresses were performed following
the algorithm described elsewhere (Allen and Tildesley,
1997).

Fig. 1. Fluctuations of the stress components for the CaSiO3 perovskite
optimized at 124 GPa and 4000 K show that the stress is hydrostatic.
Positive and negative strain (three axial strains for orthorhombic struc-
ture, two for tetragonal structure and one triclinic strain with magnitude
of 1 and 2%) were applied on the hydrostatic structure, the time
averages of the induced stresses were calculated. Isothermal elastic
constants cij were derived from nonlinear stress–strain relations.
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The acoustic velocities as a function of crystallo-
graphic direction were derived from the calculated single
crystal elastic constants using the Christoffel equation
(Nye, 1957). The measure of elastic anisotropy reported
is the ratio of the fastest acoustic velocity to the slowest
one.

3. Stable phase

The perovskite structure can have several subtle varia-
tions in atom positions that give rise to a variety of space
groups at high P and T (Glazer, 1972; Glazer, 1975).
The rotation and distortion of the octahedral units define
these variations. Physical properties such as elastic mod-
uli can radically change between phases and within the
phase boundary region. Finite strain can be the agent
of moving from one phase to another or to interchange
twins within a single phase.

At 0 K, several variations of the perovskite structure
compete for the minimum energy (Akber-Knutson et
al., 2002; Caracas and Wentzcovitch, 2005; Jung and
Oganov, 2005; Magyari-Kope et al., 2002a; Stixrude
et al., 1996; Warren et al., 1998; Wentzcovitch et al.,
1995) with the most recent conclusion being that the
cubic phase is not stable at any pressure (P). Increas-
ing temperature (T) should favour the higher symmetry
phases, but the boundaries of these phase transitions need
to be identified. In a companion paper (Li et al., 2005),

Fig. 2. Calculated phase diagram of CaSiO3 perovskite. Below the
solid line, orthorhombic phase is stable; above the dashed line, cubic
phase is stable. The tetragonal phase that dominates the plot is tetrag-
onal on an instantaneous time scale (1 fs).

we explore the stability fields of the high temperature
CaSiO3 perovskite through analysis of rotation angle of
the octahedra, calculated X-ray diffraction patterns, and
analysis of stresses on the fixed super-cell from quantum
molecular dynamic calculations. Our conclusion is that
there is a single stable phase between 1000 and 4000 K
for the pressure range studied (15–130 GPa), as illus-
trated in Fig. 2. The cell dimensions of the hydrostatically
stressed structures are listed in Table 1. Both orthorhom-
bic and cubic symmetries of the perovskite phase are

T
C 11, σ22 and σ33 at different P–T

T ˚ 3) PC (GPa) σ11 σ22 σ33

.59 −9.0 0 0 0

.27 6.0 15 15 15

.48 41.0 50 50 50

.59 94.9 103.9 103.9 103.9

.46 −0.7 8.3(0) 8.3(1) 8.3(1)
1 .52 5.7 14.7(1) 14.8(2) 14.7(2)
2 .51 12.8 21.8(2) 21.7(2) 22.0(3)
3 .53 19.8 28.8(3) 29.0(3) 28.6(3)
4 .52 26.0 35.0(4) 35.0(4) 35.1(4)

.78 35.5 44.3(1) 44.5(1) 44.8(1)
1 .37 37.7 46.6(3) 46.6(2) 46.9(3)
2 .38 44.5 53.7(2) 53.3(2) 53.4(3)
3 .39 51.1 60.4(3) 60.2(3) 59.6(4)
4 .37 57.7 67.1(3) 66.0(3) 67.0(4)

.78 96.3 105.5(1) 105.2(0) 105.4(1)
1 .82 102.5 111.4(4) 111.8(4) 111.3(3)
2 .82 109.6 118.9(4) 118.4(3) 118.5(4)
3 .82 116.6 125.7(3) 125.4(5) 125.8(5)
4 .82

V eviation
t lated us
l

able 1
ell parameters a, b and c, volume V, and stress tensor components σ

(K) a (Å) b (Å) c (Å) V (A

0 10.2521 10.2118 7.1694 750
0 10.0038 10.0598 7.018 706
0 9.7439 9.6618 6.7724 637
0 9.4217 9.4217 6.5283 572

150 10.1117 10.1592 7.0913 728
000 10.1216 10.1216 7.1112 728
000 10.1334 10.1334 7.0945 728
000 10.1169 10.1169 7.1179 728
000 10.1236 10.1236 7.1085 728
150 9.7977 9.7195 6.8129 648
000 9.7810 9.7810 6.8510 655
000 9.7698 9.7698 6.8663 655
000 9.7624 9.7624 6.8768 655
000 9.7760 9.7760 6.8575 655
150 9.4143 9.3121 6.5336 572
000 9.3451 9.3451 6.5592 572
000 9.3416 9.3416 6.5642 572
000 9.3420 9.3420 6.5635 572
000 9.3472 9.3472 6.5561 572

is the volume of a cell containing 80 atoms. The non-hydrostatic d
he average pressure. Errors for the stress tensor components are calcu
isted in the parenthesis.
122.8 131.5(4) 132.1(3) 131.7(4)

s of the stress tensor components are small (less than 0.5 GPa) from
ing the same algorithm as described elsewhere (Alfe et al., 2000) and
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present in a limited region. The “tetragonal” phase that
dominates the diagram is tetragonal at any instant (1 fs
time step), but the orientation of the tetragonal symmetry
can vary with time (1 ps). The time average structure may
be manifested as cubic. This is distinct from the “cubic”
phase which is cubic at each time step. The tetragonal
symmetry can be stabilized with a super-cell which has a
unique axis parallel to the Si–O–Si bonds and the other
two axes rotated 45◦ from the Si–O–Si bonds (i.e. the
Pnma setting). Details are discussed in our companion
paper (Li et al., 2005).

4. Ferroelastic strain relate to the cij calculation

The definition of a single crystal elastic constant is
the ratio of the stress to an imposed infinitesimal strain.
The nature of molecular dynamics calculation requires
a large enough strain for the stress to be large enough
to overcome the noise effect from the lattice vibrations.
We use strains of 1 and 2% for such calculations. How-
ever, CaSiO3 perovskite has ferroelastic spontaneous
strains of less than 1% in the non-cubic phases. An
example of the strain energy associated with strain coin-
cident with the ferroelastic spontaneous strain is shown
in Fig. 3. The two energy minima are at two macro-
scopic strains but represent two identical twins of the
same structure. The forces are given by the derivative of
the energy with respect to strain. Infinitesimal strain per-
turbations will encounter significant forces while finite
strains may not properly sample the forces. Thus, in

Fig. 3. Enthalpy vs. strain at 50 GPa and 0 K. Strain equals to (a − b)/a.
Enthalpy is for the 80 atoms cell. The minima of enthalpy represent
the equivalent twins of the same structure. The cubic phase corre-
sponds to zero strain and is less stable (higher energy) than the distorted
phases.

Table 2
Isothermal bulk modulus of CaSiO3 perovskite

T (K) PC

(GPa)
KV

(GPa)
KR

(GPa)
KRVH

(GPa)
K(P, V)
(GPa)

2000 12.8 226.0 226.0 226.0 228.6
3000 19.8 225.1 225.1 225.1 228.4
4000 26.0 235.8 235.8 235.8 224.3
2000 44.5 370.5 367.5 369.0 372.7
3000 51.1 372.0 371.8 371.9 374.3
4000 57.7 367.0 366.7 366.8 376.3
2000 109.6 620.9 620.9 620.9 599.5
3000 116.6 610.7 610.6 610.6 611.7
4000 122.8 607.1 606.4 606.8 609.0

Subscripts V, R and RVH represent Voigt, Reuss, Voigt–Reuss–Hill
models. KV, KR and KRVH are calculated from cij; K(P, V) are the
calculated pressure change induced by volume strain.

calculated from the single crystal elastic constants and
directly from a volume strain. The agreement between
the models is within the calculation errors, giving evi-
dence that the results are not affected by ferroelastic
transformations.

d with previous results

Shim et al. (2002) This study

236(4) 236.6(8)
3.9(2) 3.99(3)
2.2(3) 3.22(16)
– 6.88(4.0)
– 3.3(1.2)

−028(11) −036(4)
729.28 729.0(6)
our calculations, we must take this effect into con-
sideration. We used four criteria to confirm that the
elastic moduli we calculated are indeed the infinites-
imal elastic moduli: (1) check the linear stress–strain
relation; (2) check the symmetry of the force in the
positive and negative strain region; (3) check the sym-
metry of cij by redundant calculations; and (4) compare
the bulk modulus calculated from cij and from volume
perturbations. Table 2 gives the bulk modulus that is

Table 3
Summary of thermoelastic parameters for CaSiO3 perovskite compare

Parameter Wang et al. (1996)

KT0, GPa 232
K′

T0 4.8
α0, 10−5, K−1 3.55(18)
(∂α/∂T)P, 10−9 [0]
(∂2P/∂T2)V, GPa2 K−2 [0]
(∂K/∂T)P, GPa K−1 −0.036(8)
V0, Å3 729.28

[0] represent an assumed zero in the study.
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5. P–V–T equation of state (EOS)

A goal of this study is to define the P–V–T equation
of state of CaSiO3 perovskite at mantle pressures and
temperatures. There are two issues to be addressed: (1)
the consistency between the calculated and the exper-
imental data; and (2) within this context, the need for
a pressure correction for the GGA calculations. Here
we combine the P–V–T experimental data from Wang
et al. (1996) with our calculated K–V–T to define one
EOS. The EOS parameters of this calculation are listed
in Table 3 along with that of Wang et al. (1996) for the
P–V–T data alone. The experimental EOS is in good
agreement with the combined experimental–theoretical
EOS. The comparison underscores the compatibility of
the theoretical models with the experimental observa-
tions and bolsters our confidence to use the theoretical
inferences in the P–T range of the mantle, outside of the
region studied experimentally.

An overestimate of pressure due to the GGA approx-
imation has been generally observed (Li et al., 2005;
Oganov et al., 2001b; Wentzcovitch et al., 1995). In our
previous study (Li et al., 2005), we resolved this issue by
correcting the pressure for an Al and Fe bearing MgSiO3
perovskite by fitting the bulk modulus–volume (K–V)
results to a Birch–Murnaghan (B–M) relation but with
a V0 fixed by experimental data. The B–M relation was
then used to calculate pressure from the V of the model
calculation. We found that the GGA pressure overesti-
mated the B–M pressure consistently by 8 GPa, a value
w
t
p
b
c
C
V
a
e
t
c
t
i
a
o
w
G
r

h
u
l

we define a new reference condition at 2000 K and
room pressure. Above, we have established good agree-
ment with the low pressure—low temperature data and
obtained a pressure correction for the GGA-based cal-
culations. To calculate the reference state variables we
use the KT versus PC and the V versus PC calcula-
tions at 2000 K and fit a third order Birch–Murnaghan
equation of state solving for K0(2000 K) = 171(4) GPa,
K′

0(2000K) = 4.75(7), and V0(2000 K) = 778(2) Å3. We
will use these values as the reference state in the follow-
ing sections.

6. Thermal expansion, α

With the theoretical models in good agreement
with low pressure data in defining the room pressure–
temperature equation of state parameters, we now turn
to define equation of state properties in the pressure and
temperature range of the lower mantle. The calculations
yield elastic moduli and pressure at three temperatures
for each of three volumes. No lattice instability indi-
cating melting occurs even at 29 GPa and 4000 K as the
material retains a large and positive shear modulus. Pres-
sure versus temperature for three constant volumes is
illustrated in Fig. 4. The slope of the curve (∂P/∂T)V is
equal to αKT where KT is the isothermal bulk modulus.
Thermal expansion α is thus obtained by (∂P/∂T)V/KT.
As discussed below, the elastic moduli cij, and hence
the bulk modulus KT, are independent of temperature at
hich varies little with pressure. This result suggests that
he GGA-based calculation is precise in defining state
roperties as a function of V, but that it overestimates,
y a constant value the pressure for any volume. In the
urrent study, this procedure needs to be modified since
aSiO3 perovskite is unquenchable to room pressure and
0 has not been measured in a reliable fashion (Wang et
l., 1996). Instead, we use an internally consistent set of
xperimental P–V–T data as discussed above to define
he EOS illustrated in Table 3 which in turn is used to
alculate P for all of the theoretical V–T points. We find
hat the pressure defined by the GGA-based calculation
s 9 ± 1 GPa higher than the EOS pressure. This value
ppears to be relatively independent of either pressure
r temperature and agrees well with the correction that
e concluded for MgSiO3 perovskite. We correct the
GA pressure by this amount throughout the text and

efer to the corrected pressure as PC.
The calculations for state variables that are performed

ere are for temperatures of 2000 K or higher. Since the
ltimate goal is to project these properties into the Earth’s
ower mantle and not to room temperature/pressure,
constant volume within the uncertainty of these calcu-
lations in the P, T region explored. Since (∂P/∂T)V also
appears constant at each volume, the thermal expansion
becomes temperature independent at constant volume in
the P, T space of these calculations. Thermal expansion
at 2000 K as a function of pressure is listed in Table 4.

Fig. 4. Isochoric pressure vs. temperature for CaSiO3 perovskite. PC

is the calculated pressure after GGA correction. Data plotted here are
for the tetragonal structure only.
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Table 4
Thermal expansion α and Grűneisen parameter γ at pressure and
temperature

T (K) PC (GPa) V (Å3) α (× 10−5 K−1) (∂P/∂T)V γ

2000 12.8 728.52 2.96 0.0679 1.52
3000 19.8 728.51 2.96 1.53
4000 26 728.53 2.96 1.49
2000 44.5 655.37 1.78 0.0667 1.33
3000 51.1 655.38 1.78 1.33
4000 57.7 655.39 1.78 1.33
2000 109.6 572.82 1.1 0.0675 1.18
3000 116.6 572.82 1.1 1.18
4000 122.8 572.82 1.1 1.18

7. Grűneisen parameter, γ(V)

The Grűneisen parameter, γ(V), is calculated
from the thermal pressure and thermal energy:
γ(V) = Pth(V, T)V/Eth(V, T), where the thermal energy
Eth = 3(N − 1)kbT, with the Boltzmann constant
kb = 1.3807 × 10−23 J/K, N is the number of atoms
in the supercell, N = 80 in this study; details of the
method are described in (Oganov et al., 2000; Oganov
et al., 2001a). At T ≥ 2000 K, γ varies little with T. The
0 K intercept of the isochors P0 in Fig. 4 are used to
in defining the Pth = P(T) − P0. The calculated γ are
listed in Table 4. The dependence of γ with volume is
illustrated in Fig. 5. Fitting the relation: γ = γ0(V/V0)q,
we obtain q = 1.02 ± 0.05.

8. Anderson Grűneisen parameter, δT

The Anderson Grűneisen parameter, δT, is given by
δT = (∂ln α/∂ln V)T. Fig. 6 illustrates α as a function
of V and as a function of pressure at 2000 K, with a
curve based on the best fit value of δT of 4.09 ± 0.05.
Since the thermal expansion is, within the uncertainty,

Fig. 5. γ(V/V0) function. Solid diamonds are the AIMD results.
Solid line is the best fit with γ = γ0(V/V0)q, where γ0 = 1.53, q = 1.0,
V0 = 729.0 Å3.

independent of temperature at constant volume, this
value of δT is independent of temperature. The adiabatic
Anderson Grűneisen, δT = δS + γ can be obtained from
δT = δS + γ0(V/V0)q.

9. Single crystal elastic constants

A 2
√

2 × 2
√

2 × 2 80-atom cell with Pbnm atom
positions (Oganov et al., 2001a), was used as the starting
structure with the axes length appropriate for a metri-
cally cubic system (a = b =

√
2c). At each pressure and

temperature, we calculate the stresses. The dimensions
of the box are then varied to produce a hydrostatic stress
field. The differences in stresses are also manifest in the
differences in the cell parameters in the hydrostatic con-
ditions (σ11 = σ22 = σ33; σij = 0 when i �= j). The elastic
constants are then determined by applying a strain to the
sample box and solving for the stress field. Strains of
±2 and ±1% are used with the elastic modulus given
by cij = (∂σi/∂εj). The nine elastic constants for 150 K
orthorhombic case are given in Table 5.

The elastic constants for the tetragonal phase are pre-
sented in Table 6 in the coordinate system of the cubic
(aristotype) setting. Even though the hydrostatic crystal

is proj
ugh vo
Fig. 6. The thermal expansion vs. pressure and volume. The pressure
the thermal expansion depends on pressure and temperature only thro
and δT = 4.1 with V0 = 729.0 Å3.
ected onto a 2000 K isotherm. Within the computational uncertainty,
lume. The fitted line on both figures represents α0 = 2.89 × 10−5 K−1
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Fig. 7. Single crystal elastic moduli cij vs. volume for CaSiO3 per-
ovskite. Data plotted here are for 2000, 3000 and 4000 K and listed in
Table 6. The dependences of cij on temperature at constant volume are
negligible and are not distinguished in the plot.

structure is metrically tetragonal, the symmetry of the
elastic moduli is consistent with cubic within the calcu-
lation errors. In addition, the dynamics of the tetragonal
system is such that the structure may well be cubic on
a time scale of a few pico seconds (see the companion
paper (Li et al., 2005)). We, thus, restrict further discus-
sion to the ‘cubic’ elastic moduli taken as the best fit
cubic model of the tetragonal elastic moduli.

Fig. 7 illustrates the cubic elastic moduli as a function
of volume for all temperatures. At constant volume, the
elastic moduli are essentially constant, while they have
significant volume dependence. We fit the single crystal
elastic constants with a third order Eulerian strain equa-
tion of state (Bina and Helffrich, 1992) given by

cij = c0
ij(1 + 2f )5/2

{
1−f

[
5 − 3

(
∂c0

ij

∂P

)(
K0

c0
ij

)]}

(1)

where f = 1/2[(V0/V)2/3 − 1]. The fitted finite strain val-
ues are compared with the calculated values in Fig. 7.
The values of the c0

ij and their pressure derivatives are
given in Table 7 where the reference state is 2000 K and
room pressure.

10. Velocities

Acoustic velocities are calculated from the elastic
moduli. With single crystal properties we are able to
define acoustic anisotropy as well as the isotropic aggre-

gate average. Table 8 gives the average acoustic veloci-
ties based on the Reuss–Voight–Hill adiabatic bulk prop-
erties along with the ratio of the maximum to minimum
velocities and the maximum polarization velocity ratio
for CaSiO3 perovskite at the different P, T conditions.
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Table 6
Elastic constants at P–T

T (K) V (Å3) PC (GPa) c11 (GPa) c33 (GPa) c12 (GPa) c13 (GPa) c44 (GPa) c66 (GPa)

2000 728.52 12.8 328 320 176 178 190 183
3000 728.51 19.8 326 317 177 174 180 183
4000 728.53 26.0 321 311 189 194 180 188
2000 655.37 44.5 508 583 255 278 237 202
3000 655.38 51.1 551 544 299 273 230 220
4000 655.39 57.7 547 550 301 260 219 220
2000 572.82 109.6 874 911 501 482 296 315
3000 572.82 116.6 866 888 486 475 301 322
4000 572.82 122.8 856 930 478 473 297 314

The presented cij are in cubic setting. The conversion from orthorhombic setting (Table 5) to cubic setting is done by c11 = (c11 + c12 + 2c66)/2;
c12 = (c11 + c12 − 2c66)/2; c66 = (c11 − c12)/2, the rest of cij are unchanged.

Table 7
Isothermal thermoelastic properties at the reference condition of T = 2000 K and P = 0 GPa

c11 (GPa) c12 (GPa) c44 (GPa) K0T (GPa) µ0 (GPa) V0 (Å3) ρ (g/cm3) γ0 q α0 (× 10−5

K−1)
δT

X (2000 K) 234.7 128.0 157.1 170.9a 104.7 778.4a 3.965 1.63 1.0 3.78 4.1
∂X/∂P (2000 K) 7.5 4.0 2.0 4.76a 1.9

a EOS parameters calculated from K and V vs. P at 2000 K.

Fig. 8 illustrates the longitudinal, bulk, and shear
velocities as a function of volume. The results for
2000, 3000, and 4000 K are all included in this figure
with the observation that the velocity is independent
of temperature at constant volume. We calculate the
logarithmic derivative of velocity with respect to volume
with the result that: (∂ln VP/∂V)T or P = −1.9 × 10−3;
(∂ln VS/∂V)T or P = −1.5 × 10−3; (∂ln VΦ/∂V)T or P =
−2.4 × 10−3; (∂ln VS/∂ln VP)T or P = 0.79; (∂ln VS/
∂ln VΦ)T or P = 0.63 indicating that the variations in bulk
modulus overpower the variations in shear modulus.

11. Geophysical implications

CaSiO3 perovskite is third largest component of the
lower with most Earth models suggesting an abundance
of less than 10%vol. The contrast in properties between
CaSiO3 perovskite and MgSiO3 perovskite (∼80%vol.
allow us to examine the role of CaSiO3 perovskite in con-
straining lower mantle properties. Listed in Table 9 are
the parameters for these two perovskites obtained from
this study and from Oganov et al. (2001b) which also
used AIMD methods. The listed data for FiO3 perovskite

Table 8
Sound velocity VP, VS for CaSiO3 perovskite at pressure and temperature

T (K) PC (GPa) KS (GPa) µ (GPa) VP (km s−1) VS (km s−1) ρ (g cm−3) AP AS ASH/ASV

2000 12.8 249.2 129.5 9.98 5.53 4.24 1.22 1.61 1.59
3000 19.8 259.4 126.0 10.04 5.45 4.24 1.21 1.59 1.58
4000 26 263.9 117.9 9.97 5.28 4.24 1.24 1.78 1.76
2000 44.5 390.3 190.5 11.7 6.36 4.71 1.16 1.33 1.28
3000 51.1 400.9 182.8 11.7 6.23 4.71 1.11 1.35 1.35
4000 57.7 411.9 180.6 11.77 6.19 4.71 1.1 1.34 1.34
2000 109.6 615.1 255.3 13.31 6.88 5.39 1.09 1.28 1.28
3000 116.6 635.5 256.7 13.47 6.9 5.39 1.08 1.3 1.25
4000 122.8 640.6 258.5 13.52 6.93 5.39 1.09 1.29 1.25

150 -0.7 245.2 135.6 10.03 5.66 4.24 1.23 1.82 1.78
150 35.5 384.5 186.6 11.54 6.26 4.76 1.14 1.53 1.53
150 96.3 603.4 246.2 13.15 6.76 5.39 1.13 1.6 1.57

Adiabatic bulk and shear moduli are KS and µ. AP and AS are the ratios between the fastest and lowest velocities for longitudinal and shear wave.
ASH/SV is largest ratio of SH and SV velocities.
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Fig. 8. Longitudinal, shear wave and bulk sound velocities vs.
volume. Data presented here include 2000, 3000 and 4000 K. Data
are listed in Table 7. The fitted solid lines give following results:
(∂ln VP/∂V)T or P = −1.9 × 10−3; (∂ln VS/∂V)T or P = −1.5 × 10−3;
(∂ln VΦ/∂V)T or P = −2.4 × 10−3; (∂ln VS/∂ln VP)T or P = 0.79; (∂ln VS/
∂ln VΦ)T or P = 0.63.

are interpolated to the P and T conditions of Oganov et
al. (2001b) using the EOS defined in Table 7 and Eq.
(1). The table shows that the bulk modulus of CaSiO3
perovskite can be as much as 10% lower than that of
its Mg counterpart. The difference diminishes with pres-
sure and temperature, although remaining above 7% at
3500 K and 88 GPa. The shear modulus of CaSiO3 per-
ovskite is almost 25% lower compared with MgSiO3
perovskite at 38 GPa and 1500 K. The difference also
decreases with pressure and temperature down to about
3% at 88 GPa and 3500 K. The difference in density of
these two perovskite is about 3–4% for all conditions.

Based on the density and bulk modulus profiles, Wang
et al. (1996) termed CaSiO3 perovskite invisible. Their
extrapolated bulk modulus and density were close to
those of the Earth (PREM) implying that major changes

Fig. 9. Bulk, shear modulus and density of CaSiO3 perovskite com-
pared with PREM. Geotherm was taken from Brown and Shankland
(1981).

in the amount of CaSiO3 perovskite does not alter the
mineral properties from PREM. Sinelnikov et al. (1998)
have suggested that shear modulus of CaSiO3 perovskite
can be quite distinct from PREM based on low pres-
sure studies on analogues. Our calculations allow us to
investigate this issue at mantle conditions as illustrated
in Fig. 9 where we show the bulk modulus, shear modu-
lus and density projected along a geotherm (Brown and
Shankland, 1981) compared with PREM. Both the den-
sity and bulk modulus agree well with the projection
described by Wang et al. (1996) and differ from PREM
by less than 2% throughout the lower mantle. The shear
modulus, while close to PREM, is ∼10% lower at shal-
low depths grading to ∼5% by the core–mantle bound-
ary. Thus, the seismic velocity of CaSiO3 perovskite will
be lower (0–6%) than PREM.

While CaSiO3 perovskite appears to have a small
affect on the seismic velocities, there remains the pos-
sibility that it can be significant in defining the Q of

Table 9
Comparison between the MgSiO3 perovskite and CaSiO3 perovskite

Parameters CaSiO3 perovskite MgSiO3 perovskitea

Pa (GPa) 38 38 38 88 88 38 38 38 88 88
Ta (K) 1500 2500 3500 1500 3500 1500 2500 3500 1500 3500
P(2000 K) (GPa) 41.37 34.63 27.89 91.37 77.90
V (Å3) 660.89 674.194 689.022 590.78 606.121 147.63 150.83 154.08 132.55 136.48
KT (GPa) 344.57 318.48 291.74 524.09 477.67 382.70 349.90 332.70 565.70 508.60
G (GPa) 171.65 161.83 151.69 237.82 220.91 214.30 194.90 166.20 269.70 226.90
ρ (g cm−3) 4.67 4.58 4.48 5.22 5.09 4.52 4.42 4.33 5.03 4.89
γ 1.38 1.41 1.44 1.24
α (× 10−5 K−1) 1.94 2.10 2.30 1.22
KS (GPa) 358.41 342.08 325.55 535.99 50
VP (km s-1) 11.21 11.04 10.86 12.78 1
V

P

S (km s−1) 6.06 5.95 5.82 6.75

(2000 K) = P* − P(thermal), P(thermal) = T(∂P/∂T)V.
a Are the conditions from (Oganov et al., 2001b).
1.27 1.30 1.37 1.40 1.21 1.26
1.36 1.91 2.15 2.26 1.34 1.51
6.50 396.80 375.80 369.50 579.40 542.50
2.54 12.29 11.99 11.69 13.66 13.15
6.59 6.89 6.64 6.20 7.32 6.81
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the lower mantle. Our calculations indicate that this
material may be stable in a tetragonal structure involv-
ing a small spontaneous strain. Such phases normally
exist with domains of different orientations separated
by domain-wall boundaries. The domain walls move
in response to stress and can be the source of acoustic
absorption (Harrison et al., 2003), the greater absorption
occurring close to the phase boundary. This could cause
strong absorption of acoustic waves in the lower mantle.
The clarification of this issue awaits further experimental
exploration.
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