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Abstract

We assess the quantitative accuracy of the particle-in-cell (PIC) approximation used in recent ab initio predictions of the
thermodynamic properties of hexagonal-close-packed (hcp) iron at the conditions of the Earth’s inner core. The assessment is
made by comparing PIC predictions for a range of thermodynamic properties with the results of more exact calculations that
avoid the PIC approximation. It is shown that PIC gives very accurate results for some properties, but that it gives an unreliable
treatment of anharmonic lattice vibrations. In addition, our assessment does not support recent PIC-based predictions that
the hexagonalc/a ratio increases strongly with increasing temperature, and we point out that this casts doubt on a proposed
re-interpretation of the elastic anisotropy of the inner core.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Ab initio calculations based on density functional
theory (DFT) (Hohenberg and Kohn, 1964; Kohn and
Sham, 1965; Jones and Gunnarsson, 1989) are widely
used to calculate the properties of materials at the ex-
treme pressures found in the interior of the Earth and
other planets (Stixrude et al., 1998), and are known
to be capable of high accuracy. For many years, such
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calculations did not generally include thermal effects,
and explicitly treated only zero-temperature materials.
However, the past few years have seen an increasing
effort to apply DFT calculations to high-temperature
solids and liquids of geological interest, using ab
initio lattice dynamics or molecular-dynamics simula-
tion (Alfè et al., 2001, 2002; Belonoshko et al., 2000;
Laio et al., 2000; Stixrude et al., 1997; Wasserman
et al., 1996; Brodholt et al., 2002; Oganov et al.,
2001; Steinle-Neumann et al., 2002). Because dy-
namical DFT calculations demand large computer
resources, a simplifying approximation known as the
‘particle-in-cell’ (PIC) method (Hirshfelder et al.,
1954; Holt and Ross, 1970; Holt et al., 1970; Ree
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and Holt, 1973; Westra and Cowley, 1975; Cowley
et al., 1990) has been used in some work on high-T,
high-p solids, an important example being the very
recent use of the PIC approximation to re-interpret
the elastic anisotropy of the Earth’s solid inner core
(Steinle-Neumann et al., 2001, 2002). However, the re-
liability of the PIC method has not gone unchallenged
(Alfè et al., 2001) and conclusions based on it are not
necessarily secure. To shed light on this question, we
present here the results of our own PIC calculations of
a range of thermodynamic properties of solid iron at
Earth’s core conditions, which we compare with more
exact calculations that avoid the PIC approximation.

The purpose of the PIC approximation is to pro-
vide a way of calculating the free energy of a vibrat-
ing crystal. The essence of the approximation is that
correlations between the vibrational displacements of
different atoms are neglected, so that each atom is
treated as vibrating independently of every other, as in
the Einstein model for a vibrating solid. Although the
approximation seems at first sight rather crude, empir-
ically it has been shown to yield satisfactory predic-
tions for the thermodynamic properties of a number
of solids (Holt and Ross, 1970; Holt et al., 1970; Ree
and Holt, 1973; Westra and Cowley, 1975), at least
for temperatures above the Debye temperature. In the
geological context, it was shown byWasserman et al.
(1996) that, when implemented using DFT methods,
it gives predictions for thep(V) relation on the shock
Hugoniot in excellent agreement with experiment for
Fe up to the melting curve. The PIC approach based on
DFT has also been applied successfully to the high-p,
high-T properties of other transition metals (Gülseren
and Cohen, 2001; Cohen and Gülseren, 2002).

In the work on the elastic anisotropy of the Earth’s
inner core (Steinle-Neumann et al., 2001, 2002) men-
tioned above, PIC was used to calculate the elastic
constants of hexagonal-close-packed (hcp) Fe over a
range of pressures and temperatures. A key predic-
tion was that thec/a ratio increases strongly withT,
and that this leads in turn to a strongT dependence
of the elastic constants. It emerged from this that the
observed anisotropy of seismic velocities in the in-
ner core (Creager, 1992; Song and Helmberger, 1993;
Tromp, 1993) could be interpreted in terms of a partial
alignment of hcp crystallites. Remarkably, the calcula-
tions required the hcp basal plane to be preferentially
aligned along the Earth’s rotational axis, which is the

opposite of what had been proposed earlier (Stixrude
and Cohen, 1995; Steinle-Neumann et al., 1999). Since
the correctness of this interpretation depends heavily
on the predicted variation ofc/a with T, it is clearly
essential to be confident that the PIC approximation
can be relied on to give this variation correctly, and
one of our aims in this paper is to test this point.

An objective assessment of the errors incurred by
the PIC approximation is made possible by the fact
that ab initio free energies and other thermodynamic
functions of high-temperature solids can now be cal-
culated with statistical-mechanical errors that can be
made arbitrarily small. The new methods, described
in detail in previous papers (Alfè et al., 2001, 2002),
are based on the DFT calculation of phonon frequen-
cies in the harmonic approximation, supplemented by
the ‘thermodynamic integration’ technique (Frenkel
and Smit, 1996) for calculating anharmonic contri-
butions. For a given material, and with a given DFT
technique for calculating the electronic total energy
as a function of ionic positions, we can therefore
compute thermodynamic functions either with the
PIC approximation or almost exactly. The differences
between the two sets of results represent the errors
caused by PIC. This is what we do in the present
work. Since the main difference between PIC and
the newer, more exact methods is that the latter fully
include vibrational correlations, we shall refer to
these in the following as ‘vibrationally correlated’
calculations.

Two main claims have been made for the PIC
method (Wasserman et al., 1996): First, that it pro-
vides a simple and reasonably accurate way of in-
cluding the effect of the anharmonicity of lattice
vibrations on thermodynamic properties; and sec-
ond, that, even in the absence of anharmonicity, it
is computationally much less demanding than more
precise methods. Our assessment of these claims for
the case of high-p/high-T Fe will suggest that nei-
ther is necessarily true, but that nevertheless the PIC
method does yield surprisingly accurate predictions
for many thermodynamic properties. We shall eluci-
date the reasons why PIC is often accurate. As we
shall see, however, the present work does not support
the prediction that thec/a ratio of hcp Fe increases
strongly with temperature, and this casts doubt on the
proposed re-interpretation of the elastic anisotropy of
the Earth’s inner core.
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The remainder of the paper is organised as fol-
lows. In Section 2, we describe how we have ap-
plied PIC to hcp Fe and how we have separated the
various contributions to the free energy and other
thermodynamic functions; at the end ofSection 2,
we summarise the DFT techniques. InSection 3, we
describe the details of our free-energy calculations
and highlight their implications for the temperature
dependence of thec/a ratio. We then present results
for several thermodynamic quantities calculated in
the PIC approximation, which we compare with the
earlier PIC results of Cohen and co-workers (Stixrude
et al., 1997; Steinle-Neumann et al., 2001, 2002;
Wasserman et al., 1996) and with the vibrationally
correlated results ofAlfè et al. (2001). Discussion
and conclusions follow inSection 4.

2. Techniques

2.1. Particle-in-cell approximation

In classical statistical mechanics, the ab initio
Helmholtz free energy of a vibrating solid containing
N ions is

FAI = −kBT ln

{
1

Λ3N

∫
dr1 · · · drN

× exp[−βUAI (r1 · · · rN)]} , (1)

whereUAI (r1 · · · rN) is the ab initio total electronic
free energy of the system when the ionic positions are
r1, . . . , rN andΛ is the thermal wavelength. It should
be noted thatFAI depends on the volumeV and tem-
peratureT of the systemβ = 1/kBT , and for an hcp
crystal it also depends on the axialc/a ratio, denoted
here byq; for the moment we do not indicate explicitly
the dependence onV , T andq. Two other points should
also be recalled. First, the quantityUAI (r1, . . . , rN)

is a free energy, because the electrons are treated as
being in thermal equilibrium for each set of ionic po-
sitions, at a temperature equal to the temperatureT of
the system as a whole. Second, the use ofclassical sta-
tistical mechanics, i.e. the neglect of quantum effects
in the nuclear motions, is fully justified at Earth’s core
temperatures (Alfè et al., 2001).

The PIC approach consists in replacingUAI in
the above formula by the approximate formUPIC

AI ,

given by

UPIC
AI (r1, . . . , rN) = Uperf +

N∑
i=1

φ(ui). (2)

Here, Uperf ≡ UAI (R1, . . . , RN) is the ab ini-
tio free energy of the system when all ions are at
their perfect-lattice positionsRi, and φ(ui) is de-
fined to be the change of energyUAI (R1, . . . , Ri +
ui, . . . , RN) − Uperf when ion i is displaced from
its perfect-lattice position to the positionRi + ui,
all other ions being held fixed at their perfect-lattice
positions. WithUAI replaced byUPIC

AI in Eq. (1), the
PIC approximation for the free energy is

FPIC
AI = Uperf + NfPIC

vib , (3)

where the PIC vibrational free energy per atom is

fPIC
vib = −kBT ln

[
Λ−3

∫
du exp(−βφ(u))

]
. (4)

The problem is thus reduced to the calculation of a
three-dimensional integral, which can be performed
numerically.

Our later analysis depends on a clear separation
of harmonic and anharmonic contributions tofPIC

vib ,
which can be accomplished by considering the series
expansion ofφ(u) in powers of ionic displacementu:

φ(u) = 1

2!

∑
αβ

Φ
(2)
αβ uαuβ + 1

3!

∑
αβγ

Φ
(3)
αβγuαuβuγ

+ 1

4!

∑
αβγδ

Φ
(4)
αβγδuαuβuγuδ + · · · , (5)

where the Greek indicesα, β, . . . , indicate Carte-
sian components. The value offPIC

vib when we retain
only the quadratic part ofφ(u) is the harmonic vibra-
tional free energy in the PIC approximation, denoted
by fPIC

harm. This can be expressed as

fPIC
harm = kBT

3∑
ν=1

ln

(
h̄ων

kBT

)
= 3kBT ln

(
h̄ω̄

kBT

)
.

(6)

Here, ων are the three PIC vibrational frequencies,
given by det|Mω2

νδαβ − Φ(2)αβ | = 0, withM the ionic
mass. The geometric-mean frequencyω̄ is defined by
Eq. (6). The anharmonic contributionfPIC

anharm to the
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free energy is the part offPIC
vib not accounted for by

fPIC
harm, so thatfPIC

anharm≡ fPIC
vib − fPIC

harm.
The PIC results reported inSection 3were ob-

tained by computingφ(u) for a set of vector dis-
placementsu, and fitting the results using the power
series expansion ofEq. (5); in practice, for the range
of displacements that occur with appreciable proba-
bility at temperatures below the melting temperature,
we find that an extremely accurate fit is obtained if
we retain only terms up to quartic order inu. To
show what parameters enter this fit, we write this
quartic polynomial explicitly for the case of hcp
symmetry:

φ(u) = 1

2!
[Mω2

a(u
2
x + u2

y)+Mω2
cu

2
z ]

+ 1

3!
K(3)(u3

y − 3u2
xuy)+

1

4!
[K(4)a (u

2
x + u2

y)
2

+K(4)mixu
2
z(u

2
x + u2

y)+K(4)c u4
z ]. (7)

Here,ux anduy are perpendicular Cartesian compo-
nents in the basal plane, thex-axis being oriented to-
wards a nearest-neighbour, anduz is the displacement
along the hexagonal axis. The frequencies of harmonic
vibration in the basal plane and along the hexagonal
axis areωa and ωc respectively. This symmetrised
polynomial expression may be obtained to a given
order by writing down all possible terms in a poly-
nomial of that order, and retaining only those terms
which leave the expression invariant under all the
point symmetry operations of the chosen cell. In the
case of hcp symmetry, these include reflection in the
hexagonal(z = 0) plane, rotations of 2π/3 about the
hexagonal axis, and reflection in they–z plane. With
the above form ofφ, the geometric-mean frequencyω̄
given by

3 ln ω̄ = 2 ln ωa + ln ωc. (8)

The vibrational free energyfPIC
vib is obtained essen-

tially exactly by numerical evaluation of the integral
in Eq. (4) on a regular grid. In analysing the anhar-
monic contributions, it is useful to note thatfPIC

anharm
can be expanded as a power series in temperature:

fPIC
anharm= dT 2 + O(T 3). (9)

For temperatures below the melting point, we find
that only the term inT 2 is significant, so that in
practice the anharmonic contributions are completely

specified by the coefficientd as a function of volume
V andc/a ratio q. The following exact expression for
the coefficient is readily obtained:

d = K
(4)
a

3(Mω2
a)

2
+ K

(4)
mix

12(Mωaωc)2
+ K

(4)
c

8(Mω2
c )

2

− (K(3))2

3(Mω2
a)

3
. (10)

The above methods are used to obtain contributions
to the free energy at a reference value ofq, chosen to
be close to theT = 0 equilibrium value. We then per-
form further calculations over a range of values ofq,
to obtain corrections to the free energy components,
which are parameterised in terms ofV andT. The de-
tails of this parameterisation are given inSections 3.1
and 3.2. Equilibrium values ofq are found by direct
minimisation of the total free energy.

2.2. Ab initio methods

The DFT electronic-structure techniques used to
perform the PIC calculations are essentially identical
to those described by (Alfè et al., 2001, 2002). The
exchange-correlation functional is the generalised
gradient approximation (GGA) of Perdew and Wang
(Wang and Perdew, 1991; Perdew et al., 1992). The
implementation of DFT is the projector augmented
wave (PAW) scheme (Blöchl, 1994; Kresse and
Joubert, 1999), with core radii, augmentation charge
radii etc set to the values reported inAlfè et al. (2000).
As before, all atomic states up to and including 3p
states are treated as core states, but the high-pressure
response of 3s and 3p states, known to be important
at Earth’s-core conditions, is included via an effec-
tive pair potential; the accuracy of this procedure has
been demonstrated earlier (Alfè et al., 2001). Thermal
excitation of electrons, also important at core con-
ditions, is treated with the usual finite-temperature
formulation of DFT (Mermin, 1965; Gillan, 1989;
Wentzcovitch et al., 1992). We used a plane-wave
cut-off of 300 eV, as in our previous work. All calcu-
lations were performed with the VASP code (Kresse
and Furthmüller, 1996a,b).

The PIC vibrational potentialφ(u) (seeEq. (2))
should in principle be calculated by displacing a single
atom in an infinite crystal. Because PAW calculations
require periodic boundary conditions, we must instead
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use supercell geometry, so that the displaced atom has
periodic images. To adhere to the PIC scheme, we
must therefore ensure convergence of all results with
respect to the size of the supercell, as described in the
following Section.

3. Results

3.1. Free energy of perfect lattice

DFT results for the free energy of the hcp Fe per-
fect latticeUperf(V, q, T) for the fixedc/a ratioq equal
to 1.60 were reported earlier (Alfè et al., 2001) for V
values from 5.2 to 11.4 Å3 per atom at temperatures
from 200 to 104 K. At eachT value, the results were
fitted to a Burch-Murnaghan equation of state (Poirier,
2000), the parameters of which were then fitted as
polynomial functions ofT . We have repeated these
calculations for the present work, and as expected
the results are virtually identical to those reported
earlier.

To allow for variation ofq, we have performed
additional calculations ofUperf(V, q, T) for q in the
range from 1.48 to 1.72, withV going from 5.5 to
10.5 Å3 per atom, andT going from 2000 to 8000 K.
All technical parameters, such as the Monkhorst–Pack
sampling set, were kept the same as in theq = 1.60
calculations. To represent the results, we define the
deviation#Uperf(V, q, T) of the perfect-lattice free
energy from its value at a chosen ofq, denoted byq0:
#Uperf(V, q, T) ≡ Uperf(V, q, T) − Uperf(V, q0, T). In
the present case,q0 has the fixed value 1.60 through-
out. We find that#Uperf(V, q, T) can be very accu-
rately represented at all(V, T) by the quadratic form:

#Uperf(q) = α(q− q0)(q− q1). (11)

At eachV value,α andq1 can be accurately fitted as
linear functions ofT , the coefficients of which are in
turn fitted linearly inV . These fits give a virtually per-
fect representation of the#Uperf(V, q, T) results. Writ-
ing α = a+bT, q1 = r+sT and witha = a(0)+a(1)V
and similarly for b, r and s, the numerical values
of the parameters area(0) = 18.39, a(1) = −1.532,
b(0) = −3.070× 10−4, b(1) = 1.64908× 105, r(0) =
1.63, r(1) = −7.909× 10−3, s(0) = −7.902× 10−6

and s(1) = 1.817× 10−6. Units of coefficients are
such thatα is in eV, T in K andV in Å3.

The equilibrium value q of the perfect lat-
tice, denoted byqeq, is obtained by minimising
#Uperf(V, q, T) with respect toq. At T = 0, we find
a very weak dependence ofqeq on V , going from
1.590 at 7.0 Å3 per atom to 1.578 at 10.0 Å3 per atom.
The T dependence of#Uperf(q) is also very weak,
with α decreasing linearly from 7.4 to 6.2 eV, andq1
increasing from 1.59 and 1.62 as temperature varies
from 2000 to 8000 K. If we now use the results to
predict qeq for the (hypothetical) high-T perfect lat-
tice, we find a variation of at most 0.04 at a volume
of 10.0 A3. The insignificantV - and T dependence
of qeq is noteworthy, because it implies that any
significant variation ofqeq at high temperatures can
come only from lattice vibrations, to which we now
turn.

3.2. Vibrational free energy

The basal-plane and axial frequenciesωa andωc,
and the four anharmonic vibrational coefficientsK(3),
K
(4)
a , K(4)mix andK(4)c were calculated as follows. For

given values ofq andV , a supercell was constructed
in which one of the atoms, the ‘walker’ is displaced
from its equilibrium position. The ‘walker’ is given a
series of equally spaced displacements in the three di-
rectionsûy, ûz and (1/

√
2)(ûx + ûz), the maximum

displacementsrmax in each direction being chosen
so that the Boltzmann factor exp[−βφ(rmax)] ≈ 0.1
for the maximum temperatures of interest. Directions
were selected to allow the terms inφ(r) (Eq. (7)) to
be determined as simply as possible by least squares
fitting. Size convergence in terms of supercells is es-
sential to ensure that the walker cannot ‘see’ its im-
age. We discuss the results of a simple convergence
test below. All the calculations described here are per-
formed at a fixed electronic temperature of 6000 K,
since statistical mechanical considerations will domi-
nate the temperature dependence offPIC

vib . At this tem-
perature, vibrational coefficients were fully converged
with respect tok-point sampling at each cell size.
Monkhorst–Pack (Monkhorst and Pack, 1976) sam-
pling was used, with 9×9×5 k-points for the 8 atom
cell, 7× 7× 5 k-points for 16 atoms and 3× 3× 3 for
36. Calculations were performed over a range of vol-
umes from 5.5 to 11.5 Å3 per atom with a fixed axial
ratio ofq0 = 1.60 as before. Using fifth-order polyno-
mials to obtain a high quality fit, the quantitiesK(3),
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)

Fig. 1. The variation with atomic volumeV of ln ω̄ (ω̄ is the
geometric mean vibrational frequency) from PIC calculation on
periodic cells containing 8 (solid curve), 16 (dashed curve) and 36
(dotted curve) atoms. The vibrationally correlated results ofAlf è
et al. (2001)are given by the lighter curve.

K
(4)
a , K(4)mix, K(4)c and lnω̄ were then parameterised in

terms of volume. Finally, a correction due to relaxation
of q is added to the harmonic free energy, as for that
of the perfect lattice, by performing a parameterisa-
tion of ω̄ in terms ofq, which we describe below. Pa-
rameterisation of higher orderK coefficients in terms
of q yielded only negligible corrections to thep–V
curve.

As noted inSection 2.1, the harmonic free energy
is completely determined by the geometric-mean fre-
quencyω̄ (Eqs. (6) and (8)), and we consider first our
PIC results forω̄ as a function ofV for the fixedc/a
ratio q0 = 1.6. We report inFig. 1 our ω̄ results from
calculations using supercells of 8, 16 and 36 atoms,
compared with thēω results from our earlier calcula-
tions of the full phonon spectrum (Alfè et al., 2001).
We note two important points. First, the PIC̄ω results
are almost independent of supercell size, so that the
calculations appear to be fully converged with respect
to size effects. Second, the PIC̄ω differs from the
full-phononω̄ only by a volume-independent shift of
ln ω̄. Since such aV -independent shift cannot affect
most thermodynamic quantities, we expect the PIC
calculations to agree rather closely with full-phonon
calculations.

We now consider the dependence ofω̄ onc/a ratioq,
defining the logarithmic deviation#L ω̄(V, q) from its
value atq0 by ln ω̄(V, q) = ln ω̄(V, q0)+#L ω̄(V, q).

In terms of this, the harmonic free energy can be writ-
ten as

fPIC
harm(V, q, T) = 3kBT ln

(
h̄ω̄

kBT

)
= fPIC

harm(V, q0, T)+ 3kBT#L ω̄. (12)

Calculations ofω̄(q) were made forq-values going
from 1.48 to 1.72 at a series of volumes. We find thatω̄

decreases with increasingq. Not surprisingly, increase
of q at constantV yields an increase of the basal-plane
frequencyωa and a decrease of axial frequencyωc.
The decrease ofωc succeeds in outweighing the in-
crease ofωa in the formula forω̄ (Eq. (8)), but never-
theless the resulting decrease ofω̄ is a fairly marginal
effect. Over theq range studied, we found that the
quadratic form#L ω̄(q) = β(q − q0)(q − q2) gives
an accurate fit, and this fit was performed at volumes
of 5.5, 7.0 and 10.5 Å3 per atom. TheV dependence
of the resultingβ and q2 coefficients was obtained
by a quadratic fit. Writingβ = ∑2

i=0 β
(i)V i and sim-

ilarly for q2, the values of the parameters areβ(0) =
−2.083,β(1) = 0.375,β(2) = −0.0264,q(0)2 = 1.990,

q
(1)
2 = −0.141 andq(2)2 = 8.79× 10−3. Units of pa-

rameters are such thatω̄ is in rad s−1 andV is in Å3.
From the values of the four anharmonic coeffi-

cients at eachV andq, we calculate also the anhar-
monic vibrational free energyfPIC

anharm. As explained
in Section 2.1, the most accurate way of doing this
is by explicit calculation offPIC

vib (Eq. (4)) by nu-
merical evaluation of the integral over displacement
u, from which fPIC

anharm is obtained as the difference
fPIC

vib − fPIC
harm. Alternatively, we can useEq. (10) to

calculate thed coefficient of the leading term in the
temperature expansion offPIC

anharm (see Eq. (9)). In
practice, we find that the two methods yield almost
indistinguishable results, and everything that follows
is based on evaluation of thed coefficient.

We report inFig. 2 the volume dependence ofd for
q = 1.60, compared with the corresponding anhar-
monicity coefficient obtained from the vibrationally
correlated results ofAlfè et al. (2001). The coeffi-
cients of this fit are as follows:d(0) = −6.556×10−8,
d(1) = 3.399 × 10−8, d(2) = −6.487 × 10−9,
d(3) = 5.400× 10−10, d(4) = −1.639× 10−11, where
d(v) = ∑4

i=0 d
(i)V i, d being in eV K−2 and V in

Å3. Corresponding data is given inAlfè et al. (2001).
The striking and important feature of this comparison
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/K
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Fig. 2. Anharmonic coefficientd as a function of atomic volume
for the current PIC calculations (heavy curve) and the vibrationally
correlated calculations ofAlf è et al. (2001)(light curve).

is that the PIC anharmonic free energy is positive,
whereas the results ofAlfè et al. (2001)show that in
reality it is negative. This means that for high-p hcp
Fe, the PIC approximation gives a completely incor-
rect account of anharmonicity, the electronic structure
techniques in both works being identical. However,
we note thatfPIC

anharm is in any case very small. For
example, atV = 7 Å3 per atom,T = 6000 K,
fPIC

anharm ≈ 15 meV per atom. Because it is so small,
we ignore its dependence onq in the following, and
use a polynomial fit to thed(V) results forq = 1.60.

3.3. Temperature dependence of c/a ratio

The equilibrium valueqeq of thec/a ratioq at given
V andT is obtained by minimising the total free energy
FPIC

AI with respect toq. The variation ofqwith T comes
from the T and q dependence of the perfect-lattice
free energyUPIC

perf, for which we presented results in
Section 3.1, and from theq dependence of the mean
vibrational frequencȳω (Eq. (6)). (Since we neglect
the q dependence of the anharmonic component of
free energy, anharmonicity does not contribute to the
T dependence ofqeq here.)

Our results forqeq at three different volumes are
reported in Fig. 3, where we compare them with
the earlier PIC predictions ofSteinle-Neumann et al.
(2001, 2002). The present results are very different
from the earlier ones. At all volumes, we find only
a very weak increase ofq with T , which is between

0 2000 4000 6000 8000
T (K)

1.5

1.6

1.7

1.8

q 
=

 c
/a

Fig. 3. Equilibrium axial ratioq, for Steinle-Neumann et al. (2001)
(heavy curves) at atomic volumes of 6.81 Å3 (solid curve), 7.11 Å3

(dashed curve) and 7.41 Å3 (dotted curve), and for the current
work (light curves) at 5.5 Å3 (solid curve) 7.5 Å3 (dashed curve)
and 10.0 Å3 (dotted curve).

5 and 10 times smaller than the variation reported in
Steinle-Neumann et al. (2001). We note that this gross
discrepancy can come only from a difference in theq
dependence of the harmonic mean frequencyω̄. The
reason for this is that the roughly linear dependence
of qeq on T seen in both our results and those of
Steinle-Neumann et al. (2001)cannot originate either
from thermal electronic excitations or from anhar-
monicity, since both of these free-energy components
vary asT 2. The cause of the discrepancy, and its im-
plications for understanding the elastic anisotropy of
the inner core, are discussed further inSection 4.

3.4. Thermodynamic functions

All thermodynamic functions can be calculated by
taking appropriate derivatives of the PIC free energy
FPIC

AI , with its perfect-lattice, harmonic and anhar-
monic components parameterised as described above.
All the results to be presented include the dependence
of the equilibrium c/a ratio qeq on V and T . Our
PIC predictions will be compared with the earlier
PIC results ofWasserman et al. (1996)and with the
vibrationally correlated results ofAlfè et al. (2001).

We begin by considering the thermal pressure#p,
which is one of the most basic quantities in interpreting
the properties of the inner core. This is defined as the
difference between the pressure in the material at a
given V andT and the pressure at the same volume
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Fig. 4. The total thermal pressure on isotherms in this work (light
curves) and that ofAlf è et al. (2001)(heavy curves) at 2000 K
(solid curve), 4000 K (dashed curve) and 6000 K (dotted curve) as
a function of atomic volume.

but at zero temperature:

#p = −
(
∂FPIC

AI

∂V

)
T

+
(
∂FPIC

AI

∂V

)
T=0

. (13)

Fig. 4 shows a comparison of our PIC results for#p
with the vibrationally correlated results ofAlfè et al.
(2001)on isotherms atT = 2000, 4000 and 6000 K.
The rather close agreement shows that the PIC ap-
proximation gives an accurate account of the thermal
pressure. This is expected from our results forω̄,
since in the harmonic approximation#p is given by
the electronic thermal pressure, which is exactly the
same in both calculations, plus a vibrational contribu-
tion equal to−3kBT∂ ln ω̄/∂V . We have seen that for
hcp Fe, the PIC value of ln̄ω differs from the exact
value by an almost constant offset, which has no ef-
fect on the derivative of ln̄ω with respect toV . Small
differences between the PIC and vibrationally corre-
lated thermal pressure may be due to small variations
in the offset between the values of ln̄ω.

The situation is similar for the thermal energy#E,
defined as the difference between the internal energyE

at a givenV andT and the internal energy at the same
V but zero temperature:#E = E(V, T) − E(V,0).
The electronic part of the thermal energy is identical
in both PIC and vibrationally correlated calculations,
and the harmonic vibrational energy is exactly 3kBT

per atom in both cases, so that any difference arises

only from the small anharmonic contribution. Results
for the thermal energy are not presented here.

The good accuracy of PIC for thermal pressure
and thermal energy explains why it has also been
found to give a good account of shock measurements
(Wasserman et al., 1996). A conventional sequence of
shock experiments on samples in the same initial state
generates a path through thermodynamic state-space
known as the Hugoniot. On this path, the pressurep,
volume V and internal energyE are related by the
Rankine-Hugoniot formula (Poirier, 2000):

1
2(p+ p0)(V0 − V) = E − E0, (14)

wherep0, V0 andE0 refer to the initial state, which
usually corresponds to ambient conditions. For given
V , the Hugoniotp and temperatureT can be deter-
mined by going to the calculatedp(V, T) andE(V, T)
functions and seeking the value ofT for whichp and
E satisfy Eq. (14). Fig. 5 shows our calculated PIC
p(V) on the Hugoniot compared with the experimen-
tal results and with the fully correlated results ofAlfè
et al. (2001). The almost exact agreement between the
three sets of results confirms the excellence of PIC for
this particular purpose. Similar comparisons are shown
for theT(p) relation on the Hugoniot inFig. 6. Here
there is a discrepancy, which corresponds to a differ-
ence in internal energy between the two theoretical
models. This difference is fully accounted for by the
neglect of temperature dependence ofω̄ in the present
work.
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Fig. 5. The pressure–volume Hugoniot. Heavy and light curves
correspond to this work andAlf è et al. (2001)respectively; symbols
show the experimental results ofBrown and McQueen (1986).
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Fig. 6. The temperature–pressure Hugoniot. Heavy and light curves
correspond to this work andAlf è et al. (2001)respectively; filled
circles show the experimental results ofYoo et al. (1993)and
open diamonds are estimates due toBrown and McQueen (1986).

We conclude the presentation of results by exam-
ining three thermodynamic quantities for which our
comparisons between vibrationally correlated calcula-
tions and the earlier PIC results ofWasserman et al.
(1996)andStixrude et al. (1997)revealed significant
differences (Alfè et al., 2001).

Fig. 7compares the present PIC results for thermal
expansivityα with earlier calculations. At 2000 K, the
present results are in very close agreement with the vi-
brationally correlated results, and in strong disagree-
ment with the earlier PIC results at low pressures. At
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Fig. 7. Thermal expansivity on isotherms at 2000 K (solid curve)
and 6000 K (dotted curves). Heavy, medium and light curves cor-
respond to this work,Alf è et al. (2001)and the earlier PIC results
of Stixrude et al. (1997)andWasserman et al. (1996)respectively.
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Fig. 8. The productαKT on isotherms at 2000 K (solid curve)
and 6000 K (dotted curves). Heavy, medium and light curves cor-
respond to this work,Alf è et al. (2001)and the earlier PIC results
of Stixrude et al. (1997)andWasserman et al. (1996)respectively.

higherT , the present results fall somewhat below both
previous sets of results. The productαKT (Fig. 8) of
expansivity and isothermal bulk modulus is important
in high-pressure work, because it can sometimes be
assumed to be independent ofp andT over a wide
range of conditions. The vibrationally correlated cal-
culations showed that for high-p/high-T hcp Fe con-
stancy withp is a good approximation, but constancy
with T is not. The present PIC results show a reduction
of αKT with respect to vibrationally correlated and
earlier PIC results of, at most, around 15% at 6000 K.
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Fig. 9. The Grüneisen parameter on isotherms at 2000 K (solid
curve) and 6000 K (dotted curves). Heavy, medium and light curves
correspond to this work,Alf è et al. (2001)and the earlier PIC
results of Stixrude et al. (1997)and Wasserman et al. (1996)
respectively.
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The thermodynamic Grüneisen parameterγ =
V(∂p/∂E)V is particularly important, because it relates
thermal pressure to thermal energy, and assumptions
aboutγ are often used in reducing shock data from
Hugoniot to isotherm. The large differences between
the earlier PIC results and the vibrationally-correlated
results forγ are therefore a cause for concern (Alfè
et al., 2001). The present PIC results (Fig. 9) agree
quite closely with the vibrationally-correlated re-
sults, and this suggests that the cause of the ear-
lier disagreement was not the PIC approximation
itself.

4. Discussion

Our comparisons with more exact calculations have
shown that the PIC approximation gives very good re-
sults for a range of important thermodynamic proper-
ties of hcp Fe at Earth’s core conditions. A noteworthy
example of this is thatp(V) on the Hugoniot agrees al-
most perfectly with the more exact results. Our analy-
sis of the free energy into different components makes
clear why PIC is so good. The perfect-lattice compo-
nent is exactly the same in the two approaches. For the
harmonic component, the sole requirement for good
results is that the logarithmic derivative d ln̄ω/d ln V
of the geometric mean frequencyω̄ be correct. But we
have seen that for hcp Fe the PICω̄ differs from theω̄
given by calculation of the full phonon spectrum by an
almost constant factor over a wide range of volumes,
so that this requirement is satisfied. The basic reason
for this is that the phonon dispersion relations of hcp
Fe scale by a uniform factor with changing volume
(seeFig. 3 of Alfè et al., 2001). Finally, the anhar-
monic component of free energy is very small, and
has only a very minor effect on most thermodynamic
functions. The reliability of PIC actually requires that
anharmonic effects be small, since we have shown
that the PIC approximation misrepresents these effects
in predicting the wrong sign of the anharmonic free
energy.

Surprisingly, even though PIC appears to be so
good, we find important discrepancies with the earlier
PIC results ofStixrude et al. (1997)andWasserman
et al. (1996). In particular, our calculations of the ther-
modynamic Grüneisen parameter agree much more
closely with the calculations ofAlfè et al. (2001).

These discrepancies are clearly not due to PIC itself,
but must come from other technical differences. We
note that in the work ofWasserman et al. (1996), the
PIC calculations actually employed a tight-binding
representation of the total energy function, the pa-
rameters in the tight-binding model being fitted to ab
initio calculations. Conceivably, the tight-binding fit
might have led to errors.

Even more surprising is that the strong increase
with temperature of the axialc/a ratio predicted by
recent PIC calculations is not reproduced at all by
the present PIC work. According toSteinle-Neumann
et al. (2001), at the atomic volume of 7.11 Å3, c/a
increases from 1.63 to 1.75 asT goes from 2000 to
8000 K, whereas in the present PIC calculations at
the similar volume of 7.0 Å3, c/a increases only from
1.594 to 1.610 over the same temperature range. The
correctness of the weakc/a variation found here is
supported by preliminary calculations (Alfé, 2002) us-
ing the techniques ofAlfè et al. (2001, 2002). The
reasons for this discrepancy are completely unclear at
present. The discrepancy has major implications for
our understanding of the Earth’s inner core, because
the recently proposed re-interpretation of the elastic
anisotropy of the inner core appears to depend cru-
cially on a strongT variation ofc/a. We believe it is
highly desirable that this question be re-examined by
other research groups.

Our work sheds light on the usefulness of the PIC
approximation. Since we have seen that PIC cannot be
relied on for anharmonic contributions, it should be
regarded as a way of calculating the geometric-mean
harmonic frequencyω̄. But PIC requires ab initio
calculations on a periodic system in which a single
atom is displaced from its perfect-lattice site. These
are precisely the same calculations that are performed
in order to obtain the force-constant matrix used to
compute the full phonon spectrum (Alfè et al., 2001,
2002). For an ab initio method that yields forces on all
ions—which includes the pseudopotential and PAW
implementations of DFT, among others—the net re-
sult of the PIC procedure is to discard all the informa-
tion contained in the ionic forces, retaining only the
variation of total energy with displacement. This sug-
gests that it may be better to use the force information
to compute the force-constant matrix and hence the
full phonon spectrum, rather than adopting the PIC
approach.
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