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Abstract

The Earth’s core is largely composed of iron (Fe). The phase relations and physical properties of both solid and liquid Fe
are therefore of great geophysical importance. As a result, over the past 50 years the properties of Fe have been extensively
studied experimentally. However, achieving the extreme pressures (up to 360 GPa) and temperatures (∼6000 K) found in the
core provide a major experimental challenge, and it is not surprising that there are still considerable discrepancies in the results
obtained by using different experimental techniques. In the past 15 years quantum mechanical techniques have been applied to
predict the properties of Fe. Here we review the progress that has been made in the use of first principles methods in the study of
Fe, and focus upon (i) the structure of Fe under core conditions, (ii) the highP melting behaviour of Fe, (iii) the thermodynamic
properties of hexagonal close-packed (hcp) Fe, and (iv) the rheological and thermodynamic properties of highP liquid Fe.
© 2003 Elsevier B.V. All rights reserved.

Keywords: Earth’s core; Molecular dynamics; Ab initio methods; Iron

1. Introduction

The fact that the core is largely composed of Fe was
firmly established as a result ofBirch’s (1952)analysis
of mass-density/sound-wave velocity systematics. To-
day we believe that the outer core is about 6–10% less
dense than pure liquid Fe, while the solid inner-core
is a few percent less dense than crystalline Fe (e.g.
Poirier, 1994a). From cosmochemical and other con-
siderations, it has been suggested (e.g.Poirier, 1994b;
Allègre et al., 1995; McDonough and Sun, 1995) that
the alloying elements in the core might include S, O,
Si, H and C. It is also probable that the core contains
minor amounts of other elements, such as Ni and K.
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The exact temperature profile of the core is still con-
troversial (e.g.Alfè et al., 2002a), but it is generally
held that the inner-core is crystallising from the outer
core as the Earth slowly cools, and that core tempera-
tures are in the range 4000–7000 K, while the pressure
at the centre of the Earth is∼360 GPa.

Before a full understanding of the chemically com-
plex core is reached, it is necessary to understand the
properties and behaviour at high pressure (P) and tem-
peratures (T) of its primary constituent, namely metal-
lic Fe. Experimental techniques have evolved rapidly
in the past years, and today using diamond anvil cells
(DAC) or shock experiments the study of minerals at
pressures up to∼200 GPa and temperatures of a few
thousand Kelvin is possible. These studies, however,
are still far from routine, and results from different
groups are often in conflict (see for example reviews
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by Poirier, 1994b; Shen and Heinze, 1998; Stixrude
and Brown, 1998; Boehler, 2000). As a result, there-
fore, in order to complement these existing experi-
mental studies and to extend the range of pressure and
temperature over which we can model the Earth, com-
putational mineral physics has, in the past decade, be-
come an established and growing discipline.

Within computational mineral physics a variety of
atomistic simulation methods (developed originally
in the fields of solid state physics and theoretical
chemistry) are used. These techniques can be di-
vided approximately into those that use some form
of interatomic potential model to describe the energy
of the interaction of atoms in a mineral as a func-
tion of atomic separation and geometry, and those
that involve the approximate solution of Schrödinger
equation to calculate the energy of the mineral species
by quantum mechanical techniques. For the Earth
sciences, the accurate description of the behaviour of
minerals as a function of temperature is particularly
important, and computational mineral physics usually
uses either lattice dynamics or molecular dynamics
(MD) methods to achieve this important step. The
relatively recent application of all of these advanced
condensed matter physics methods to geophysics has
only been made possible by the very rapid advances
in the power and speed of computer processing. Tech-
niques, which in the past were limited to the study of
structurally simple compounds, with small unit cells,
can today be applied to describe the behaviour of
complex, low symmetry structures (which epitomise
most minerals) and liquids.

In this paper, we will focus on recent studies of Fe,
which have been aimed at predicting its geophysical
properties and behaviour under core conditions. Al-
though interatomic potentials have been used to study
Fe (e.g.Matsui and Anderson, 1997), many of its prop-
erties are very dependent upon a precise description
of its metallic nature and can only be modelled accu-
rately by quantum mechanical methods. Thus, below
we outline the essential ab initio techniques used in
the most recent studies of Fe (see alsoStixrude et al.,
1998). We then present a discussion of the structure
of the stable phase of Fe at core pressures and tem-
peratures, its melting behaviour at core pressures, and
ab initio estimates of the highP/T physical and ther-
modynamic properties of both liquid and crystalline
iron.

2. Quantum mechanical simulations

Ab initio simulations are based on the description
of the electrons within a system in terms of a quantum
mechanical wave function,ψ, the energy and dynam-
ics of which is governed by the general Schrödinger
equation for a single electron:

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V(r)ψ (1)

whereV(r) is the potential energy of the system and
the other terms take their usual meaning. In minerals,
however, it is necessary to take into account all of
the electrons within the crystal, so the energy,E, of a
many electron wave function,Ψ , is required:

EΨ(r1, r2, . . . , rN)

=
(∑

− h̄2

2m
∇2 + Vion + Ve–e

)
Ψ(r1, r2, . . . , rN)

(2)

In a confined system, the electrons experience in-
teractions between the nuclei and each other. This
interaction may be expressed in terms of an ionic
contribution and a Coulombic contribution (the sec-
ond and third terms within the brackets). Energy
minimisation techniques may be applied in order to
obtain the equilibrium structure for the system under
consideration.

Unfortunately, the complexity of the wave function,
Ψ , for an N electron system scales asMN , whereM
is the number of degrees of freedom for a single elec-
tron wave function,Ψ . This type of problem cannot
readily be solved for large systems due to computa-
tional limitations, and therefore the exact solution to
the problem for large systems is intractable. However,
there are a number of approximations that may be
made to simplify the calculation, whereby good pre-
dictions of the structural and electronic properties of
materials can be obtained by solving self-consistently
the one-electron Schrödinger equation for the system,
and then summing these individual contributions over
all the electrons in the system (for more detailed re-
views seeGillan (1997)and Stixrude et al. (1998)).
Such approximation techniques include the Hartree
Fock approximation (HFA) and density functional
theory (DFT), which differ in their description of
the electron–electron interactions. In both cases the
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average electrostatic field surrounding each electron is
treated similarly, reducing the many body Hamiltonian
in the Schrödinger equation for a non-spin-polarised
system (i.e. ignoring any spin alignment and resulting
magnetic effects) to that for one electron surrounded
by an effective potential associated with the interac-
tions of the surrounding crystal. However, the differ-
ence between the two methods arises in the treatment
of the contribution to the potential associated with
the fact that the electron is not in an average field,
the correlation, and also in the treatment of the elec-
tronic spin governed by Pauli’s exclusion principle,
the exchange. In the HFA the exchange interactions
are treated exactly, but the correlation is not included;
in modern geophysical investigations of silicates and
iron phases, DFT is increasingly favoured, where the
exchange and correlation are both included but, in
current approximations, only in an average way (see
Stixrude et al. (1998)for more details).

Density functional theory, originally developed by
Hohenberg and Kohn (1964)and Kohn and Sham
(1965), describes the exact ground state properties of
a system in terms of a unique functional of charge
density alone, i.e.E = E(ρ). The Hohenberg–Kohn
theorem says that the ground state density uniquely
determines the potential (and so all equilibrium phys-
ical properties of the system). Using the variational
principle it is easy to show that the ground state den-
sity minimises the total-energy. So by looking for the
minimum of the total-energy, we find the ground state
density. In DFT, the electronic energy may be written:

Eelectronic=
∫

Vion(r)ρ(r)d3r+Eelectrostatic+ Exc[ρ]

(3)

Therefore, by varying the electron density of the sys-
tem through a search of single particle density space
until the minimum energy configuration is found, an
exact ground state energy is achieved, and that elec-
tron density is the exact ground state energy for the
system; all other ground state properties are all func-
tions of this ground state electron density. However,
the exact form of the functionalExc[ρ] is not known,
and is approximated by a local function of the density.
This local density approximation (LDA) defines the
exchange-correlation potential as a function of elec-
tron density at a given co-ordinate position (Kohn and
Sham, 1965). Sometimes it is a better approximation

to use the generalised gradient approximation (GGA)
(e.g. Wang and Perdew, 1991), which has a similar
form for the exchange-correlation potential, but has it
as a function of both the local electron density and the
magnitude of its gradient. For simulations of Fe, the
use of GGA is very important, as the use of LDA leads
to the prediction of the wrong ground state (Stixrude
et al., 1998).

The correct description of magnetic effects can be
vital in determining the accuracy of the simulation of
the stability and physical properties of some phases.
Thus for example, the body centred cubic (bcc) poly-
morph of Fe is only stable at ambient conditions be-
cause of its strongly developed ferromagnetism (e.g.
see Stixrude and Brown, 1998). Steinle-Neumann
et al. (1999)have shown how the calculated equation
of state of hcp Fe is dependent upon the correct in-
clusion of local spin polarisation, and more recently
Mukherjee and Cohen (2002)have shown the im-
portance of using fully unconstrained non-collinear
magnetism to describe the properties of magneti-
cally more complex phases. Fortunately, for Fe under
core conditions,Söderlind et al. (1996)have shown
that the high pressures destroy most of the magnetic
states that Fe polymorphs exhibit at lower pressure,
but nevertheless, studies of highP/T behaviour of
Fe must recognise the potential importance of that
magnetic interactions may have on the physical and
thermodynamic properties of the Fe polymorphs.

In any implementation of DFT the description
of electron spin states naturally requires a way of
efficiently describing the electron wave functions,
Ψi(r). One approach is to describeΨi(r) as a sum of
basis-sets made up of atomic wave functions,ϕα(r):

Ψi(r) =
∑
α

ciαϕα(r) (4)

The other approach is to use basis functions that de-
scribe the itinerant nature of electrons, and which
are based on the wave function of a free electron,
exp(ik·r), wherek is the wave vector of the de Broglie
wave. ThusΨi(r) can now be expressed as a sum of
possible plane-wave basis functions:

Ψi(r) =
∑
k

cik exp(ik · r) (5)

In fact, both approaches are valid, but in practice
for the large numbers of atoms usually involved in
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condensed matter simulations, the plane-wave method
has to date been much more successful. This might ap-
pear at first sight to be surprising, because the electrons
in condensed matter are clearly not like free particles,
as in most atoms there are tightly bound core electrons
confined around the nucleus. To describe these core
electrons requires the inclusion of a very large number
of plane-waves. There are techniques, such as the lin-
earized augmented plane-wave (LAPW) method, that
do this and provide very accurate descriptions of the
potential and charge density within the entire crys-
tal (for more details see for exampleStixrude et al.,
1998). The number of electrons (and hence atoms) to
which this approach can be applied is limited, how-
ever, by current computing capacity, and it cannot be
used efficiently for large or complex systems.

An alternative to the ‘all electron technique’ is to
use electronic wave functions that are expanded in
a plane-wave basis-set, with the electron–ion inter-
actions described by means of pseudopotentials. A
pseudopotential is a modified form of the true po-
tential experienced by the electrons (Heine, 1970;
Cohen and Heine, 1970; Heine and Weaire, 1970).
When they are near the nucleus, the electrons feel a
strong attractive potential and this gives them a high
kinetic energy. But this means that their de Broglie
wavelength is very small, and their wave vector is
very large. As mentioned above, because of this, a
plane-wave basis would have to contain so many
wave vectors that the calculations would become very
demanding. A remarkable way of eliminating this
problem and broadening the range of systems that
can be studied was developed by Heine, Cohen and
others, who showed that it is possible to represent the
interaction of the valence electrons with the atomic
cores by a weak effective ‘pseudopotential’ and still
end up with a correct description of the electron states
and the energy of the system. In this way of doing
things, the core electrons are assumed to be in exactly
the same states that they occupy in the isolated atom,
which is usually valid. There are several ways of con-
structing pseudopotentials, and it is essential to show
that they correctly describe the system under study,
but when this is done, it has been found that results
obtained employing pseudopotentials are as reliable
as those from all electron calculations.

More recently the projector augmented wave (PAW)
method has increasing been used (e.g.Kresse and

Joubert, 1999). The PAW approach is an all elec-
tron method in the sense that it works with the true
Kohn–Sham orbitals, rather than orbitals that have
been “pseudised” in the core regions, and it has the
same level of rigour as other all electron methods
such as FLAPW. At the same time it is very closely
related to the ultra soft pseudopotential technique
(Vanderbilt, 1990), and reduces to this if certain
well-defined approximations are used, as shown by
Kresse and Joubert (1999). The PAW method has,
therefore, the computational efficiency of the pseu-
dopotential method, but without the minor draw back
of the approximation involved in their formulation.

In conclusion, therefore, plane-waves have proved
to be very successful for many reasons. The wave func-
tions can be made as accurate as necessary by increas-
ing the number of plane-waves, so that the method is
systematically improvable. Plane-waves are simple so
that the programming is easy, and it also turns out that
the forces on the ions are straightforward to calculate,
so that it is easy to move them. Finally, plane-waves
are unbiased. The calculations are unaffected by the
prejudices of the user—an important advantage for
any method that is going to be widely used. As such
using GGA within DFT combined with pseudopoten-
tials or PAW methods provides an excellent technique
with which to accurately explore most crystal struc-
tures (although it should be noted that DFT is not en-
tirely free of limitations, some of which are discussed
for example inStixrude et al. (1998)). Below, we out-
line the application of these methods to the study of
Fe. However to study Fe under core conditions, we
need not only to explore the energetics of bonding, but
we are also concerned with the effect of temperature
on the system. This requires us to calculate the Gibbs
free energy of the systems, which can be done either
using lattice dynamic or molecular dynamic methods.

3. Lattice dynamics

Lattice dynamics is a semi-classical approach that
uses the quasiharmonic approximation (QHA) to
describe a cell in terms of independent quantised
harmonic oscillators, the frequencies of which vary
with cell volume, thus allowing for a description
of thermal expansion (e.g.Born and Huang, 1954).
The motions of the individual particles are treated
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collectively as lattice vibrations or phonons, and the
phonon frequencies,ω(q), are obtained by solving:

mω2(q)ei(q) = D(q)ej(q) (6)

wherem is the mass of the atom, and the dynamical
matrix, D(q), is defined by:

D(q) =
∑

ij

(
∂2U

∂ui∂uj

)
exp(iq · rij) (7)

whererij is the interatomic separation, andui anduj
are the atomic displacements from their equilibrium
position. For a unit cell containingN atoms, there are
3N eigenvalue solutions (ω2(q)) for a given wave vec-
tor q. There are also 3N sets of eigenvectors (ex(q),
ey(q), ez(q)) which describe the pattern of atomic
displacements for each normal mode.

The vibrational frequencies of a lattice can be cal-
culated ab initio, by standard methods such as the
small-displacement method (e.g.Kresse et al., 1995).
Having calculated the vibrational frequencies, a num-
ber of thermodynamic properties may be calculated
using standard statistical mechanical relations, which
are direct functions of these vibrational frequencies.
Thus for example the Helmholtz free energy is given
by:

F = kBT

M∑
i

(xi
2

+ ln(1 − e−xi )
)

(8)

wherexi = hωi/kBT, and the sum is over all theM =
3N normal modes. Modelling the effect of pressure is
essential if one is to obtain accurate predictions of phe-
nomena such as phase transformations and anisotropic
compression. This problem is now routinely being
solved using codes that allow constant stress, variable
geometry cells in both static and dynamic simulations.
In the case of lattice dynamics, the mechanical pres-
sure is calculated from strain derivatives, whilst the
thermal kinetic pressure is calculated from phonon fre-
quencies (e.g.Parker and Price, 1989). The balance of
these forces can be used to determine the variation of
cell size as a function of pressure and temperature.

The quasi-harmonic approximation assumes that the
lattice vibrational modes are independent. However
at high temperatures, where vibrational amplitudes
become large, phonon–phonon scattering becomes
important, and the QHA breaks down. At ambient

pressure, the QHA is only valid forT < θD, the Debye
temperature, so since we are interested in the extreme
conditions of the interior Earth, we would expect to
have to modify this methodology to enable higher tem-
peratures to be simulated (see e.g.Ball, 1989), alter-
natively we could use molecular dynamics techniques.
Matsui et al. (1994)have shown, however, that the in-
herent anharmonicity associated with lattice dynamics
decreases with increasing pressure, and the two tech-
niques give very similar results for very high pressure
and temperature simulations. It should be noted that
another approach has been used by some workers
(e.g.Stixrude et al., 1997) to calculate the effect ofT
on the properties of the highP phases of Fe. They use
a mean-field approach known as the particle-in-cell
(PIC) method. This method attempts to account for
anharmonicity and is computationally efficient. A de-
tailed comparison of the relative precision of the PIC
method and molecular dynamic simulations of Fe
have been presented byAlfè et al. (2001). Generally
the molecular dynamics approach should be favoured
as it involves far fewer approximations, but it is much
more computationally intensive. We note, however,
that the PIC method has the same level of complexity
as the QHA, which treats harmonic vibrations exactly,
but we have recently shown that the anharmonicity
predicted by the PIC method has thewrong sign
(Gannarelli et al., 2003), which weakens the case for
preferring this approximation to that of the QHA.

4. Molecular dynamics

Molecular dynamics is routinely used for medium
to high temperature simulations of minerals and in all
simulations of liquids, where lattice dynamics is of
course inapplicable. The method is essentially clas-
sical, and its details are presented in, for example,
Allen and Tildesley (1987). The interactions between
the atoms within the system have traditionally been
described in terms of the interatomic potential models
mentioned earlier, but instead of treating the atomic
motions in terms of lattice vibrations, each ion is
treated individually. As the system evolves, the re-
quired dynamic properties are calculated iteratively at
the specified pressure and temperature. The ions are
initially assigned positions and velocities within the
simulation box; their co-ordinates are usually chosen
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to be at the crystallographically determined sites,
whilst their velocities are equilibrated such that they
concur with the required system temperature, and
such that both energy and momentum is conserved. In
order to calculate subsequent positions and velocities,
the forces acting on any individual ion are then calcu-
lated from the first derivative of the potential function,
and the new position and velocity of each ion may
be calculated at each time-step by solving Newton’s
equation of motion. Both the particle positions and
the volume of the system, or simulation box, can be
used as dynamical variables, as is described in detail
in Parrinello and Rahman (1980). The kinetic energy,
and therefore temperature, is obtained directly from
the velocities of the individual particles. With this ex-
plicit particle motion, the anharmonicity is implicitly
accounted for at high temperatures.

Because of advances in computer power, it is now
possible to perform ab initio molecular dynamics
(AIMD), with the forces calculated fully quantum
mechanically (within the GGA and the pseudopoten-
tial or PAW approximations) instead of relying upon
the use of interatomic potentials. The first pioneering
work in AIMD was that ofCar and Parrinello (1985),
who proposed a unified scheme to calculate ab initio
forces on the ions and keep the electrons close to the
Born-Oppenheimer surface while the atoms move.
We have used in the work summarised below an
alternative approach, in which the dynamics are per-
formed by explicitly minimising the electronic free
energy functional at each time step. This minimisa-
tion is more expensive than a single Car-Parrinello
step, but the cost of the step is compensated by the
possibility of making longer time steps. The molec-
ular dynamics simulations presented here have been
performed using Vienna ab initio simulation package
(VASP). In VASP the electronic ground state is cal-
culated exactly (within a self-consistent threshold) at
each MD step, using an efficient iterative matrix di-
agonalization scheme and the mixer scheme ofPulay
(1980). We have also implemented a scheme to ex-
trapolate the electronic charge density from one step
to the next, with an efficiency improvement of about
a factor of two (Alfè, 1999). Since we are interested
in finite-temperature simulations, the electronic levels
are occupied according to the Fermi statistics corre-
sponding to the temperature of the simulation. This
prescription also avoids problems with level crossing

during the self-consistent cycles. For more details of
the VASP code seeKresse and Furthermüller (1996).

It is not possible to obtain free energies directly
from MD techniques. These can, however, be obtained
by ‘thermodynamic integration’, which yields the dif-
ference between the free energy ($F) of the ab initio
system and that of a reference system. The basis of the
technique (see for examplede Wijs et al., 1998) is that
$F is the work done on reversibly and isothermally
switching from the reference total-energy function,
Uref, to the ab initio total-energy,U. This switching
is done by passing through intermediate total-energy
functionsUλ given byUλ = (1− λ)Uref + λU. It is a
standard result that the work done is:

$F =
∫ 1

0
dλ〈U − Uref〉λ (9)

where the thermal average〈U−Uref〉λ is evaluated for
the system governed byUλ. The practical feasibility
of calculating ab initio free energies of liquids and an-
harmonic solids depends on finding a reference system
for which Fref is readily calculable and the difference
(U − Uref) is very small. However, we stress that the
final result is independent on the choice of the refer-
ence system. In our studies of liquid Fe, the primary
reference state chosen was an inverse power potential.
The full technical details involved in our calculations
are given inAlfè et al. (2002a,b,c). Below, we illus-
trate our use of all of these methods in the study of Fe
at extreme pressure and temperature.

5. The structure of Fe under core conditions

Under ambient conditions, Fe adopts a body centred
cubic (bcc) structure, that transforms with temperature
to a face centred cubic (fcc) form, and with pressure
transforms to a hexagonal close-packed (hcp) phase,
ε-Fe. The highP/T phase diagram of pure iron itself
however is still controversial (seeFig. 1 and also the
discussion inStixrude and Brown (1998)). Various di-
amond anvil cell based studies have been interpreted
as showing that hcp Fe transforms at high tempera-
tures to a phase which has variously been described
as having a double hexagonal close-packed structure
(dhcp) (Saxena et al., 1996) or an orthorhombicly dis-
torted hcp structure (Andrault et al., 1997). Further-
more, high pressure shock experiments have also been
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Fig. 1. A hypothetical phase diagram for Fe, incorporating all the experimentally suggested highP/T phase transformations. Our calculations
suggest that the phase diagram is in fact much more simple than this, with hcp Fe being the only highP/T phase stable at core pressures.

interpreted as showing a high pressure solid–solid
phase transformation (Brown and McQueen, 1986;
Brown, 2001), which has been suggested could be due
to the development of a bcc phase (Matsui and An-
derson, 1997). Other experimentalists, however, have
failed to detect such a post-hcp phase (e.g.Shen et al.,
1998; Nguyen and Holmes, 1999), and have suggested
that the previous observations were due either to minor
impurities or to metastable strain-induced behaviour.

Further progress in interpreting the nature and evo-
lution of the core would be severely hindered if the un-
certainty concerning the crystal structure of the core’s
major chemical component remained unresolved.
Such uncertainties can be resolved, however, using
ab initio calculations, which we have shown provide
an accurate means of calculating the thermoelastic
properties of materials at highP andT (e.g.Vočadlo
et al., 1999). Thermodynamic calculations on hcp Fe
and fcc Fe at highP/T were reported byWasserman
et al. (1996)and byStixrude et al. (1997). They used
ab initio calculations to parameterise a tight-binding
model; the thermal properties of this model were
then obtained using the particle-in-a-cell method. The
calculations that we performed (Vočadlo et al., 1999)
to determine the highP/T structure of Fe, were the

first in which fully ab initio, non-parameterised meth-
ods were used, in conjunction with quasiharmonic
lattice dynamics, to obtain free energies under core
conditions of all the proposed candidate Fe structures.

Spin polarised simulations were initially performed
on candidate phases (including a variety of distorted
bcc and hcp structures and the dhcp phase) at pres-
sures ranging from 325 to 360 GPa. These revealed,
in agreement withSöderlind et al. (1996), that under
these conditions only bcc Fe has a residual magnetic
moment and all other phases have zero magnetic mo-
ments. It should be noted however, that the magnetic
moment of bcc Fe disappears when simulations are
performed at core pressures and an electronic tem-
perature of >1000 K, indicating that even bcc Fe will
have no magnetic stabilisation energy under core con-
ditions. We found that at these pressures, both the bcc
and the suggested orthorhombic polymorph of iron
(Andrault et al., 1997) are mechanically unstable. The
bcc phase can be continuously transformed to the fcc
phase (confirming the findings ofStixrude and Cohen,
1995), while the orthorhombic phase spontaneously
transforms to the hcp phase, when allowed to relax to
a state of isotropic stress. In contrast, hcp, dhcp and
fcc Fe remain mechanically stable at core pressures,
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Fig. 2. The phonon-dispersion curves along a&H&N path in re-
ciprocal space for bcc Fe. The solid lines are from our calcula-
tions, and the open squares are experimental points reported in
Gao et al. (1993).

and we were therefore able to calculate their phonon
frequencies and free energies.

Although no experimentally determined phonon-
dispersion curves exist for hcp Fe, the quality of our
calculations can be gauged by comparing the cal-
culated phonon-dispersion for bcc Fe (done using
fully spin polarised calculations) at ambient pressure,
with the existing experimental data.Fig. 2 shows the
phonon-dispersion curve for magnetic bcc Fe at ambi-
ent conditions compared with data obtained from in-
elastic neutron scattering experiments (seeGao et al.,
1993); the calculated frequencies are in excellent
agreement with the experimental values. The calcu-
lated elastic constants for bcc Fe (related to the slope
of the acoustic branches of the phonon-dispersion
curves) are also in a good agreement with experimen-
tally determined values (Vočadlo et al., 1997). More
recently,Mao et al. (2001)measured the phonon den-
sity of states of Fe up to 153 GPa using nuclear reso-
nant inelastic X-ray scattering. Our calculated phonon
density of states for bcc Fe at ambient pressure and
at 3 GPa reported in that paper, are in outstanding
agreement with experiment. The agreement with the
hcp phase is also very good, but less exact than for
the bcc phase, as our hcp simulations were done ne-
glecting magnetic effects. However, nuclear resonant
inelastic X-ray scattering gives a very indirect mea-
surement of the phonon density of states, and more
research in needed to establish the precision of such
high pressure measurements.

The thermal pressure of hcp Fe at core conditions
has been estimated to be 58 GPa (Anderson, 1995) and
50 GPa (Stixrude et al., 1997); these are in excellent
agreement with our calculated thermal pressure for the
hcp structure (58 GPa at 6000 K). By analysing the
total pressure as a function of temperature obtained
from our calculations for the potential phases of Fe,
we were able to ascertain the temperature as a function
of volume at two pressures (P = 325 GPa andP =
360 GPa) that span the inner-core range of pressures.
From this we could determine the Gibbs free energy of
these structures at thoseT andP. We found that, on the
basis of lattice dynamic calculations over the whole
P/T space investigated, the hcp phase of Fe has the
lowest Gibbs free energy, and is therefore the stable
form of Fe under core conditions.

Despite the fact that bcc Fe is mechanically unstable
at high pressure and low temperatures (and so not
amenable to lattice dynamical modelling), it has been
suggested that it may become entropically stabilised at
high temperatures (e.g.Matsui and Anderson, 1997).
This behaviour is found in some other transition metal
phases, such as Ti and Zr (see for exampleLiu and
Bassett, 1986). We have recently performed molecular
dynamic simulations of bcc Fe and have found that this
structure indeed seems to become mechanically stable
above∼1000 K at core densities. The full details of
its behaviour are still to be resolved, and specifically
the highP/T stability of bcc Fe relative to hcp Fe is
the subject of continuing research.

6. The high P melting of Fe

Having shown how ab initio calculations are be-
ing used to establish the sub-solidus phase relations in
high P Fe, we turn now to completing the description
of the highP/T phase diagram of Fe, by considering its
melting behaviour. An accurate knowledge of the melt-
ing properties of Fe is particularly important, as the
temperature distribution in the core is relatively uncer-
tain and a reliable estimate of the melting temperature
of Fe at the pressure of the inner-core boundary (ICB)
would put a much-needed constraint on core temper-
atures. As with the sub-solidus behaviour of Fe, there
is much controversy over its highP melting behaviour
(e.g. seeShen and Heinze, 1998). Static compression
measurements of the melting temperature,Tm, with the
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DAC have been made up to∼200 GPa (e.g.Boehler,
1993), but even at lower pressures results forTm dis-
agree by several hundred Kelvin. Shock experiments
are at present the only available method to determine
melting at higher pressures, but their interpretation is
not simple, and there is a scatter of at least 2000 K in
the reportedTm of Fe at ICB pressures (seeNguyen
and Holmes, 1999).

Since both our calculations and recent experiments
(Shen et al., 1998) suggest that Fe melts from the
ε-phase in the pressure range immediately above
60 GPa, we focus here on equilibrium between hcp
Fe and liquid phases. The condition for two phases
to be in thermal equilibrium at a given temperature,
T, and pressure,P, is that their Gibbs free energies,
G(P, T), are equal. To determineTm at any pressure,
we calculateG for the solid and liquid phases as a
function of T and determine where they are equal.
In fact, we calculate the Helmholtz free energy,F(V,
T), as a function of volume,V, and hence obtain the
pressure through the relationP = −(∂F/∂V)T andG
through its definitionG = F + PV.

Fig. 3. Our calculated high pressure melting curve for Al (seeVočadlo and Alf̀e, 2002) is shown passing through a variety of recent high
P experimental points.

To obtain melting properties with useful accuracy,
free energies must be calculated with high precision,
because the free energy curves for liquid and solid
cross at a shallow angle. It can readily be shown that
to obtain Tm with a technical precision of 100 K,
non-cancelling errors inG must be reduced below
10 meV. Errors in the rigid-lattice free energy due to
basis-set incompleteness and Brillouin-zone sampling
are readily reduced to a few meV per atom. In this
study, the lattice vibrational frequencies were ob-
tained by diagonalizing the force-constant matrix; this
matrix was calculated by our (Alfè, 1998) implemen-
tation of the small-displacement method described by
Kresse et al. (1995). The difficulty in calculating the
harmonic free energy is that frequencies must be accu-
rately converged over the whole Brillouin-zone. This
requires that the free energy is fully converged with
respect to the range of the force-constant matrix. To
attain the necessary precision we used repeating cells
containing 36 atoms, and to show that such a system
gives converged energies, we performed some highly
computationally demanding calculations on cells of
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up to 150 atoms. The anharmonic contributions to the
free energy of the solid, and the free energies of the
liquid were calculated by molecular dynamics, using
thermodynamic integration.

To confirm that the methodology can be used ac-
curately to calculate melting temperatures, we mod-
elled the well studied highP melting behaviour of Al
(de Wijs et al., 1998; Vǒcadlo and Alfè, 2002). Fig. 3
shows the excellent agreement that we obtained for
this system. In 1999 we published an ab initio melt-
ing curve for Fe (Alfè et al., 1999). Since the work
reported in that paper, we have improved our descrip-
tion of the ab initio free energy of the solid, and have
revised our estimate ofTm of Fe at ICB pressures to
be∼6250 (seeFig. 4 andAlfè et al. (2002b,d)), with
an error of±300 K. A full analysis of the errors has
been reported inAlfè et al. (2002b,d). For pressures
P < 200 GPa (the range covered by DAC experiments)
our curve lies∼900 K above the values ofBoehler

Fig. 4. Our calculated highP melting curve of Fe (plotted as a solid black line) is shown passing through the shock-wave datum (open
blue circle) ofBrown and McQueen (1986). Other data shown includes: our melting curve corrected for the GGA pressure error (black
dashed line), Belonosko’s melting curve (blue line), Belonosko’s melting data corrected for potential errors (black dots), Laio et al.’s
melting curve (green line), Boehler’s DAC curve (green dashed line), Shen’s data (green diamonds), Yoo’s shock data (open squares),
William’s melting curve (pale green dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

(1993)and∼200 K above the more recent values of
Shen et al. (1998)(who stress that their values are only
a lower bound toTm). Our curve falls significantly
below the shock-based estimates for theTm of Yoo
et al. (1993), in whose experiments temperature was
deduced by measuring optical emission (however, the
difficulties of obtaining temperature by this method in
shock experiments are well known), but accords al-
most exactly with the shock data value ofBrown and
McQueen (1986)and the new data ofNguyen and
Holmes (1999). For melting at ICB pressure, we cal-
culate$Vm/V = 1.8%,$Sm = 1.05R J K−1 mol−1,
and so obtain a latent heat of fusion of 55 kJ mol−1.

There are other ways of determining the melting
temperature of a system by ab initio methods, includ-
ing performing simulations that model co-existing
liquid and crystal phases. The melting temperature of
such a system can then be inferred by seeing which of
the two phases grows during the course of a series of
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simulations at different temperatures. This approach
has been used byLaio et al. (2000)and byBelonosko
et al. (2000)to study the melting of Fe. In their studies
they modelled Fe melting using interatomic potentials
fitted to ab initio surfaces. We discovered, however,
that their fitted potentials did not simultaneously de-
scribe the energy of the liquid and crystalline phases
with the same precision, and so their simulations do
not represent the true melting behaviour of Fe, but
rather that of the fitted potential. We have recently
also used the co-existence method (Alfè et al., 2002d),
but with a model potential fitted to our own ab ini-
tio calculations. Initially, our raw model failed to give
the same melting temperature as obtained from our ab
initio free energy method, but when the results were
corrected for the free energy mismatch of the model
potential with respect to the ab initio energies of liquid
and solid, the results for the two methods came into
agreement. Thus it would seem as a general principle
that there is a way to correct for the shortcomings of
model potential co-existence calculations, namely one
must calculate the free energy differences between the
model and the ab initio system for both the liquid and
solid phases. This difference in free energy between
liquid and solid can then be transformed into an ef-
fective temperature correction. When this is done to
Belonosko’s data, there is excellent agreement with
our ab initio melting curve for Fe.

As recently highlighted byCahn (2001), there is
still scope for further work on the difficult problem of
the modelling of melting, but for the highP melting
of Fe it appears that there may be more problems with
reconciling divergent experimental data than there are
in obtaining accurate predictions ofTm from ab initio
studies.

7. The thermodynamic properties of hcp Fe

In the course of performing the free energy calcula-
tions outlined above, we calculated a number of other
thermodynamic properties of Fe, which are of geo-
physical significance. In this section, we outline our
calculated thermodynamic properties of hcp Fe, and
in the following section, we outline the properties of
liquid Fe. As the only experimental data on Fe un-
der true coreP andT comes from shock experiments,
we present first the results of our ab initio studies of

hcp Fe along the Hugoniot. A full technical discus-
sion of the calculations summarised here is presented
in Alfè et al. (2001). However, we note that all the
calculated thermodynamic properties were derived by
initially determining the Helmholtz free energy, the
volume dependence of which was used to infer the
pressure and hence the Gibbs free energy. The calcu-
lated energies were fitted throughout to a third order
Birch-Murnaghan equation of state or a polynomial
function.

In a shock experiment, conservation of mass, mo-
mentum and energy requires that the pressure,PH,
the molar internal energyEH, and the molar vol-
ume VH in the compression wave are related by the
Rankine–Hugoniot formula:
1
2PH(V0 − VH) = EH − E0 (10)

whereE0 andV0 are the internal energy and volume in
the zero-pressure state before the arrival of the wave.
The quantities directly measured are the shock-wave
and material velocities, which allow the values ofPH
andVH to be deduced. From a series of experiments,
PH as a function ofVH (the so-called Hugoniot) can
be derived. The measurement of temperature in shock
experiments has been attempted but is problematic
(e.g. Yoo et al., 1993). The Hugoniot curvePH(VH)
is straightforward to compute from our results: for
a givenVH, one seeks the temperature at which the
Rankine–Hugoniot relation is satisfied; from this, one
obtainsPH (and, if required,EH). In experiments on
Fe, V0 and E0 refer to the zero-pressure bcc crystal,
and we obtain their values directly from GGA calcu-
lations.

Our ab initio Hugoniot is in good agreement with
that measured byBrown and McQueen (1986), with
discrepancies ranging from 10 GPa atV = 7.8 Å3 to
12 GPa atV = 8.6 Å3. These discrepancies can be
regarded as giving an indication of the intrinsic ac-
curacy of the GGA itself. Another way of looking
at the accuracy to be expected of the GGA is to re-
calculate the Hugoniot using the experimental value
of the bccV0 (11.8 Å3, compared with the ab initio
value of 11.55 Å3). A similar comparison with the ex-
perimental Hugoniot was given in the tight-binding
total-energy work ofWasserman et al. (1996)and their
agreement was as good as ours.

Our Hugoniot temperature as a function of pressure
is compared with the experimental results ofYoo et al.
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Fig. 5. Experimental and ab initio temperature as a function of
pressure on the Hugoniot. The black circles are the data ofYoo
et al. (1993)and the white diamonds are those ofBrown and
McQueen (1986). The solid curve is the ab initio data ob-
tained when the calculated volume of bcc Fe is used in the
Hugoniot-Rankine equation; the dotted curve is the same, but with
the experimental equilibrium volume of bcc Fe. The comparison
is meaningful only up to a pressure of∼250 GPa, at which point
the experiments indicate melting.

(1993) in Fig. 5. We also include in the figure the
estimates for Hugoniot temperature due toBrown and
McQueen (1986)The latter estimates were based on
the basic thermodynamic relation:

dT = −T
( γ
V

)
dV + [(V0 − V)dP + (P − P0)dV ]

2Cv

(11)

between infinitesimal changes of dT, dV, and dP
along the Hugoniot. This relation contains the
constant-volume specific heatCv and the Grüneisen
parameterγ, for which Brown and McQueen had to
make assumptions. Our ab initio temperatures fall
substantially below those of Yoo et al., and this sup-
ports the suggestion ofWasserman et al. (1996)that
the Yoo et al. measurements overestimate the Hugo-
niot temperature by∼1000 K. On the other hand, our
temperatures agree rather closely with the Brown and
McQueen estimates. When we examine below their
assumptions aboutCv and γ, we shall see that they
were reasonable, though the agreement between their
temperatures and ours is also partly due to cancel-
lation of errors between terms they use to evaluate
Eq. (11).

Fig. 6. Experimental and ab initio adiabatic bulk modulus (KS )
on the Hugoniot. The white diamonds are the data ofJeanloz
(1979)and the crosses are those ofBrown and McQueen (1986).
The solid curve is the ab initio data obtained when the calculated
volume of bcc Fe is used in the Hugoniot-Rankine equation; the
dotted curve is the same, but with the experimental equilibrium
volume of bcc Fe.

A further quantity that can be extracted from shock
experiments is the bulk sound velocityvB as a func-
tion of atomic volume on the Hugoniot, which is given
by vB = (KS/ρ)

1/2, whereKS≡ − V(dP/dV)S is the
adiabatic bulk modulus andρ is the mass density.
SinceKS can be calculated from our ab initio pressure
and entropy as functions ofV and T, our calculated
KS can be directly compared with experimental val-
ues (Fig. 6). Here, there is a greater discrepancy than
one would wish, with the theoretical values falling
significantly above theKS values of bothBrown and
McQueen (1986)and Jeanloz (1979), although we
note that the two sets of experimental results disagree
by an amount comparable with the discrepancy be-
tween theory and experiment.

We turn now to the more general thermodynamic
properties of hcp Fe off the Hugoniot, and make some
further comparisons with the predictions ofStixrude
et al. (1997)andWasserman et al. (1996). Our results
are presented as a function of pressure on isotherms
at T = 2000, 4000, and 6000 K. At each tempera-
ture, we give results only for the pressure range where,
according to our calculations the hcp phase is ther-
modynamically stable. In comparing with the predic-
tions of Stixrude et al. (1997)and Wasserman et al.
(1996), we show the explicit numerical results from
Wasserman et al. (1996)for thermodynamic quantities



L. Vočadlo et al. / Physics of the Earth and Planetary Interiors 140 (2003) 101–125 113

Fig. 7. Total constant-volume specific heat per atom (Cv, in units of
kB) of hcp Fe as a function of pressure on isothermsT = 2000 K
(continuous curves), 4000 K (dashed curves), and 6000 K (dotted
curves). Heavy and light curves show present results and those of
Stixrude et al. (1997), respectively.

on the 2000 K isotherm. For the higher temperatures,
we rely on the approximate parameterised formulas
given inStixrude et al. (1997).

The total constant-volume specific heat per atomCv

(Fig. 7) emphasises again the importance of electronic
excitations. In a purely harmonic system,Cv would be
equal to 3kB, and it is striking thatCv is considerably
greater than that even at the modest temperature of
2000 K, while at 6000 K it is nearly doubled. The de-
crease ofCv with increasing pressure evident inFig. 7
comes from the suppression of electronic excitations
by high compression, and to a smaller extent from the
suppression of anharmonicity. We note that ourCv

values are significantly higher than those ofStixrude
et al. (1997)and Wasserman et al. (1996); the main
reason for this seems to be our inclusion of anhar-
monic corrections via AIMD and theT-dependence
of harmonic frequencies. As stated above,Brown and
McQueen (1986)made assumptions about the high
P/T behaviour ofCv in order to estimate the Hugoniot
temperature. Their assumptions were that the lattice
contribution toCv is equal to 3kB above the Debye
temperature and that the electronic contribution could
be represented in the formβe(V/Vref)

δT , whereVref is
a reference density, andβe andδ are constants whose
values were taken from earlier theoretical calcula-
tions. Since anharmonic and electronic contributions
are negligible at low temperatures, our calculatedCv

Fig. 8. The thermal expansivity (α) of hcp Fe as a function of
pressure on isothermsT = 2000 K (continuous curves), 4000 K
(dashed curves), and 6000 K (dotted curves). Heavy and light
curves show present results and those ofStixrude et al. (1997),
respectively. The black circle is the experimental value of Duffy
and Ahrens (1993) atT = 5200±500 K. Diamonds are data from
Boehler et al. (1990)for temperatures between 1500 and 2000 K.

agrees with the Brown and McQueen values on the
low P/T part of the Hugoniot. However, ourCv rises
slightly faster, mainly because of anharmonicity, and
becomes∼3% higher than theirs at 200 GPa, the dif-
ference between the two decreasing again thereafter.

The thermal expansivityα (Fig. 8) is one of the few
cases where we can compare with DAC measurements
(e.g.Boehler et al., 1990). The latter show thatα de-
creases strongly with increasing pressure and our ab
initio results fully confirm this. Our results also show
that α increases significantly with temperature. Both
trends are also shown by the calculations ofStixrude
et al. (1997)andWasserman et al. (1996), though the
latter differ from ours in showing considerably larger
values of a at low pressure and temperature. The prod-
uct αKT of expansivity and isothermal bulk modu-
lus, which is equal to (dP/dT)v, is important because
it is sometimes assumed to be independent of pres-
sure and temperature over a wide range of conditions,
and this constancy is used to extrapolate experimental
data. Our predicted isotherms forαKT (Fig. 9) indi-
cate that its dependence onP is indeed weak, espe-
cially at low temperatures, but that its dependence on
T certainly cannot be ignored, since it increases by
at least 30% asT goes from 2000 to 6000 K at high
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Fig. 9. The product of the expansion coefficient (α) and the isother-
mal bulk modulus (KT) as a function of pressure on isotherms
T = 2000 K (continuous curves), 4000 K (dashed curves), and
6000 K (dotted curves). Heavy and light curves show present re-
sults and those ofStixrude et al. (1997), respectively.

pressures.Wasserman et al. (1996)come to qualita-
tively similar conclusions, and they also find values
of ∼10 MPa K−1 at T = 2000 K. However, we note
that the general tendency in our results forαKT to in-
crease with pressure at low pressures is not found in
the results ofWasserman et al. (1996)at 2000 K. In
particular, they found a marked increase ofαKT with
decreasingP, which does not occur in our results.

The thermodynamic Grüneisen parameterγ =
V(dP/dE)v = αKTV/Cv plays an important role in
high pressure physics, because it relates the thermal
pressure and the thermal energy. Assumptions about
the value ofγ are frequently used in reducing shock
data from the Hugoniot to an isothermal state. If one
assumes thatγ depends only onV, then the thermal
pressure and energy are related by:

PthV = γEth (12)

the well known Mie-Grüneisen equation of state.
At low temperatures, where only harmonic phonons
contribute toEth and Pth, γ should indeed be tem-
perature independent above the Debye tempera-
ture, becauseEth = 3kBT per atom, andPthV =
−3kBT(dlnω/dlnV) = 3kBTγph, so thatγ = γph (the
phonon Grüneisen parameter) which depends only on
V. But in highT Fe, the temperature independence of
γ will clearly fail, because of electronic excitations

Fig. 10. The Grüneisen parameter (γ) as a function of pressure
on isothermsT = 2000 K (continuous curves), 4000 K (dashed
curves), and 6000 K (dotted curves). Heavy and light curves show
present results and those ofStixrude et al. (1997), respectively.

and anharmonicity. Our results forγ (Fig. 10) indi-
cate that it varies rather little with either pressure or
temperature in the region of interest. At temperatures
below∼4000 K, it decreases with increasing pressure,
as expected from the behaviour ofγph. This is also
expected from the often-used empirical rule of thumb
γ = (V/V0)

q, whereV0 is a reference volume and
q is a constant exponent usually taken to be roughly
unity. SinceV decreases by a factor of about 0.82 as
P goes from 100 to 300 GPa, this empirical relation
would makeγ decrease by the same factor over this
range, which is roughly what we see. However, the
pressure dependence ofγ is very much weakened as
T increases, until at 6000 K,γ is almost constant. Our
results agree moderately well with those ofStixrude
et al. (1997)andWasserman et al. (1996)in giving a
valueγ = 1.5 at high pressures, but at low pressures
there is a significant disagreement, since they find a
strong increase ofγ to values of over 2.0 asP > 0,
whereas our values never exceed 1.6.

In making their estimates of the Hugoniot tem-
perature, Brown and McQueen (1986)assumed
that (dE/dP)v = V /� is a constant equal to
2.85 × 10−6 m3 mol−l . This implies thatγ is ∼2.2
on the low P/T part of the Hugoniot, whereas our
calculations giveγ ∼ 1.5. However, with increasing
pressure, the Brown–McQueen value ofγ approaches
ours, being only∼8% higher at 200 GPa. Given the
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differences between theirCv andγ values and ours,
one might expect a larger disagreement between their
Hugoniot temperatures and ours. However, it turns
out that there is some cancellation between the differ-
ences in the various terms ofEq. (11)which brings
the temperature curves into the quite close agreement
that we have seen (Fig. 6).

The elastic constants of hcp Fe at 39 and 211 GPa
have been measured in an experiment reported by
Mao et al. (1999). Calculations of a thermal elastic
constants for hcp Fe have been reported byStixrude
and Cohen (1995), Söderlind et al. (1996)and
Steinle-Neumann et al. (1999). These values, together
with values that we have calculated are presented
in Table 1, and plotted as a function of density in
Fig. 11a and b. Although there is some scatter on the
reported values ofc12, overall the agreement between
the experimental and various ab initio studies are ex-
cellent. The resulting bulk and shear moduli and the
seismic velocities of hcp Fe as a function of pressure

Table 1
A compilation of elastic constants (cij , in GPa), bulk (K) and shear (G) moduli (in GPa), and longitudinal (vP ) and transverse (vS ) sound
velocity (in km s−1) as a function of density (ρ, in g cm−3) and atomic volume (in Å3 per atom)

V ρ c11 c12 c13 c33 c44 c66 K G vP vS

Stixrude and Cohen
9.19 10.09 747 301 297 802 215 223 454 224 8.64 4.71
7.25 12.79 1697 809 757 1799 421 444 1093 449 11.50 5.92

Steinle-Neumann et al.
8.88 10.45 930 320 295 1010 260 305 521 296 9.36 5.32
7.40 12.54 1675 735 645 1835 415 470 1026 471 11.49 6.13
6.66 13.93 2320 1140 975 2545 500 590 1485 591 12.77 6.51

Mao et al.
9.59 9.67 500 275 284 491 235 113 353 160 7.65 4.06
7.36 12.60 1533 846 835 1544 583 344 1071 442 11.48 5.92

Söderlind et al.
9.70 9.56 638 190 218 606 178 224 348 200 8.02 4.57
7.55 12.29 1510 460 673 1450 414 525 898 448 11.03 6.04
6.17 15.03 2750 893 1470 2780 767 929 1772 789 13.70 7.24

This study
9.17 10.12 672 189 264 796 210 242 397 227 8.32 4.74
8.67 10.70 815 252 341 926 247 282 492 263 8.87 4.96
8.07 11.49 1082 382 473 1253 309 350 675 333 9.86 5.38
7.50 12.37 1406 558 647 1588 381 424 900 407 10.80 5.74
6.97 13.31 1810 767 857 2007 466 522 1177 500 11.77 6.13
6.40 14.49 2402 1078 1185 2628 580 662 1592 630 12.95 6.59

In this tableK = (〈c11〉 + 2〈c12〉)/3 andG = (〈c11〉 − 〈c12〉 + 3〈c44〉)/5, where〈c11〉 = (c11 + c22 + c33)/3, etc. Previous calculated values
are fromStixrude and Cohen (1995), Steinle-Neumann et al. (1999), Söderlind et al. (1996)and this study. The experimental data ofMao
et al. (1999)is also presented.

are shown inFigs. 12 and 13, along with experimental
data. The calculated values compare well with ex-
perimental data at higher pressures, but discrepancies
at lower pressures are probably due to the neglect
of magnetic effects in the simulations. The effect of
temperature on the elastic constants of Fe have been
modelled bySteinle-Neumann et al. (2001)using the
PIC method. They found a significant change in the
c/a ratio of the hcp structure with temperature, which
causes a marked reduction inc33, c44 and c66 with
increasing temperature. This led them to conclude
that increasing temperature reverses the sense of the
single crystal longitudinal anisotropy of hcp Fe. Our
calculations (Gannarelli et al., 2003) have failed thus
far to reproduce the strong effect of temperature on
c/a seen by Steinle-Neumann et al., and if this result
is confirmed by more precise molecular dynamic sim-
ulations, then it will have important implications for
the interpretation of the seismic tomography of the
inner-core.
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Fig. 11. Plot of elastic constants of hcp Fe given inTable 1as a function of density: (a)c11 black diamonds,c12 white squares,c44 black
circles, (b)c33 white diamonds,c13 black squares andc66 white circles.

8. Rheological and thermodynamics properties
of liquid Fe

We have reported our investigation into the viscos-
ity, diffusion and thermodynamic properties of Fe in
the liquid state inde Wijs et al. (1998)and inAlfè et al.
(2000). The technical details of the simulations can
be found in these references. In brief, we performed
PAW simulations at the 15 thermodynamic states
listed in Table 2, all these simulations being done on
the 67-atom system. With these simulations, we cover
the temperature range 3000–8000 K and the pressure
range 60–390 GPa, so that we more than cover the
range of interest for the Earth’s liquid core. The table

Table 2
Pressure (in GPa) calculated as a function of temperature (T) and
density for liquid Fe

T (K) � (kg m−3)

9540 10700 11010 12130 13300

3000 60
4300 132 (135)
5000 140 (145)
6000 90 151 (155) 170 (170) 251 (240) 360 (335)
7000 161 181 264 (250) 375 (350)
8000 172 191 275 390 (360)

Experimental estimates are in parenthesis, fromAnderson and
Ahrens (1994).
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Fig. 12. Plot of bulk modulus (diamonds) and shear modulus (squares) for hcp Fe as a function of pressure, with values taken fromTable 1.
Black diamonds and squares represent ab initio values, while white diamonds and squares represent values obtained from experimentally
determined elastic constants.

reports a comparison of the pressures calculated in the
simulations with the pressures deduced byAnderson
and Ahrens (1994)from a conflation of experimental
data, and inFig. 14a–fwe show our calculated values
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Fig. 13. Plot of aggregatevP (diamonds) andvS (squares) wave velocity for hcp Fe as a function of pressure, with values taken fromTable 1.
Black diamonds and squares represent ab initio values, while white diamonds and squares represent values obtained from experimentally
determined elastic constants. White circles are the experimental data of Fiquet et al. (2001).

of density, thermal expansion coefficient, adiabatic and
isothermal bulk moduli, heat capacity (Cv), Grüneisen
parameter, and bulk sound velocity respectively.
These values are in close accord with the estimates
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Fig. 14. Panel showing the calculated values of (a) density, (b) thermal expansion coefficient, (c) adiabatic (dashed lines) and isothermal
bulk (solid lines) moduli, (d) heat capacity (Cv), (e) Grüneisen parameter, and (f) bulk sound velocity for liquid Fe, all as a function ofP
at temperatures between 4000 and 8000 K.
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Fig. 14. (Continued ).

available inAnderson and Ahrens (1994), indeed, our
first principles pressures reproduce the experimental
density values to within 2–3% at low densities, but
they are systematically too high by∼7% at high den-
sities. It is not clear yet whether the high-density dis-
crepancies indicate a real deficiency in the ab initio

calculations rather than problems in the interpretation
of the experimental data.

It is commonly found that increasing temperature
significantly reduces the sound velocity in a liquid.
So for iron at atmospheric pressure, dvP /dT has
been estimated byAnderson and Ahrens (1994)to
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Fig. 14. (Continued ).

be ∼−0.54 ± 0.21 ms−1 K−1. These authors subse-
quently reviewed the available highP data for liquid
iron, and concluded that “the pure Fe isentopes are
nearly indistinguishable from one another in sound

velocity”, but they did not directly calculate higher
pressure values of dvP /dT. However, the highP be-
haviour of dvP /dT is important, as pointed out by
Gubbins et al. (2003), as it has a direct relationship
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with the variation of the Grüneisen parameter along
the core adiabat, thus:

(
∂γ

∂P

)
S

= −
(

γ

KS

)[
2 + γ −

(
∂KS

∂P

)
S

−
(

1

αv2
P

)(
∂v2

P

∂T

)
P

]
(13)

which in turn affects the adiabatic temperature gradi-
ent in the outer core, and hence the effectiveness of
the geodynamo.

In the absence of any firmer data at the time,
Gubbins and Masters (1979)took (∂v2

P/∂T )P to be

Fig. 15. (a) A plot of (∂γ/∂P)S (in GPa−1) againstP (in GPa) showing curves obtained by differentiation of the curves shown in 15b and
by evaluation ofEq. (13). (b) The ab initio calculated variation of the Grüneisen parameter of liquid Fe along the core adiabat. (c) The
calculated variation of (∂v2

P/∂T )P (in m2 s−2 K−1) of liquid iron as a function ofP (in GPa).

−2000 m2 s−2 K−1 (c.f. the ambient pressure value
obtained fromAnderson and Ahrens (1994)of about
−4000 m2 s−2 K−1) when they developed their model
of the core and the geodynamo. However, it is now
possible to determine higher order derivatives such as
(∂γ/∂P)S and (∂v2

P/∂T )P from our ab initio calcula-
tions. The robustness of the derivation of these higher
terms is shown inFig. 15a, which shows (∂γ/∂P)S as
obtained from numerical differentiation of the varia-
tion of our calculated Grüneisen parameter along the
adiabat (Fig. 15b), and that obtained by evaluating
Eq. (13), using the values calculated for (∂v2

P/∂T )P
shown inFig. 15c. It is important to note that these
high pressure values (∂v2

P/∂T )P are significantly
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Table 3
The diffusion coefficient (D) and the viscosity (η) from our ab
initio simulations of liquid Fe at a range of temperatures and
densities

T (K) � (kg m−3)

9540 10700 11010 12130 13300

D (10−9 m2 s−1)
3000 4.0± 0.4
4300 5.2± 0.2
5000 7.0± 0.7
6000 14± 1.4 10± 1 9 ± 0.9 6 ± 0.6 5 ± 0.5
7000 13± 1.3 11± 1.1 9 ± 0.9 6 ± 0.6

η (mPa s)
3000 6± 3
4300 8.5± 1
5000 6± 3
6000 2.5± 2 5 ± 2 7 ± 3 8 ± 3 15 ± 5
7000 4.5± 2 4 ± 2 8 ± 3 10 ± 3

The error estimates come from statistical uncertainty due to the
short duration of the simulations.

smaller than the ambient pressure value, and that any
model of core behaviour should use these more ap-
propriate values. Although not explicitly presented in
Anderson and Ahrens (1994), it is possible to estimate
a value for (∂v2

P/∂T )P from theirFig. 10, which yields
a value of∼−140 m2 s−2 K−1 at the ICB, in excellent
agreement with our ab initio calculation.

In Table 3, we report values for the self diffusion
of Fe in liquid Fe, and the viscosity of liquid Fe for
the same range ofP andT conditions reported above.
Since most of the simulations reported inTable 3are
rather short (typically no more than 4 ps) the statistical
accuracy onD andη is not great (the error estimates
also reported inTable 3). These ab initio simulations
demonstrate that under Earth’s core conditions liq-
uid Fe is a typical simple liquid. In common with
other simple liquids, like liquid Ar and Al, it has a
close-packed structure, the coordination number in
the present case being∼13. In fact, there appears to
be a truly remarkable simplicity in the variation of
the liquid properties of Fe with thermodynamic state.
To show the relative independence of the radial dis-
tribution function (rdf) with temperature, we report in
Fig. 16 the rdf, g(r), for the five temperatures 4300,
5000, 6000, 7000, and 8000 K at the same density
ρ = 10,700 kg m−3. The effect of varying temper-
ature is clearly not dramatic, and consists of the
expected weakening and broadening of the structure

Fig. 16. The variation of the radial distribution function (g(r))
of liquid Fe with temperature from ab initio simulations at the
fixed density ofρ = 10.7 g cm−3. Results are shown for the five
temperaturesT = 4300, 5000, 6000, 7000 and 8000 K.

with increasingT. For the entire pressure-temperature
domain of interest for the Earth’s outer core, the
diffusion coefficient,D, and viscosity,η, are compa-
rable with those of typical simple liquids, D being
∼5×10−9 m2 s−1 andη being in the range 8–15 mPa s,
depending on the detailed thermodynamic state. Sim-
ilar estimates for viscosity of liquid Fe are presented
by Stixrude et al. (1998), based on calculations using
the tight-binding approximation.

Since the Earth’s outer core is in a state of convec-
tion, the temperature and density will lie on adiabats.
It is straightforward to show that the variation ofD
andη along adiabats will be rather weak. For example,
if we take the data for high pressure liquid iron com-
piled byAnderson and Ahrens (1994)then the adiabat
for T = 6000 K at the inner-core boundary pressure
330 GPa hasT = 4300 K at the core mantle boundary
(CMB) pressure of 135 GPa. Taking the densities at
these two points from the same source, we find the liq-
uid structure virtually unchanged, apart from a trivial
length scaling. For all practical purposes, then, it can
be assumed that variation of thermodynamic condi-
tions across the range found in the core has almost no
effect on the liquid structure. For the same reasons, the
diffusion coefficientD and viscosity also show little
variation, so that the diffusion coefficientD is 5±0.5×
10−9 m2 s−1 without significant variation as one goes
from ICB to CMB pressures along the adiabat, and in
parallelη goes from 15± 5 to 8.5 ± 1 mPa s. These
calculations finally resolve the issue of the viscosity
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of the outer core, which historically was considered to
be uncertain to within 13 orders of magnitude!

9. Conclusion

The past decade has seen a major advance in the
application of ab initio methods in the solution of
high pressure and temperature geophysical problems,
thanks to the rapid developments in high performance
computing. In all of our studies of solid and liquid Fe
summarised above, we have made strenuous efforts to
demonstrate the robustness and reliability of our cal-
culations. We have shown that our results are com-
pletely robust with respect to all the main technical
factors: size of simulated system,k-point sampling,
and choice of ab initio method. At present, ab ini-
tio dynamical simulations of the type presented here
are only practicable with the PAW or pseudopoten-
tial techniques. However, our comparisons leave little
doubt that if such simulations were feasible with other
DFT techniques, such as FLAPW, virtually identical
results would be obtained. As a result, we are confident
that we are now in a position to calculate from first
principles the free energies of solid and liquid phases,
and hence to determine both the phase relations and
the physical properties of planetary forming minerals.

In the future, we look forward to the advent of rou-
tinely available ‘terascale’ computing. This will open
new possibilities for geophysical modelling. Thus, we
will be able to model more complex and larger sys-
tems, to investigate for example solid state rheological
problems, or physical properties such as thermal and
electrical conductivity. However, we recognise that the
DFT methods we currently use are still approximate,
and fail for example to describe the band structure of
important phases such as FeO. In the future we intend
to use terascale facilities to implement more demand-
ing but more accurate techniques, such as those based
on quantum Monte Carlo methods.
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