The interest in developing novel materials using building blocks with sizes of about 1 nm has motivated the huge effort devoted to understand the properties of nanoclusters. Several studies have clearly demonstrated that atomic aggregates in the nanometer size range, that is, formed by dozens or hundreds of atoms, present remarkably different properties with respect to their bulk crystalline counterparts. Heterogeneous catalysis, energy conversion, and magnetic data storage are among the technologically most relevant fields where supported nanoclusters are expected to have a strong impact.1,2

An important field for application of the new nanocluster-based materials is catalysis. The most striking example is the high chemical activity of small Au nanoclusters,3–6 given by highly reactive corner and edge atoms with low coordination Cn, but even other transition metals like Pt present nanoclusters with a similar behavior.7,8

One of the goals of nanotechnology is the manipulation of the magnetic properties in systems with reduced dimensionality, such as quantum wires, quantum dots, and nanoclusters. As an example, the use of nanoclusters for ultrahigh density magnetic recording requires pushing further away the superparamagnetic limit by enhancing the magnetic anisotropy energy. In this respect, experiments have shown that low Cn atoms play a pivotal role.9,10

When the particle’s size is reduced to only 10–20 Å, two main challenges are posed: (i) the formation in a controllable and reproducible manner of large-scale replicas of these individual building blocks on a suitable substrate11 and (ii) the determination and tuning of the geometric and electronic structure of the supported nano-objects.

One of the most recent solutions to meet the first challenge is to make use of template graphene (GR) for the growth of metallic nanoclusters and for the formation of long-range-ordered superstructures. This
has been first demonstrated in the case of Ir clusters on GR grown on Ir(111)12 and more recently on other substrates,13–19 and even in the case of molecules.20 A great advantage of using GR is that it is the strongest two-dimensional material known, a benchmark for structural and mechanical applications.21 Moreover, GR has exceptional heat transport properties22 and incomparably high electrical conductivity at room temperature23 originating from its unique electronic structure. This makes GR an ideal candidate for the production of nanocluster-based materials.24

The second exciting challenge to be faced, which we specifically address in the present work, is the understanding of the relationship between geometric and electronic structure of under-coordinated atoms in supported nanoclusters and how this varies with cluster size, shape, and density. At the nanometer scale, where the fractions of edge and facet atoms become no longer negligible, both surface energy and surface stress increase. This can result in large out-of-plane bond length contraction, as revealed in coherent X-ray diffraction experiments on Au nanocrystals,27 and thus modify the electronic and magnetic properties of the nanoclusters. Recent experiments have indeed shown that 20 atom clusters embedded in inert xenon present total magnetic moments as large as 0.4 μ_B.29

RESULTS AND DISCUSSION

Rh clusters were grown on epitaxial GR on Ir(111). The metal surface was cleaned by using a well-established procedure which yields an ordered and clean surface, as proved by the sharp and low background (1×1) low energy electron diffraction (LEED) pattern and by the absence of traces of contaminants in the C 1s, S 2p, and O 1s core level regions.

Epitaxial GR was grown by means of chemical vapor deposition of ethylene12,30 The quality of the GR layer was checked by the LEED pattern, which exhibits extra spots around the zero- and first-order diffraction spots of the substrate, a clear fingerprint of a moiré structure. The leed line profile analysis reveals that the moiré cell can be approximated as (10×10) GR unit cells over (9×9) Ir unit cells, with a periodicity of about 25 Å. Each moiré cell presents three different regions, whose
names—fcc, hcp, and atop—identify the nonequivalent adsorption sites of the C-rings. While in the atop region the Ir substrate atom lies right in the center of the carbon ring, the fcc region (hcp region) centers an Ir fcc site (hcp site) in the honeycomb lattice. It is important to underline that GR/Ir(111) represents, in analogy with what observed on Pt(111), the hallmark of a low interacting and quasi-freestanding GR layer.

In order to characterize the equilibrium structure, the distribution, and the coalescence process of the Rh nanoclusters, we have initially performed STM measurements. Different amounts of Rh atoms were deposited at low temperature, \(T = 90 \) K, and their evolution was monitored as a function of the annealing temperature in the range of \(T = 170–840 \) K. In Figure 1, we present two series of measurements obtained after annealing to 170, 300, and 840 K for samples with different Rh coverages, \(\Theta = 0.20 \) (0.04 ML (a–c)) and \(\Theta = 1.0 \) (0.2 ML (d–f)).

Close inspection of the STM images shows that, for both low and high Rh coverages, the clusters grown after deposition and annealing to 170 K (Figure 1a,d) are not randomly distributed but present a regular and spatially ordered occupancy of the moiré cells. Each cell is occupied by a single cluster, which results in the formation of an extended superlattice. Previous investigations exclude the atop region as the preferential cluster adsorption site, but we cannot discriminate between hcp and fcc. Larger aggregates are sparse and located exclusively at substrate step edges.

Annealing to 300 K (Figure 1b,e) increases the mobility especially of the smaller clusters, while it is not particularly effective for the larger ones, which maintain a moiré cell occupation probability close to 1 (Figure 1e). This is confirmed by the measured radial distribution, where the peak at about 25 Å (the distance between nearest-neighboring preferential adsorption sites) decreases for the lower coverage case and not for the high coverage one. Therefore, the observed cluster density decrease is due to whole-cluster diffusion/coalescence processes, as observed in the case of Ir clusters on the GR/Ir(111) interface, rather than to the energetically hindered atomic detachment from the clusters. As the cluster mobility is enhanced by further annealing, the superlattice periodicity gets lost: large clusters composed by a few hundred atoms appear in the high coverage case, and the average distance between clusters increases (see Figure 1f).

In order to determine how the structural modifications occur at different annealing temperatures for nonequivalent coverages, we analyzed the cluster heights. In Figure 2, we present the resulting height distributions together with representative line scans, which can be compared with the Rh(111) interlayer distance indicated by the dotted red lines. At low coverage and low annealing temperature (Figure 2a), the clusters heights correspond mainly to that of a single atomic layer. Upon annealing to 300 K (Figure 2b), the average cluster height distribution is broad and centered around two atomic layers: single
layer clusters have almost completely vanished as a result of the diffusion/sintering process. The average height increases even more by annealing to 840 K, a majority of clusters being three layers high (Figure 2c).

The morphological modifications of the clusters obtained with a larger initial coverage are reported in the central panels of Figure 2: in this case, the initial cell occupancy is clearly higher and the clusters are thicker on average after annealing to 300 K. Interestingly, narrow peaks in the height distributions show that cluster heights are better defined than at low coverage and centered around integer numbers of (111) atomic layers.

This result suggests that each cluster presents a high degree of morphological order, which was not observed after annealing to lower temperature, $T = 170$ K. Interestingly, after annealing to 840 K, clusters clearly extend over more than one moiré unit cell and exhibit an ordered hexagonal shape (Figure 2g). While it is well-known that steps between large terraces can be revealed in STM, the same in general is not true for nanocluster interlayer terraces, which can be narrower that the tip radius (see Supporting Information).

Despite the absence of atomic resolution on its flat top part, it is likely that the cluster has a truncated octahedron shape, thus forming lowest energy (111) and (100) nanofacets, as predicted by the Wulff theorem construction and as supported by STM height distribution. A tentative model of the imaged cluster formed by 634 Rh atoms arranged in 4 layers is reported in Figure 2g. As we will see later, this class of model clusters turns out to be in very good agreement with the results of the photoemission experiments (see Supporting Information).

To gain information on the electronic structure and the atomic distribution within Rh nanoclusters, we performed high-energy resolution and highly surface-sensitive XPS measurements complemented with theoretical calculations. Figure 3 shows Rh 3d$_{5/2}$ spectra, measured at selected annealing temperatures for different Rh coverages: (left panels) $\Theta = 0.17 \pm 0.03$ ML and (right panels) $\Theta = 0.37 \pm 0.06$ ML.

All of the spectra obtained after annealing to temperatures higher than 200 K show three distinct components, Rh$_B$, Rh$_S$, and Rh$_E$, with binding energies (BEs) of 307.09, 306.67, and 306.36 eV, respectively. The first of these peaks corresponds to the bulk component measured from Rh single crystals, and we therefore assign it to bulk-like atoms with high coordination number, $C_B = 12$.

The core level shift (CLS) of -485 meV measured for the surface peak on Rh(111) supports the attribution of the Rh$_S$ component, shifted by -420 meV, to Rh atoms placed at the cluster surface facets, with C_N close to 9. Finally, the comparison with the results of single adatoms and dimers deposited on [111] and (100) Rh surfaces suggests that the third component, Rh$_E$, should be assigned to under-coordinated Rh atoms at the edges of the clusters, as will be confirmed later by DFT calculations. Oxygen contamination, both in terms of chemisorbed atoms or oxidic species, has the effect of increasing the Rh 3d$_{5/2}$ BE on Rh atoms.

Other contamination sources have been thoroughly excluded via careful quantitative XPS.

By increasing the annealing temperature, we observe a progressive decrease of the overall photoemission signal, as evidenced in Figure 3c,d. This behavior, due to inelastic mean free path effects in 3D structures, is in agreement with the STM-observed cluster morphological evolution since we can unambiguously exclude both Rh evaporation and intercalation. For low coverage deposition, the intensity of the Rh$_B$ component remains very low and grows appreciably only after annealing to a temperature higher than 600 K. This suggests that below 600 K most of the
clusters present two layers at maximum. Only at higher annealing temperatures does the RhB component increase, indicating the formation of 3D clusters with more than two layers, with Rh bulk-like coordinated atoms (CN ≈ 12), in good agreement with the STM observation. A similar trend is observed for the high coverage case where, because of the higher Rh concentration, a low density of 3D clusters is found already after annealing to T = 300 K.

What appears most remarkable is the high degree of crystallinity that clusters present when annealed to the highest temperature. While for the low coverage case all of the spectral components are characterized by quite a large Gaussian contribution, for the high coverage case, the three components become much narrower and a minimum appears between the RhB and RhS photoemission peaks. The overall line shape strongly resembles that obtained for Rh single crystals. This suggests a change from clusters formed by a large variety of locally nonequivalent Rh atoms, resulting in a Gaussian inhomogeneous spectral broadening, to a configuration where each cluster has a high intrinsic structural order: monodispersed particles expose well-defined nanofacets mainly oriented along the [111] crystallographic plane. Again, this is in very good agreement with the STM results on the cluster morphology and cluster height distribution. Noteworthy is the behavior of the binding energy of the RhB component with respect to the RhB contribution: for both coverages, the shift increases with increasing annealing temperature as we show in Figure 3e,f.

Figure 4 shows selected C 1s and Ir 4f7/2 core level spectra corresponding to the high Rh coverage described in Figure 3b. At low annealing temperature, the C 1s spectrum presents a narrow component at 284.06 eV (CGR, red curve), originated by the sp2 carbon atom configurations of the unperturbed GR,31,32 and a shoulder at 284.37 eV (CM, orange curve), a sign of metal–GR bond formation. With increasing annealing temperature, the lower BE component increases in intensity at the expense of the higher BE peak, which disappears after annealing to T = 840 K. The Ir 4f7/2 core level spectrum presents a similar trend: the intensity of the IrS surface component at 60.31 eV due to first-layer Ir atoms (black curve) increases with increasing temperature, while the small component IrC (yellow curve), lying between the bulk IrB (gray curve) and surface IrS peaks, disappears after annealing to 840 K.

Two effects may contribute to the observed spectral evolution. The first one is the coalescence of Rh atomic aggregates into larger clusters, which reduces the carbon-covered area and increases the Ir surface component. The second one is the reduced interaction of the larger cluster with the carbon network underneath: the metal cohesive energy contribution exceeds the
Figure 6. Rh 3d_{5,2} spectra of Rh(111), 0.09 ML Rh on GR/Ir(111) annealed at 200 K, 0.37 ML Rh on GR/Ir(111) annealed at 840 K. The barcodes in the bottom panel represent the calculated Rh 3d_{5,2} BEs for all of the 233 nonequivalent atomic configurations of the simulated Rh nanoclusters.

To highlight the link between the local geometric configuration and the corresponding electronic structure, we have plotted the core level shift data for all of the different atomic configurations as a function of their effective coordination number C_E, which takes into account both the effects of the coordination number C_N and of the local bond strain, that is, the changes of the Rh–Rh average distance. This definition naturally assigns larger contributions to closer atoms and smoothly phases out farther ones. C_E(i) is defined as \(\sum p_{\text{Rh}}(R_j)/p_{\text{Rh}}(R_{\text{bulk}}) \), where the sum is calculated over all of the nearest neighbors j of atom i and \(p_{\text{Rh}} \) is the calculated spherical charge density distribution of an isolated Rh atom as a function of the distance R from the nucleus. \(R_j \) is the distance of nearest neighbor j from atom i, and \(R_{\text{bulk}} \) is the bulk interatomic distance. Figure 7a shows that \(C_E \) is consistently larger than \(C_N \) (red line), and nanoclusters therefore present significantly reduced bond lengths. The data reported in Figure 7b show a linear behavior of the CLS versus \(C_E \).
except for a small number of scattered data points, most of which originate from Rh atoms sitting at the interface between the clusters and the GR layer, whose BE is slightly influenced by the interaction with the C atoms. Actually, the linear dependence suggests that core levels in nanoclusters are very sensitive to both coordination, as predicted by a simple tight-binding model, and bond length contraction. The CLS changes upon annealing temperature, reported in Figure 3e,f, are in line with these findings and can be explained as due to variations of the average interatomic distance for edge atoms with the cluster size. This suggests that structural relaxation may take place also in the case of a very small GR-supported Rh cluster. Very interestingly, a similar contraction of bond lengths of outer atoms has been measured in Au nanocrystals with sizes between 3 and 5 nm. While the contraction of interatomic distances of first-layer atoms is a phenomenon typically observed on solid surfaces, which has deep effects on surfaces properties like surface thermal stability and chemical reactivity, its detection on supported nanoclusters is extremely difficult.

The link between nanocluster morphology, local bond length, electronic structure, and chemical reactivity is further deduced by plotting the Rh 3d_{5/2} CLSs versus the calculated Rh d-band center ε_d. The latter is an extremely important parameter that affects many different nanoscale properties, including chemical reactivity and magnetism. For example, in the Hammer-Nørskov model of chemical reactivity, the center of the d-band characterizes the ability of the surface d-electrons to participate in the bond formation with adsorbates. Since the d-band center depends on the surroundings of a given atom, one possibility for modifying the reactivity of a metal is by depositing overlayers, making alloys or, as in the present case, by tuning the interatomic distances at surfaces.

The remarkable linear relationship between core level shifts and ε_d, obtained for the largest cluster reported in Figure 8, confirms the possibility to probe electronic structural properties in nanoclusters via XPS. The core level spectral distribution moves toward lower BEs as we increase the fraction of atoms sitting at facets, edges, and kinks and therefore under-coordinated. However, this trend is counteracted upon by the contraction of bond lengths because of the small dimension of the cluster, which pushes the BEs toward higher values. Therefore, these two competing contributions result in the critically important determination and tuning of nanocluster chemical reactivity.

Finally, to inspect the magnetic properties of the clusters, we performed spin-polarized DFT calculations on the 31 and 82 atom clusters, keeping the geometries fixed to those obtained with the nonmagnetic calculations. We find that the 82 atom cluster displays a total magnetic moment of only $2.62\ \mu_B$ (0.03 μ_B/atom), while the 31 atom cluster has a significantly higher moment of $5.36\ \mu_B$ (0.17 μ_B/atom). This suggests that a narrow size distribution of clusters grown on GR could provide the first observation of a non-zero total magnetic moment for surface-supported Rh clusters, with important consequences with respect to the magnetic anisotropy and the definition of a preferential axis of magnetization. In fact, previous findings of a magnetic signal were obtained on free Rh clusters and on Rh clusters embedded in inert xenon, that is, in both cases for clusters in isotropic environments.

CONCLUSIONS

We reported on a combination of STM imaging, high-energy resolution core level spectroscopy, and density functional theory, providing new and valuable information about the relationship between structural and electronic properties of nanoclusters supported by epitaxial GR. The finite size effects associated with the miniaturization of metal clusters can result in
enhanced chemical activities and magnetic moments. By carefully selecting the Rh coverage and the annealing temperature, we have demonstrated the possibility to control the morphology of Rh nanoclusters. This determines the density of edge and facet atoms and the nanocluster arrangement in superlattices. In particular, growth conditions of the nanoclusters exhibit a remarkably high degree of crystallinity. We suggest that our small nanoclusters could also be used as seeds for the formation of larger Rh nanoaggregates (diameter between 10 and 100 nm) with a spherical shape, which have been observed to spontaneously form hierarchical assemblies with high thermal stability.47

The preparation route we have employed could be extended to other metals, thus offering a new way to design and grow GR-based materials in a precise and reproducible way. Our approach gives access to detailed information on fundamental properties at the nanoscale and may help pave the road for attractive technological applications in the field of catalysis and magnetism.

METHODS

Experimental Methods. Rh atoms were deposited at low temperature on epitaxial graphene using a high-purity filament that was heated and then kept for a specific time at a temperature corresponding to a deposition rate of 0.03 monolayers (ML)/min. The pressure in the UHV systems was always below \(4 \times 10^{-10}\) mbar during deposition, thus preventing the adsorption of impurities on the surface.

The photoemission experiments were performed at the SuperESCA beamline of the Elettra synchrotron radiation source. Rh 3d\(_{5/2}\) and C 1s core level measurements were performed at normal emission using 400 eV photon energy and with an overall experimental resolution of 50 meV. Ir 4f\(_{7/2}\) spectra were measured at 200 eV. All of the BEs were calibrated with respect to the Fermi level, measured under the same conditions. A Phoibos hemispherical electron energy analyzer was used to collect the spectra. During the measurements, the sample was kept at 30 K to reduce phonon-induced broadening of the spectral lines. Rh coverages have been estimated from C 1s and Rh 3d\(_{5/2}\) spectral intensities normalized by their respective cross sections and accounting for the limited inelastic mean free path. The analysis of the spectra was performed using a Doniach–Sunjic function characterized by a Lorentzian width \(\Gamma\), which takes into account the effect of finite core hole lifetime, and by the asymmetry index \(\alpha\), which describes the low-energy electron hole pair excitations at the Fermi level, convoluted with a Gaussian distribution (full width at half-maximum \(G\)) to take into account phonon, inhomogeneous, and instrumental broadening. The background was always assumed to be linear.

The STM experiments were performed in a UHV chamber, equipped with standard sample preparation facilities and with a variable-temperature Omicron VT-STM. Measurements were carried out at \(T < 173\) K, with a tunneling current in the 0.1–1.0 nA range and the sample biased by \(+0.2\) to \(+0.9\) V to probe its empty states. The GR substrate was prepared as an isolated sheet of GR, in a \((10 \times 10)\) (200 carbon atoms) periodic surface unit cell. The clusters were initially prepared by carving the perfect crystal. Equilibrium structures were then obtained by relaxing all of the atoms in the unit cell until the residual forces were less than 0.02 eV/Å, using the \(\Gamma\) point only. Rh 3d\(_{5/2}\) core level BEs were calculated including final state effects and using a \((4 \times 4 \times 1)\) grid of \(k\)-points.

The partial density of states \(n_{\text{Be}}(E)\) of atom \(i\) is defined as the projection of the density of states on spherical harmonics \(Y_{\text{Be}}\) centered on the atom: \(n_{\text{Be}}(E) = \sum_{k} V_{ki}(E) Y_{\text{Be}}(Y_{\text{Be}}(E) - E_{\text{Be}})\), with the projection \(Y_{\text{Be}}(Y_{\text{Be}}(E) - E_{\text{Be}})\) calculated by integrating over a sphere of radius \(R_i = 1.4\) Å (for Rh) centered on atom \(i\). Here \(Y_{\text{Be}}\) is the crystal wave function of band \(N\) at wave-vector \(k\) and \(E_{\text{Be}}\) is the corresponding energy eigenvalue. We define the \(p\)th moment of the density of states \(n_{\text{Be}}(E)\) as \(\mu_p = \int dE E^p n_{\text{Be}}(E)\); \(\mu_1\) and \(\mu_2/\mu_1\) give the total number of states in the band and the band center \(E_{\text{Be}}\), respectively. In particular, we define the \(d\)-band center \(E_{d}\) of atom \(i\) as the ratio \(\mu_2/\mu_1\) obtained from the partial density of states \(n_{\text{Be}}(E) = \sum_{N} f_{\text{Be}}(E) Y_{\text{Be}}(E)\).

Conflict of Interest: The authors declare no competing financial interest.

Acknowledgment. The work of D.A. and M.P. was conducted as part of a EURYI scheme award as provided by EPSRC (see www.esf.org/euryi). Calculations were performed on the HECTOR national service (UK) and on JaguarPF at the National Center for Computational Science (USA). This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725. D.A. and A.B. acknowledge the Royal Society for support. A.B. acknowledges the Università degli Studi di Trieste for the Finanziamento per Ricercatori di Ateneo. A.C. is grateful to H. Brune for supporting the present project. A.C. acknowledges the Collegio Universitario per le Scienze L. Fonda for support. H. Brune for supporting the present project. A.C. acknowledges the Collegio Universitario per le Scienze L. Fonda for support. H. Brune for supporting the present project. A.C. acknowledges the Collegio Universitario per le Scienze L. Fonda for support. H. Brune for supporting the present project. A.C. acknowledges the Collegio Universitario per le Scienze L. Fonda for support. H. Brune for supporting the present project.

Supporting Information Available: We support the case for the cluster model presented in Figure 2g and present a complementary statistical analysis of nanocluster morphological properties obtained by comparison of STM and XPS information. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES

