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We describe a simple strategy for calculating the cohesive energy

of certain kinds of crystal using readily available quantum

chemistry techniques. The strategy involves the calculation of

the electron correlation energies of a hierarchy of free clusters,

and the cohesive energy Ecoh is extracted from the constant of

proportionality between these correlation energies and the num-

ber of atoms in the limit of large clusters. We apply the strategy

to the LiH crystal, using the MP2 and CCSD(T) schemes for the

correlation energy, and show that for this material Ecoh can be

obtained to an accuracy of B30 meV per ion pair. Comparison

with the experimental value, after correction for zero-point

energy, confirms this accuracy.

Over the past 20 years, the study of condensed-matter

electronic structure has been dominated by Density Func-

tional Theory (DFT) owing to its high efficiency, rapid ba-

sis-set convergence and relatively high accuracy. However, a

systematically improvable treatment of electron correlation

within DFT has proved elusive. Quantum chemistry, by con-

trast, traditionally emphasises the systematic treatment of

correlation, and successful hierarchies have been established

based on Møller–Plesset and coupled cluster theory. Such

quantum chemical methods would make a huge impact in

the study of condensed matter, and a variety of approaches

have been developed. These include the local ansatz for

coupled cluster treatments, developed by Stollhoff and Fulde;1

AO-driven Laplace-transform MP2;2 Stoll’s method of incre-

ments;3 and the local ansatz of Pulay and Saebø.4,5 For a

recent review, see ref. 6. A comparison of the relative merits of

these methods and our own is beyond the scope of the present

Communication.

We present here a simple strategy for calculating the cohe-

sive energy of an infinite crystal, using readily available

quantum chemistry methods. The method can, in principle,

be applied to any crystal, but we describe it for an ionic solid

MX (M= cation, X= anion) with the rock salt structure. We

work with orthorhombic l � m � n blocks of crystal with all

ions fixed on bulk lattice positions and lmn even. With Etot
lmn

being the total energy of the block relative to isolated atoms,

the cohesive energy Estatic
coh of the static crystal per ion pair is the

limit of 2Etot
lmn/lmn as l, m and n all tend to infinity. The

cohesive energy of the real material at T = 0 K is obtained

by adding the zero-point vibrational energy per ion pair:

E0K
coh ¼ Estatic

coh þ Ezp.

We decompose Etot
lmn into its Hartree–Fock and correlation

parts:

Etot
lmn ¼ EHF

lmn þ Ecorr
lmn : ð1Þ

The limit of 2EHF
lmn/lmn as l, m and n-N is the Hartree–Fock

approximation to the cohesive energy of the static crystal,

which can be calculated by standard methods. We now express

the correlation energy of the block Ecorr
lmn as the sum of the

correlation energy of the MX molecules plus a remainder,

which we term the ‘correlation residual’, DEcorr
lmn :

Ecorr
lmn ¼

1

2
lmnEcorr

mol þ DEcorr
lmn : ð2Þ

The correlation energy Ecorr
mol of the MX molecule, relative to

that of isolated atoms, refers to an internuclear separation

equal to that in the crystal. This can be computed very

accurately, so that the only difficult part of the cohesive energy

is the limit involving the correlation residual 2DEcorr
lmn /lmn as l,

m and n - N.

For blocks l � m � n with fixed l and m, the correlation

residual DEcorr
lmn has the asymptotic form

DEcorr
lmn ¼ c0lm þ c1lmn ð3Þ

as n - N, where calm are constant coefficients. We shall show

below that this asymptotic form is rapidly attained in practice.

For fixed l, the coefficients calm themselves become linear in m

for large m:

calm ¼ ca0l þ ca1l m; ð4Þ

and similarly:

cabl ¼ cab0 þ cab1l: ð5Þ

Substituting eqn (4) and (5) into eqn (3), and using the cubic

crystal symmetry, we obtain:

DEcorr
lmn ¼ c000 þ c001ðl þmþ nÞ þ c011ðlmþ lnþmnÞ

þ c111lmn ð6Þ

for the correlation residual energy in the limit of large l, m, n.

We see from eqn (6) that the contribution of the correlation

residual to the cohesive energy per ion pair is 2c111.

The limiting processes just described give one way of

determining c111, and hence the correlation residual part of

the cohesive energy. However, we have developed a more

automatic and general procedure that allows the convergence

with respect to block size to be studied in more detail. If we
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have four distinct blocks li � mi � ni (i = 1, 2, 3, 4), then their

residual correlation energies DElimini

corr, when inserted on the

left of eqn (6), give four simultaneous equations that can be

solved to obtain estimates for the four asymptotic coefficients

c000, c001, c011 and c111, provided the equations are linearly

independent. The accuracy of the estimates can be improved

by repeating the procedure for larger blocks. In our ‘hierarch-

ical algorithm’, we generate groups of four blocks as follows:

for a positive integer N, we construct the list of unique blocks

with even lmn and with lmn r N. The list is ordered lexico-

graphically, so for example forN= 8, the list is (1,1,2), (1,1,4),

(1,1,6), (1,1,8), (1,2,2), (1,2,3), (1,2,4), (2,2,2). We take the last

four blocks in the list, subject to solubility of the simultaneous

equations, and solve to yield a value of c111. This estimate

converges to the exact value as N - N. The ordering of the

list is important, since it ensures that the groups of four

contain the most ‘bulk-like’ blocks.

Our calculations on LiH were performed with the latest

version of the Molpro code.7 We have used density fitting to

accelerate many of our calculations, with standard fitting sets.8

Errors relative to the corresponding exact methods are very

small (e.g. 6 mEh difference in the MP2/cc-pVTZ total energy

of the LiH molecule with and without density fitting). The

results we report all refer to the experimental lattice parameter

a0 = 4.084 Å.

We discuss first the asymptotic behaviour of the correlation

residual energy Ecorr
lmn as l, m and n - N. Fig. 1 shows the

dependence of DEcorr
lmn on n for fixed values of l and m,

calculated at the MP2/cc-pVTZ level, with frozen cores. (To

examine the asymptotes of DEcorr
lmn , the same basis set must be

used for all l, m and n.) The results show that the correlation

residual energy is small (DEcorr
lmn /lmn B 6 mEh), and that the

asymptotic linear form (eqn 3) is rapidly attained. We have

applied our ‘hierarchical algorithm’ up to N= 64 at the MP2/

cc-pVTZ level with frozen cores. The estimated values of the

c111 coefficient for a sequence of N values are shown in Fig. 2.

There are irregularities at smaller N values, where chains and

sheets, rather than bulk-like blocks, are used, but the uncer-

tainty in the estimated value of c111 for n - N is much less

than 1 mEh. Corrections for core correlation (MP2(full)/cc-

pCVTZ), basis-set incompleteness (MP2/cc-pVQZ) and higher

levels of correlation (CCSD(T)/cc-pVTZ) were computed

using the hierarchical algorithm up to N = 16. Our MP2/

cc-pVTZ result for c111 and the corrections to this result are

reported in Table 1.

To obtain the total correlation energy of the LiH crystal per

ion pair, we add to 2c111 the correlation energy of the LiH

molecule (rLiH = 2.042 Å) relative to that of isolated atoms.

The correlation energies of the LiH molecule and Li atom were

computed using all-electron FCI/cc-pCVTZ, giving Ecorr
mol =

�36.4 mEh. We obtain a basis-set correction by applying the

cubic extrapolation to CCSD(T)/cc-pCVTZ and cc-pCVQZ

correlation energies. This provides an estimate of �1.9 mEh

for the basis set incompleteness of the FCI result, giving our

final estimate Ecorr
mol = �38.4 mEh.

The final part of the static cohesive energy Estatic
coh is the HF

contribution EHF
coh, for which there is a literature value of �130

mEh.
9 This value was obtained by the questionable procedure

of taking the difference between a restricted basis (EBS) energy

of the crystal and the HF basis set-limit for the isolated atoms.

EBS does not have functions to represent the 2s orbital of Li,

so here we first compute the cohesive energy relative to free

ions. The diffuse nature of H� is carried in the crystal by basis

functions on neighbouring sites. We therefore computed the

energy of H� in the EBS basis for blocks of LiH up to 3 � 5 �
5, with the hydride on the central site. The resulting cohesive

energy with respect to free ions was converted to the atomic

Fig. 1 Correlation residuals DEcorr
lmn of LiH blocks of increasing sizes

computed at the frozen-core MP2/cc-pVTZ level. Note the rapid

convergence to linear form.

Fig. 2 Correlation residual contribution c111 (MP2/cc-pVTZ) to

cohesive energy of the LiH crystal computed using the hierarchical

algorithm (see text) for a sequence of maximum clusters sizes N.

Table 1 Contributions to the cohesive energy E0K
coh of the LiH crystal

relative to isolated atoms and comparison with experiment (see text)

Contribution Energy/mEh

EHF
coh �134.4

Ecorr
mol �38.4

2c111 ref.a �12.0
2c111 core.b 2.2
2c111 CCSD(T)c �1.0
2c111 Basisd �0.2
Ezp 7.8
E0K
coh(calc.) �176.0

E0K
coh(exp.) �175.0

a MP2/cc-pVTZ. b MP2(full)/cc-pCVTZ � MP2/cc-pVTZ. c CCSD

(T)/cc-pCVTZ � MP2/cc-pVTZ. d MP2/cc-pVQZ � MP2/cc-pVTZ.
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reference using the HF basis limit energies of Li+, Li, H� and

H, to obtain EHF
coh = �134.4 mEh.

It suffices to obtain the zero-point energy Ezp from DFT

phonon frequencies, which for semi-ionic materials like LiH

are generally correct to better than 5%. We calculated phonon

dispersion relations by the linear-response and small displace-

ment methods,10 using the VASP and ESPRESSO codes.11

Results in the local-density and generalised-gradient approx-

imations were Ezp = 7.6 and 7.8 mEh, respectively.

The contributions to our final value for the zero-tempera-

ture cohesive energy are presented in Table 1, and we obtain

E0K
coh = �176.0 mEh. The enthalpy of formation of LiH crystal

from a Li crystal and H2 gas at standard conditions (T =

298.15 K, P = 1 bar) has been determined by several

techniques, and the JANAF Tables13 list five experimental

values, which are consistent to within B0.3 kcal mol�1 (B0.5

mEh). We use here the value �21.66 kcal mol�1 from the

middle of the range. To obtain from this the T = 0 K cohesive

energy, we use the JANAF values for (a) the enthalpy differ-

ence of a LiH crystal between T = 0 K and T = 298.15 K; (b)

the enthalpy of formation of Li gas from a Li crystal under

standard conditions; (c) the enthalpy difference of H2 gas

between T = 0 K and T = 298.15 K; (d) the dissociation

energy of the H2 molecule. This yields the experimental value

for the T = 0 K cohesive energy E0K
coh = �175.0 mEh, which is

almost identical to the experimental value quoted in earlier

papers (e.g. E0K
coh = �176 mEh in ref. 12). Our calculated value

E0K
coh = �176.0 mEh thus agrees with the experimental value to

within B1 mEh per formula unit.

These results for LiH show the possibility of extracting

accurate values for the properties of bulk crystals from

quantum chemistry calculations on free clusters. It is likely

that the use of clusters embedded in suitably designed arrays

of point charges would be still more efficient. Although LiH is

clearly a favourable case, trial calculations on LiF and MgO

suggest that the strategy will work well for other ionic

materials. The performance of the method on other types of

solid is as yet un-tested, but we are optimistic that the

approach will be transferable, owing to the generality of the

short-range nature of the correlation phenomenon. The limit-

ing processes we have described also allow the calculation of

the formation energies of surfaces, edges and corners, as will

be reported elsewhere. It is likely that periodic implementa-

tions of MP2 will soon become practical tools for studying

bulk and surface properties; but our strategy should remain a

valuable tool for the computation of corrections to higher

levels of theory. These corrections work especially well in the

current framework, and offer the possibility of extending the

whole range of successful tools from molecular electronic

structure theory to the solid state.
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2005, 122, 094113.

6 B. Paulus, Phys. Rep., 2006, 428, 1.
7 H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz,
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