
Basis Set Incompleteness Errors in Fixed-Node Diffusion Monte
Carlo Calculations on Noncovalent Interactions
Kousuke Nakano,* Benjamin X. Shi, Dario Alfe,̀ and Andrea Zen*

Cite This: J. Chem. Theory Comput. 2025, 21, 4426−4434 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Basis set incompleteness error (BSIE) is a common
source of error in quantum chemistry calculations, but it has not
been comprehensively studied in fixed-node Diffusion Monte Carlo
(FN-DMC) calculations. FN-DMC, being a projection method, is
often considered minimally affected by basis set biases. Here, we
show that this assumption is not always valid. While the relative
error introduced by a small basis set in the total FN-DMC energy is
minor, it can become significant in binding energy (Eb) evaluations
of weakly interacting systems. We systematically investigated BSIEs
in FN-DMC-based Eb evaluations using the A24 data set, a well-
known benchmark set of 24 noncovalently bound dimers. We found
that BSIEs in FN-DMC evaluations of Eb are indeed significant
when small localized basis sets, such as cc-pVDZ and cc-pVTZ, are
employed. Our study shows that the aug-cc-pVTZ basis set family strikes a good balance between computational cost and BSIEs in
the Eb calculations. We also found that augmenting the basis sets with diffuse orbitals, using counterpoise correction, or both,
effectively mitigates BSIEs, allowing smaller basis sets such as aug-cc-pVDZ to be used.

1. INTRODUCTION
Diffusion Monte Carlo (DMC)1,2 is a state-of-the-art
electronic structure method used for predicting and under-
standing phenomena in materials science, chemistry, and
physics. In particular, DMC can achieve highly accurate
quantitative predictions, typically surpassing those of mean-
field approaches like density functional theory (DFT). This
level of accuracy has proven essential for studying systems
challenging for DFT, such as high-pressure hydrogen,3−9

layered materials,10−14 molecular crystals,15,16 and molecular
adsorption on surfaces.17−21

In theory, DMC is an exact technique to project the ground
state (GS) of a Hamiltonian. However, in practical applications
to Fermionic systems (e.g., atoms, molecules, and materials), it
relies on the fixed-node (FN) approximation to maintain the
antisymmetry of the wave function. The FN approximation
constrains the nodal surface of the projected state to that of a
trial wave function, which can be generated by methods such
as DFT, Hartree−Fock (HF), or correlated quantum
chemistry (QC) methods, including the complete active
space self-consistent field (CASSCF) method.
The approaches used to generate the trial wave function are

not exact, so its nodal surface is not exact either, yielding an
error on the FN-DMC evaluations called the FN error. The
closer the nodal surface of the trial wave function to the nodal
surface of the exact GS, the smaller the FN error. There are
other approximations in FN-DMC, but typically the major
source of error is the FN error. The FN error depends on the

accuracy of the trial wave function, which in turn depends on
the level of theory employed to generate it (e.g., we expect a
CASSCF wave function to have a better nodal surface than a
DFT or a HF wave function) and on the completeness of the
employed basis set representation. In general, a larger basis set
gives a better wave function (i.e., nodal surface), although a
few exceptions are reported.22 One typically chooses a basis set
by considering the trade-off between costs (i.e., CPU time +
memory requirement) and accuracy. On the one hand, using a
too large basis set increases the computational cost and the
memory requirement with little benefit. This issue becomes
particularly prominent when constructing a multideterminant
trial wave function23 or generating a single-determinant trial
wave function with methods beyond mean-field theory.24

Specifically, several of the authors have recently proposed a
way to generate a trial wave function based on the natural
orbitals constructed from a second-order Møller−Plesset
(MP2) calculation,24 allowing one to go beyond the single-
reference fixed-node approximation. However, the workflow
becomes impractical for large molecules in terms of memory
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and storage when the basis set size is increased, due to the
steep scaling of MP2. On the other hand, using a too small
basis set risks introducing bias into FN-DMC results. The
choice of a basis set family balancing the accuracy and the
computational cost is also particularly pertinent for a
calculation spanning chemical space, such as developing
machine-learning models.25 While previous works have
explored the influence of trial wave function accuracy,26−32

the impact of the basis set incompleteness errors (BSIEs) in
FN-DMC has yet to be comprehensively and systematically
explored in the context of noncovalent interaction evaluations,
which is one of the most prominent applications of FN-
DMC.10−1415,21,27,33−40

In QC and DFT methods, BSIEs are a dominant error
source that requires careful control, yet it has been often
assumed that FN-DMC is relatively immune to BSIEs from the
trial wave function41 because it depends only on the nodal
surface, not on the full wave function amplitude. In this work,
we systematically investigate how these assumptions hold up
by analyzing BSIEs in FN-DMC calculations.
BSIEs are especially pronounced in QC and DFT methods

when describing noncovalent interactions. In this context, the
quantity of interest is typically the binding energy of a dimer
complex (AB), defined as

=E E E Eb
AB A B (1)

where EA, EB, and EAB are the total energies of monomer A,
monomer B, and the AB dimer complex, respectively. This
study focuses on the propagation of BSIEs from the trial wave
function in FN-DMC calculations of Eb, a particularly relevant
area of investigation given the high sensitivity of noncovalent
interactions to basis set quality.24,39,42

A basis set consists of a number of basis functions that are
used to represent the electronic wave function, with the
complete basis set (CBS) limit achieved when expanded
toward an (infinite) set of functions. The BSIE is the deviation
from the CBS limit43,44 and for a binding energy Eb, it is
defined as43,44

=E M M M E M M M E( , , ) ( , , )b
BSIE A B AB

b
A B AB

b
CBS (2)

where MA, MB and MAB denote the number and type of basis
functions employed in the calculation of EA, EB and EAB
respectively within eq 1, and EbCBS denotes the binding energy
in the CBS limit. Two common choices of basis function types
are plane waves (PWs) and atom-centered Gaussian Type
Orbitals (GTOs). On the one hand, BSIEs are well-controlled
with PWs because systematic convergence toward the CBS
limit can be achieved by monotonically increasing the kinetic
(i.e., cutoff) energy of the included PWs. On the other hand,
errors in GTOs are less well-behaved, with users selecting from
‘families’ of available basis sets consisting of increasing sizes,
often denoted by the number of ‘zeta’ basis functions per
occupied valence orbital. A popular example is the correlation
consistent basis-set family, developed by Dunning and co-
workers,45 for instance the correlation-consistent polarized
valence n-zeta (cc-pVnZ), where n, the cardinal number, can
take on double (D), triple (T), quadruple (Q), quintuple (5)
and sextuple (6) zeta functions on each atom. It is also
common to augment these with additional diffuse functions,
which are denoted by an ‘aug-’ prefix in front.
When using GTOs, or any other set of atom-centered basis

functions, to compute binding energies, it is crucial to

distinguish BSIEs from basis-set superposition errors
(BSSEs),43,44 a related source of error. BSSE occurs when
basis functions of interacting molecular systems A and B in the
AB dimer overlap, increasing the variational space for the AB
dimer with respect to the A and B monomers, thus leading to
an overestimation of Eb.

1 This error is defined by Boys and
Bernardi46 as

= [ ] + [ ]

E M M M

E M E M E M E M

( , , )

( ) ( ) ( ) ( )
b
BSSE A B AB

A AB A A B AB B B

(3)

involving two separate calculations on each monomer. For
monomer A, alongside the original basis set EA(MA), a
calculation including additional empty ‘ghost’ functions from
monomer B is also performed to get EA(MAB), as proposed by
Boys and Bernardi.46 The difference between the two
quantities, appearing in eq 3, then provides an estimate on
the effect of the basis set superposition on the energy of each
monomer. Thus, the BSSE error EbBSSE can be used to correct
the original Eb evaluation to obtain a counterpoise (CP)
corrected estimate of the binding energy: EbCP = Eb − EbBSSE. It
must be emphasized that the CP corrected estimates still suffer
from BSIE, although they are typically closer to the CBS
limit,44 and typically underbind Eb.

2 In the CBS limit, both
BSIE and BSSE will vanish.
To date, only a few studies have reported BSIEs in FN-

DMC for Eb calculations of noncovalent interactions and to
our knowledge, none have studied the effect of CP corrections.
Korth et al.26 reported the difference between noncovalent
interaction energies of the Li-thiophene complex obtained with
cc-pVTZ and cc-pVQZ basis sets. The results from the cc-
pVQZ basis were close to the CCSD(T)/CBS reference value.
Dubecky ́ et al.34 studied the effect of the cardinal number n
and augmentation functions in ammonia dimer. On the one
hand, they revealed that the higher cardinality number n (from
cc-pVTZ to cc-pVQZ) has a smaller effect on the overall
accuracy than the augmentation does. On the other hand, the
additional diffuse functions (aug-) were found to be crucial to
reach the reference CCSD(T)/CBS interaction energy value
because the augmentation functions likely improve the tails of
trial wave functions that are crucial for describing van der
Waals complexes correctly. They recommended the aug-cc-
pVTZ basis set as the most reasonable choice with respect to
the price/performance ratio. Very recently, Zhou et al.47

evaluated barrier heights and complexation energies in small
water, ammonia, and hydrogen fluoride clusters using FN-
DMC with basis sets of increasing completeness, and
recommend basis sets containing diffuse basis functions.
In this paper, we present a detailed analysis of the basis set

effects, BSIEs and BSSEs, in DMC binding energy calculations,
specifically focusing on noncovalent interactions. Our findings
indicate that while BSIEs and BSSEs in FN-DMC are
substantially reduced compared to those in the trial wave
function, they are not negligible. The key conclusions to get
CBS-limit binding energies (i.e., negligible BSIEs and BSSEs)
from our work are (1) aug-cc-pVDZ is sufficient when CP
correction is applied and (2) the aug-cc-pVTZ basis set
performs well without the need for CP correction.

2. COMPUTATIONAL DETAILS
To investigate BSIEs in DMC calculations systematically, we
computed binding energies (Eb) of the complex systems
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included in the A24 data set.48 The A24 data set is a set of
noncovalently bound dimers, consisting of systems dominated
by H-bonding, dispersion and a mixture of both.48 The data set
was intended to test the accuracy of computational methods
that are used as benchmarks in larger model systems. We
employed the correlation consistent (cc) GTOs accompanied
by the correlation consistent effective core potentials49,50

(ccECP) in this study. The majority of the QMC results
reported in this work are obtained using the TurboRVB51 ab
initio QMC packages. TurboRVB performs QMC calcu-
lations using trial wave functions expressed in terms of
localized atomic orbitals, such as GTOs. TurboRVB supports
the CP correction for QMC calculations using trial wave
functions with GTOs, allowing one to study both BSIEs and
BSSEs. More specifically, TurboRVB can assign GTOs to the
so-called ghost atoms (i.e., with zero nuclear charges), as in
QC calculations.
TurboRVB implements the lattice discretized version of

the FN-DMC calculations (LRDMC).51,52 Notice that the
infinitesimal mesh limit of LRDMC evaluations is equivalent to
the infinitesimal time step limit in standard DMC evaluations,
provided that the computational setup (i.e., trial wave function,
pseudopotential, localization approximation of the nonlocal
pseudopotential terms) is the same. The LRDMC calculations
with TurboRVB were performed by the single-grid scheme52

with lattice spaces a = 0.30, 0.25, 0.20, and 0.10 Bohr. BSSEs
were computed at each lattice space according to eq 3, and
then the obtained values were extrapolated to a → 0 using
EbBSSE(a2) = k2 · a2 + EbBSSE, where EbBSSE is the extrapolated
BSSE. In computing BSIEs, the binding energies computed
with the aug-cc-pV6Z were used as the reference values, i.e.,
EbCBS in eq 2, for each complex system because, as shown in the
following section, the aug-cc-pV6Z basis has reached the CBS
limit. The binding energy obtained with each basis set was
extrapolated to a → 0 using Eb(a2) = k4 · a4 + k2 · a2 + Eb,
where Eb is the extrapolated binding energy, and then BSIEs

were computed according to eq 2. While the wave function
variances differ across the various basis sets, this does not affect
the LRDMC extrapolations because we reduced the error bars
for each lattice space to the same value in all basis sets (See
Table SII and Figure S2 of the SI).
The ccECP pseudopotentials are semilocal effective core

potentials, as with most available pseudopotentials, so the
DMC results depend on how the sign problem from its
nonlocal term is addressed. In this study, we used the
determinant locality T-move (DTM)53 scheme in the majority
of the calculations shown here, which are performed with
TurboRVB.
For the DFT calculations that generate trial wave functions

with GTOs for subsequent QMC calculations via TREX-IO54

files, we used the PySCF55,56 package, with the PZ-LDA57

exchange-correlation functional. For LRDMC calculations with
TurboRVB the obtained trial wave functions are combined
with the two-body and the three-body Jastrow factors.51 The
three-body Jastrow factors are not attached to the ghost atoms
in CP calculations. The parameters in the Jastrow factors were
optimized using the Stochastic Reconfiguration method.58 We
notice that the optimization of the Jastrow factor does not
affect the extrapolated LRDMC total and binding energies
since the DTM is employed in this study. In this sense, the
obtained conclusions in this study are deterministic.
We also compare QMC evaluations obtained using PW basis

sets in comparison with localized GTO basis sets (Table SI of
the Supporting Information (SI)). The comparison uses results
obtained with the QMCPACK package,59,60 which implements
wave functions using either PW or GTO basis sets. Details
about the QMCPACK calculations are provided in Section 1 of
the SI.

Figure 1. (a) The BSSEs in the binding energies of the A24 set computed by LRDMC with cc-pVDZ, cc-pVTZ, aug-cc-pVTZ, and aug-cc-pV6Z
basis sets. The plotted BSSEs are the values extrapolated to the infinitesimal lattice space. The error bars represent 1σ. (b) The violin plots for the
obtained BSSEs, with median of the distribution indicated with a gray line inside the violin plot.
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3. BASIS-SET CONVERGENCE CHECKS TO ESTIMATE
THE BINDING ENERGIES IN THE CBS LIMIT

To estimate BSIEs, the binding energies in the CBS limit are
needed, as described in eq 2. Since zero BSSE implies zero
BSIE in binding energy calculation, computing BSSEs is
helpful to decide which basis set should be used to compute
EbCBS in eq 2.
Figure 1(a) shows BSSEs in the binding energies of the A24

set computed by LRDMC implemented in TurboRVB. They
were obtained using cc-pVDZ, cc-pVTZ, aug-cc-pVTZ, and
aug-cc-pV6Z basis sets. Figure 1 (b) shows the violin plots of
the BSSEs. The figures reveal that the binding energies
obtained with the cc-pVDZ and cc-pVTZ basis sets have
significant BSSEs, indicating that the small basis sets are far
from the CBS limit. BSSEs vanish for all molecules with the
aug-cc-pV6Z basis set within an interval of three standard
deviations (±3σ, corresponding to a confidence of 99.7%),
indicating that the aug-cc-pV6Z basis set has reached the CBS
limit.
In addition, to double-check that the aug-cc-pV6Z basis set

gives the CBS-limit binding energies, we computed the DMC
binding energies on all A24 dimers using aug-cc-pV6Z, as well
as smaller GTO basis sets, and PW basis sets with a very large
cutoff. We made this calculations using QMCPACK, which
allows to use both localized and PW basis sets. The binding
energies values are reported in Table SI of the SI, and a
comparison between the evaluations with different basis sets is
shown in Figure S1 of the SI. The results indicate that aug-cc-
pV6Z and large-cutoff-PW basis sets give consistent binding
energies within an interval of ±3σ, supporting the above
argument that the aug-cc-pV6Z basis set gives converged
binding energies.
Therefore, both the BSSEs evaluation and the comparison

with large-cutoff-PW indicate that the aug-cc-pV6Z has
reached the CBS limit. Thus, we can use the binding energies
obtained with the aug-cc-pV6Z basis sets (without the CP
correction) as reference values (i.e., EbCBS in eq 2) in the
following BSIE analysis. The reference DMC values are
reported in Table 1.
Additionally, for the ammonia dimer, we also tested trial

wave functions with the following XC functionals: PBE,61

PBE0,62 B3LYP,63 ωB97M-V64 and Hartree−Fock, to
determine whether the convergence behavior depends on the
choice of XC, as shown in Table SV and SVI of the SI. The
results demonstrate that neither the binding energy nor the
convergence behavior depends on the XC functional
employed.

4. BIAS AGAINST THE BINDING ENERGIES IN THE
CBS LIMIT

BSIEs in binding energies obtained from LRDMC calculations
with the cc-pVDZ and aug-cc-pVDZ basis sets (for the
ccECPs49,50) with and without the CP corrections are shown
in Figure 2 for each of the 24 dimers of the A24 data set. The
distribution of the BSIEs across the data set for the same basis
set and CP correction combinations is shown in Figure 3(a)
via a violin plot. By comparison, BSIEs in MP2 calculations are
shown in Figure 3(b).
In Figure 2, the comparison between the BSIEs with cc-

pVDZ (without CP) and with aug-cc-pVDZ (without CP)
reveals that the augmentation of the basis set drastically
decreases BSIEs, specifically for the complex systems with

hydrogen-bond interactions. The most significant discrepancy
is seen for the ammonia dimer, for which Dubecky ́ et al.34 also
reported that the additional diffuse functions (i.e., augmenta-
tion) were crucial to reach the reference CBS interaction
energy value. They interpreted the outcome such that
augmentation functions likely improve the tails of trial wave
functions that are crucial for describing the weak interactions
correctly.34 The wider set of results reported in this work
supports the above interpretation. The interaction among
molecules included in the A24 data set are categorized into
three groups:48 Hydrogen bonds (index 1 to 5), mixed
interactions (index 6 to 15), and dispersion-dominated
interactions (index 16 to 24). Dimers in the hydrogen-bond
group show the most significant BSIEs, while the dispersion-
dominated dimers are less affected by BSIEs. The hydrogen
bond, which originates from the Coulomb interactions, has the
long-tail effect (e.g., 1/r) compared with the dispersion-
dominated ones, which are typically shorter-range interactions
(e.g., 1/r6). It appears that the long-tail of the interaction has
an effect on the nodal surface (affecting the FN-DMC
evaluations), which can be improved if diffuse functions are
available in the basis set.
In Figure 2, the comparison between BSIEs with cc-pVDZ

with and without the CP correction of the basis set shows that
this correction alleviates the BSIEs. It implies that the basis sets

Table 1. Binding Energies Eb, in kcal/mol, of the 24
Molecular Dimers Contained in the A24 Dataset48,a

label Eb
DMC EbCCSD(T) Δ

water--ammonia −6.75(7) −6.493 0.26(7)
water dimer −5.10(8) −5.006 0.09(8)
HCN dimer −5.09(7) −4.745 0.34(7)
HF dimer −4.74(7) −4.581 0.16(7)
ammonia dimer −3.10(6) −3.137 −0.04(6)
HF--methane −1.64(7) −1.654 −0.01(7)
ammonia--methane −0.80(7) −0.765 0.04(7)
water--methane −0.58(6) −0.663 −0.08(6)
formaldehyde dimer −4.42(9) −4.554 −0.13(9)
water--ethene −2.50(10) −2.557 −0.06(10)
formaldehyde--ethene −1.71(10) −1.621 0.09(10)
ethyne dimer −1.44(7) −1.524 −0.08(7)
ammonia--ethene −1.38(6) −1.374 0.01(6)
ethene dimer −0.97(9) −1.090 −0.12(9)
methane--ethene −0.56(6) −0.502 0.06(6)
borane--methane −1.46(7) −1.485 −0.03(7)
methane--ethane −0.65(9) −0.827 −0.18(9)
methane--ethane −0.57(8) −0.607 −0.04(8)
methane dimer −0.58(6) −0.533 0.05(6)
Ar--methane −0.36(8) −0.405 −0.05(8)
Ar--ethene −0.24(7) −0.364 −0.12(7)
ethene--ethyne 1.04(9) 0.821 −0.22(9)
ethene dimer 1.04(8) 0.934 −0.11(8)
ethyne dimer 1.32(8) 1.115 −0.21(8)
RMSD � � 0.135

aEbDMC column shows results obtained in this work, from LRDMC
calculations employing the ccECP pseudopotentials49,50 with the
DTM approximation,53 and a trial wavefunction with the determinant
from a LDA-PZ DFT calculation, constructed with ccecp-aug-cc-
pV6Z basis sets. EbCCSD(T) column shows the evaluations from Řezać ̌
and Hobza,48 computed by CCSD(T) with extrapolations to the CBS
limits. The last column shows the differences Δ = EbCCSD(T) − EbDMC

between the LRDMC and CCSD(T) values, with the root mean
square deviation RMSD at the end.
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assigned to the ghost atoms can compensate missing diffuse
functions in the cc-pVDZ basis set, thus improving the nodal
surface of the monomers and decreasing the FN error on the
binding energy evaluations. This suggests that the CP
correction is an alternative way to reduce BSIEs in DMC
calculations. The simultaneous use of augmentation and CP
leads to a synergistic effect, as can be appreciated in Figure 2
observing the evaluations obtained using aug-cc-pVDZ with
CP.
Figure 3(a) summarizes the BSIEs obtained with all the

family members of the cc basis sets and PW used in this study.
The left panel of Figure 3(a) plots the BSIEs with the
nonaugmented cc basis sets (cc-pVnZ: n = D,T,Q,5,6),
revealing that, to get binding energies in the CBS limit within
their statistical errors (3 σ ∼ 0.25 kcal/mol), one needs the cc-
pVQZ without the CP corrections or the cc-pVTZ with the CP
correction. The cc-pVTZ without the CP correction introduces
non-negligible BSIEs in binding energies of several molecules

in the A24 set (see. Table SIII of the SI), such as water−
ammonia, ammonia dimer, and formaldehyde−ethene. The
central panel of Figure 3(a) plots BSIEs with the augmented cc
basis sets (aug-cc-pVnZ: n = D,T,Q,5), indicating that the
augmentations of the basis sets improve the situation. To get
binding energies in the CBS limit within their statistical errors,
one needs the aug-cc-pVTZ without the CP correction or the
aug-cc-pVDZ basis with the CP correction. The right panel of
Figure 3(a) plots BSIEs with PW basis set, confirming that
aug-cc-pV6Z basis set gives binding energies in the CBS limit
(i.e., zero BSIEs within the statistical errors).
It is informative to compare the BSIEs obtained by DMC

with those obtained using a quantum chemistry method, such
as MP2, to understand the impact of basis sets. The
comparison between Figure 3(a),(b) reveals that BSIEs in
the DMC calculations are not as significant as in the MP2
calculations, as believed in the QMC community. This is true
not only for the binding energies, but also the total energies of

Figure 2. BSIEs in the binding energies of the A24 set, estimated from LRDMC calculations in the limit of infinitesimal lattice spaces. The error
bars represent 1σ.

Figure 3. Violin plots of BSIEs in the binding energy calculations of the A24 data set with and without the CP corrections. (a) LRDMC with cc-
pVnZ (n = D,T,Q,5,6) and aug-cc-pVnZ (n = D,T,Q,5) and DMC with PW. (b) MP2 with cc-pVnZ (n = D,T,Q,5,6) and with aug-cc-pVnZ (n =
D,T,Q,5). The reference binding energies are those obtained with aug-cc-pV6Z basis without CP correction.
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fragments and complexes, as shown in Figure S3. In panel(b),
the asymptotic behaviors with n are seen in the binding
energies computed by MP2. For QC calculations, the most
common and established procedure to reach the CBS limit is
the extrapolation of the binding energies with consecutive
cardinal numbers.65 The asymptotic behaviors allow the
extrapolation, and, in fact, the CP correction in MP2
calculations is necessary for smoother extrapolations to the
CBS limit (c.f. Figures S8 and S9 of the SI plot Eb for all 24
systems), as already mentioned in ref 44. Instead, in DMC
calculations, the extrapolation is no longer needed, as shown in
panel (a) (c.f. Figures S10 and S11 plot Eb for all 24 systems).
The observed differences between MP2 and DMC likely arise
because the energy from the latter is affected only by the nodal
surface, while the former depends on the entire wave function.
While BSIEs are correlated among these methods, the
correlation is inadequate for discussions at the subchemical
accuracy level (see Figure S16 of the SI). In other words, we
found that the BSIEs in DMC calculations cannot be estimated
accurately from those in other QC calculations.
Our study reveals that, in DMC calculations, one can get the

binding energy in the CBS limit only with a single medium-size
basis set (such as cc-pVQZ and aug-cc-pVTZ). It helps
decrease a DMC computational cost to reach the CBS limit
because we can avoid using atomic orbitals with higher angular
momenta (e.g., h and i orbitals).3 For instance, the LRDMC
computational cost of the water dimer with respect to basis set
families is plotted in Figure S17. It indicates that the aug-cc-
pVTZ basis set strikes a good balance between the computa-
tional cost and BSIE in the binding energy calculation.
Furthermore, it should be emphasized that the use of a
medium-size basis set is also important from the perspective of
reducing memory requirements because memory limitation
can be critical for large systems rather than the computational
cost.
In summary, we revealed that both BSSE and BSIE are not

negligible in DMC binding energy calculations if one targets to
compute binding energies of complex systems within the
subchemical accuracy (i.e., ∼0.1 kcal/mol). The augmentation
(i.e., more diffuse functions) of a basis set and the CP
correction for a basis set are both helpful to reduce BSIEs, i.e.,
to get binding energies in the CBS limit.

5. A24 BENCHMARK TEST REVISITED
Benchmarks for the A24 set were done by Dubecky ́ et al.35 and
by Nakano et al.67 with the aug-TZV basis sets associated with
the ECPs developed by Burkatzki et al.68 and the cc-pVTZ
basis sets associated with the ECPs developed by Bennett et
al.,49,50 respectively. Root mean square deviation (RMSD) of
the binding energies from CCSD(T) reported by Dubecky ́ et
al.35 and Nakano et al.67 are 0.15 and 0.315 kcal/mol,
respectively. Table 1 shows the binding energies obtained in
this study by DMC calculations with the aug-ccpV6Z basis sets
(without CP) associated with the ECPs developed by Bennett
et al.,49,50 and those obtained by CCSD(T) in the CBS limit
taken from Benchmark Energy and Geometry DataBase
(BEGDB).69 In this work, we obtained a RMSD of 0.135
kcal/mol, which is very close to the value obtained by
Dubecky,́ while ∼0.2 kcal/mol off from the value reported by
Nakano et al. As mentioned in the previous section, Figure
3(a) indicates that the cc-pVTZ basis set without the CP
correction shows non-negligible BSIEs and the augmentation
(aug-ccpVTZ) reduces the BSIEs significantly. In fact, we got

0.247(14) and 0.131(14) kcal/mol for RMSD with cc-pVTZ
and aug-ccpVTZ basis sets, respectively. The obtained cc-
pVTZ value (0.247(14) kcal/mol) is very close to those
previously reported by Nakano et al.67 (0.315 kcal/mol),
although the treatments of the nonlocal terms are different
(DLA was employed in the previous study, while DTM is
employed in the present study). As such, the RMSD obtained
by Nakano et al.67 should be a little affected by BSIEs, while
the values obtained by Dubecky ́ et al.35 with the augmented
basis sets should already reach the CBS limit. Thus, as the
benchmark values for the A24 data set, one should refer to the
binding energies obtained by Dubecky ́ et al.35 or those
obtained in this work.

6. CONCLUSIONS
In this study, we investigated two basis-set related errors,
BSIEs and BSSEs, in binding energy calculations by ab initio
FN-DMC calculations using the A24 benchmark set. We
revealed that BSIE and BSSE are not negligible in DMC
calculations when a small basis set, such as cc-pVDZ and cc-
pVTZ, is used without the CP correction. Our study implies
that, to get binding energies in the CBS limit with GTOs, one
should use, at least, a medium-size basis set, such as cc-pVQZ
or aug-cc-pVTZ basis set. We found that the CP correction is
also helpful in DMC calculations to reduce BSIEs, as in QC
calculations. With the CP correction, one can use a smaller
basis, such as cc-pVTZ or aug-cc-pVDZ basis sets. This work
raises awareness of BSSEs and BSIEs in binding energy
calculations by DMC, which have not been extensively studied
previously. In the future, it would be interesting to perform a
more comprehensive study investigating BSIEs in DMC for
larger molecules or periodic systems.
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■ ADDITIONAL NOTES
1Note that PW basis sets are not affected by any BSSE, while
they can be affected by a BSIE when the PW cutoff is too
small.
2Note that EbCP ≥ Eb, because EbBSSE ≤ 0 as MAB > MA and MAB

> MB.
3A DMC computation with the spline basis is independent of a
chosen grid-size,66 while its memory requirement scales.
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Discrepancies of Wavefunction Theories for Large Molecules. 2024,
arXiv:2407.01442v3. arXiv.org e-Print archive https://doi.org/10.
48550/arXiv.2407.01442.
(43) Van Duijneveldt, F. B.; van Duijneveldt-van de Rijdt, J. G.; van
Lenthe, J. H. State of the art in counterpoise theory. Chem. Rev. 1994,
94, 1873−1885.

(44) Dunning, T. H. A road map for the calculation of molecular
binding energies. J. Phys. Chem. A 2000, 104, 9062−9080.
(45) Dunning, T. H., Jr Gaussian basis sets for use in correlated
molecular calculations. I. The atoms boron through neon and
hydrogen. J. Chem. Phys. 1989, 90, 1007−1023.
(46) Boys, S.; Bernardi, F. The calculation of small molecular
interactions by the differences of separate total energies. Some
procedures with reduced errors. Mol. Phys. 1970, 19, 553−566.
(47) Zhou, X.; Huang, Z.; He, X. Diffusion Monte Carlo method for
barrier heights of multiple proton exchanges and complexation
energies in small water, ammonia, and hydrogen fluoride clusters. J.
Chem. Phys. 2024, 160, No. 054103.
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