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ABSTRACT

We summarize the main ideas used to determine the thermodynamic properties of pure systems and
binary alloys from first principles calculations. These are based on the ab initio calculations of free
energies. As an application we present the study of iron and iron alloys under Earth’s core conditions.
In particular, we report the whole melting curve of iron under these conditions, and we put constraints
on the composition of the core. We found that iron melts at 6350±600 K at the pressure corresponding
to the boundary between the solid inner core and the liquid outer core (ICB). We show that the core
could not have been formed from a binary mixture of Fe with S, Si or O and we propose a ternary or
quaternary mixture with 8 –10% of S/Si in both liquid and solid and an additional ~8% of oxygen in
the liquid. Based on this proposed composition we calculate the shift of melting temperature with
respect to the melting temperature of pure Fe of ~ –700 K, so that our best estimate for the temperature
of the Earth’s core at ICB is 5650±600 K.

KEY WORDS: thermodynamics, � rst principles calculations, Earth’s core, iron, inner core boundary (ICB).

Introduction

THE increasing popularity of density functional
theory (DFT) (Parr and Yang, 1989) in the
physical, chemical, and more recently geological
and biological communities, is due to its
exceptional reliability in reproducing experi-
mental results, giving to DFT-based methods
unparalleled predictive power. The success of
� rst-principles calculations is also due to the
increasingly wide-spread availability of large
computational resources, as well as more and
more ef� cient computer codes. Density functional
theory has been used extensively to study the
static, zero-temperature properties of materials
(Pickett, 1989). Recently, the � nite temperature
properties of solids based on the harmonic
approximation have also become available
(Karki et al., 2000; Lichtenstein et al., 2000;
Kern et al., 1999; Alfè et al., 2001). The

introduction of molecular dynamics in ab initio
calculations (Car and Parrinello, 1985) extended
the range of applicability of � rst-principles
calculations to liquids and non-harmonic solids,
with the possibility of accessing the full dynamic
and thermodynamic properties of solids and
liquids. However, � nite-temperature calculations
are based on statistical sampling of ensembles,
and for their very nature are intrinsically more
expensive than static calculations. For this reason,
it has only been in the last few years that these
techniques have been applied to the systematic
study of � nite temperature properties. The � rst
work which combined � nite temperature thermo-
dynamics of solid and liquid from � rst principles
was that of Sugino and Car (1995), who
calculated the free energy of solid and liquid Si
using DFT with the local density approximation
(LDA) and obtained the zero pressure melting
point of silicon. Later de Wijs et al. (1998)
calculated the zero-pressure melting point of Al
and we calculated the whole melting curve of Al
in the 0 –150 GPa pressure range (VocÏ adlo and
Alfè, 2002).
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The melting curve of iron under Earth’s core
conditions, and a study of the chemistry of the
Earth’s core are the subjects of this paper. Here
we summarize the main points of this work; a
detailed description of the techniques and the
results have been published elsewhere (Alfè et al.,
1999a, 2000d, 2001, 2002a,b,c).

The temperature of the Earth’s core is one of
the major uncertainties in the Earth’s sciences.
This is a fundamental parameter needed in order
to understand the thermal budget and all the
dynamic processes of the planet, including
volcanism and plate tectonics. As yet there is no
direct way of getting to the temperature of the
core, and it is unlikely that this situation will
change in the future. However, there is an indirect
route that has been followed for a number of
years: if we assume that the core is pure iron, then
at the boundary between the solid and the liquid
(ICB) the temperature must be the melting
temperature of iron at ICB pressure. So, if we
can measure the melting curve of iron up to core
pressures we have a close estimate of the
temperature of the core. This is by no means an
easy task, since the conditions are extreme, at ICB
the pressure is 330 GPa and the temperature is
several thousands of degrees. At these conditions,
the only experiments that are possible at the
moment are those based on shock waves (Yoo et
al., 1993; Brown and McQueen, 1986). In these
experiments it is very dif� cult to measure the
temperature, and in general this is only estimated.
At lower pressures, up to ~200 GPa, diamond
anvil cell experiments are possible (Boehler,
1993; Saxena et al., 1994; Shen et al., 1998;
Errandonea et al., 2001; Williams et al., 1987);
however, even at pressures as low as 60 GPa there
is no de� nite consensus on the melting temp-
erature of iron. Recently, several theoretical
attempts to calculate the melting curve of iron
(Alfè et al., 1999a, 2002a; Laio et al., 2000;
Belonoshko et al., 2000) have been reported.

Here we summarize our own work (Alfè et al.,
1999a, 2002a), and we report the full melting
curve of iron from 50 to 350 GPa, calculated
using � rst-principles calculations of free energies.
The other two theoretical calculations of the high-
pressure melting curve of iron (Laio et al., 2000;
Belonoshko et al., 2000) used � rst principles in a
different way. Free energies of liquid and solid
were not calculated, but instead, empirically
parameterized potentials were � tted to the ab
initio calculations. The empirical potential was
then used to simulate very large systems

containing coexisting solid and liquid. We
ourselves have followed this route to get to the
melting temperature, and we have shown that
once appropriate corrections are made, the results
are identical to those obtained from the full
calculation of free energies (Alfè et al., 2002c).
No such corrections, however, were made in
previous works (Laio et al., 2000; Belonoshko et
al., 2000).

The composition of the Earth’s core is a second
major uncertainty in the Earth’s sciences (Birch,
1952; Birch, 1964; Ringwood, 1977; Poirier,
1994). It is generally accepted that the core
must contain mainly iron (Birch, 1964). However,
the density of the outer liquid core is 6 –10% less
than that estimated for pure iron (Birch, 1964;
Ringwood, 1977; Poirier, 1994), so the outer core
must contain a signi� cant amount of light
elements. To a lesser extent this is also true for
the solid inner core (Jephcoat and Olson, 1987).
The leading candidates are S, Si and O (Poirier,
1994), but after decades of discussions there is
still no general agreement. The composition of the
Earth’s core is important for at least two reasons.
First, it will help us understand the formation
history of the Earth (Ringwood, 1977). Second, as
the inner core freezes, light elements are released
in the outer core, and it is believed that this
generates compositional convection (Loper,
1978), which is ultimately responsible for the
generation of the Earth’s magnetic � eld.

The detailed DFT techniques used in this work
are identical to those used in our work on
hexagonal close packed (h.c.p.) Fe (Alfè et al.,
2001). In particular, we use the generalized
gradient approximation (GGA) for exchange-
correlation energy, in the form known as
Perdew-Wang 1991 (Wang and Perdew, 1991),
which reproduces very accurately a wide range of
experimental properties of solid iron, as noted in
more detail elsewhere (Stixrude et al., 1994;
Söderlind et al., 1996; VocÏ adlo et al., 1997; Alfè
et al., 2000b). We also use the projector-
augmented-wave (PAW) implementation of DFT
(Blöchl, 1994; Kresse and Joubert, 1999), which
is an all-electron technique similar to other
standard implementations such as full-potential
augmented plane waves (FLAPW) (Wei and
Krakauer, 1985), as well as being closely related
to the ultrasoft pseudopotential method
(Vanderbilt, 1990). We have used the VASP
code (Kresse and Furthmüller, 1996), which is
exceptionally stable and ef� cient for metals, with
the implementation of an extrapolation of the
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charge density which increases the ef� ciency of
molecular dynamics simulations by almost a
factor of two (Alfè, 1999c).

The paper is organized as follows: in the next
section we discuss the calculations of the free
energies of liquid and solid iron, and a
combination of the two to determine the whole
melting curve under Earth’s core conditions. In
the following section we illustrate the calculations
of the free energies of solutes in binary mixtures
for both liquid and solid, and how this can be
combined to determine the partioning of the
solute between the two phases.

The melting curve of iron

At the conditions of the Earth’s core the stable
solid phase of iron is h.c.p. (VocÏ adlo et al.,
2000), so this is the solid structure considered in
our calculations. To determine the melting curve
of iron we calculate the chemical potential m of
pure iron as a function of pressure and temp-
erature for both solid and liquid. In a one-
component system this is the same as the Gibbs
free energy per atom G. In fact, we calculate the
Helmholtz free energy F as a function of volume
and temperature and then we obtain G from its
usual relation G = F + pV, where p = –(qF/qV)T

is the pressure. For any � xed pressure, the
continuity of G with respect to temperature
de� nes the melting transition, which is deter-
mined by the point where the Gibbs free energies
of liquid and solid become equal, Gl(p,Tm) =
Gs(p,Tm). The accuracy in the melting temp-
erature, Tm, depends on the relative accuracy in
the calculation of Gl and Gs, as the point where
they cross will be affected by a relative shift of
one curve with respect to the other. Since the
difference in the slope of the two free energies is
equal to the entropy change on melting, which is,
in general, of the order of one Boltzmann
constant per atom, one can easily see that for
an error of ~100 K in the melting temperature
one has to reduce the relative error in Gl and Gs

to < ~10 meV/atom. There is no way that DFT
can reach this sort of accuracy in the calculation
of absolute energies. However, high accuracy is
achievable when dealing with energy differ-
ences, especially if the solid and the liquid have
very similar electronic structure and geometry,
as in the case of iron.

In the next two sections we summarize the
main ideas used in our calculations of the
Helmholtz free energies for liquid and solid.

Free energy of the liquid
The Helmholtz free energy, F, of a classical
system containing N particles is:

F ¼ – kBT ln

1

N!L3N

V

d 1; :::; d N e –bU… 1 ;:::; N ;T†=kB T

8
<

:

9
=

; …1†

where L = h/(2pMkBT)1/2 is the thermal
wavelength, with M the nuclear mass, h the
Plank’s constant, kB the Boltzmann constant and
b = 1/kBT. The multidimensional integral extends
over the total volume of the system V. A direct
calculation of F using the equation above is
impossible, since it would involve knowledge of
the potential energy U(R1,..., RN;T) for all possible
positions of the N atoms in the system. We use
instead the technique known as `̀ thermodynamic
integration’’ (Frenkel and Smit, 1996), as devel-
oped in earlier papers (Sugino and Car, 1995; de
Wijs et al., 1998; Alfè et al., 2000a). This is a
general scheme to compute the free energy
difference F – F0 between two systems whose
potential energies are U and U0, respectively. In
what follows we will assume that F is the
unknown free energy of the ab initio system and
F0 the known free energy of a reference system.
The free energy difference F – F0 is the reversible
work done when the potential energy function U0

is continuously and reversibly switched to U. To
do this switching, a continuous variable energy
function Ul is de� ned such that for l = 0; Ul = U0

and for l = 1; Ul = U. It is easy to see that the free
energy difference in the switching is:

DF ¼ F – F0 ¼
1

0

dl
@U
@ l l

…2†

For our calculations we de� ne Ul thus:

Ul = (1 – l)U0 + lU1 (3)

Differentiating Ul with respect to l and
substituting into equation 2 above yields:

DF ¼
1

0

dlhU – U0il …4†

We calculate the thermal average h il using ab
initio molecular dynamics and averaging over
time, with the evolution of the system determined
by the potential energy function Ul.
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It is clear from equation 2 that the � nal result
does not depend on the choice of the reference
system, but the ef� ciency of the calculations does.
This is because in the evaluation of the thermal
average hU – U0il with a chosen accuracy, the
strength of the � uctuations of the difference U –
U0 determines the length of the simulation. It is
absolutely crucial to � nd a reference system in
such a way that the � uctuations in U – U0 are as
small as possible. This also minimizes the
dependence of hU – U0il on l, so that a small
number of points are needed to compute the
integral in equation 2.

We experimented with a number of classical
potentials as possible candidates, and we found
that an exceptionally good reference system is a
simple sum of inverse power potentials:

UIP ¼ 1
2

X

i 6¼j

f…j i – jj† …5†

where

f…r† ¼
B
ra …6†

with the parameters B and a chosen so as to
minimize the � uctuations in the energy differ-
ences between the ab initio and the classical
systems.

The free energy of the inverse power potential
was calculated using thermodynamic integration,
with the Lennard-Jones potential as a reference
system. The free energy of the Lennard-Jones
system has been studied in detail in the past and
has been tabulated as a function of density and
temperature (Johnson et al., 1993). To be free
from possible errors in the reported free energy of
the Lennard-Jones we have also repeated most of
the calculations starting with the perfect gas as a
reference system, and found only a small (but
systematic) difference of ~5 meV/atom.

To calculate the free energy of the ab initio
system we used cells containing 67 atoms with
G-point only sampling. We carefully checked that
errors due to k-point sampling and cell size were

under control. We repeated the calculations at a
number of thermodynamic states spanning the
conditions of the Earth’s core and � tted the free
energy to polynomial in volume and temperature.

Free energy of the solid

The free energy of the solid can be separated as
the sum of three contributions, the � rst is the
perfect non-vibrating h.c.p. crystal, Fperf (it is a
free energy because of the electronic entropy) and
the other two arising from the atomic vibrations:

Fsol(V,T) = Fperf(V,T) + Fharm(V,T) +
Fanharm(V,T) (7)

where Fharm is the free energy of the high
temperature crystal in the harmonic approxima-
tion and Fanharm the anharmonic contribution.

The term Fperf(V,T) is easily calculated on the
perfect h.c.p. crystal as a function of volume and
electronic temperature. These are quick calcula-
tions and can be performed on a small workstation.

The free energy of the harmonic crystal is
shown in equation 8 below. We truncate the
summation after the � rst term which is the
classical contribution of the phonons to the free
energy:

Fharm ¼ –
3kBT
OBZNi

8
>:

9
>;

X

i
BZ

ln
kBT
ho ;i

8
>>:

9
>>;d

…9†

We take the classical limit of the free energy of
the harmonic crystal to be consistent with our
calculations for the liquid. In any case, the
quantum corrections at temperatures above
4000 K are <1 meV/atom.

To calculate the vibrational frequencies, oq,i,
we used our own implementation (Alfè, 1998) of
the small displacement method (Kresse et al.,
1995). We repeated the calculations at a number
of thermodynamic states and � tted the results with
polynomials in V and T.

The anharmonic contribution Fanharm is calcu-
lated again using thermodynamic integration,

Fharm…V ; T† ¼ –
3kBT

OBZNi

8
>:

9
>;

X

i
BZ

ln
kBT

ho ;i…V ; T†
–

1

24

hoq;i…V ; T†
kBT

‡
8
>>:

9
>>;d …8†

oq,i(V,T) are the phonon frequencies of branch i and wavevector q, OBZ is the volume of the Brillouin zone, Ni is the
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where we chose to use as a reference system a
linear combination of the ab initio harmonic
potential and the inverse power used in the
calculations for the liquid. It is easy to show
that the leading term in the anharmonic contribu-
tion to the free energy is quadratic in the
temperature. In fact, we found that Fanharm could
be well described by the form a(V)T2.

The melting curve

In Fig. 1 we report our melting curve as a
continuous line together with some experimental
data. Our calculated melting temperature at the
ICB pressure of 330 GPa is 6350 K. This is
~300 K lower than previously reported (Alfè et
al., 1999a), and this lowering is the result of an
extensive re� nement of our calculations for the
free energy of the solid. In the low-pressure
region the data come from diamond anvil cell
(DAC) experiments. Our results fall ~1000 K
above the data from Boehler (1993) and ~500 K
above more recent experiments (Shen et al.,
1998). In the high-pressure region, only shock
wave data are available (Yoo et al., 1993; Brown
and McQueen, 1986), for which only the pressure
can be measured with a suf� cient degree of
accuracy. The temperature is not measured

directly, but it is calculated using a thermo-
dynamic expression involving the Grüneisen
parameter and the speci� c heat, for which some
assumptions must be made.

We want to touch on an important point here,
which is related to the quality of the ab initio
calculations themselves. As we already mentioned
previously, we certainly do not expect high
accuracy in the absolute calculations of the free
energy of liquid and solid, but we do expect large
cancellation of errors between liquid and solid, so
that the DFT error on the melting curve should not
be large. However, there is one clear systematic
error in the description of h.c.p. iron with DFT-
GGA, and this is the slight underestimation of the
pressure, by ~8 GPa in the high-pressure region
(ICB conditions) and somewhat more in the low-
pressure region. This error cannot be ascribed to
the use of PAW or to pseudopotentials since it
also arises in all electron calculations (Stixrude et
al., 1994; Söderlind et al., 1996), so it is probably
due to the GGA. We assume now that the same
error will also be present in the liquid, and see
how this error propagates in the melting curve. To
do that, we correct the free energy by adding a
term to put the pressure right:

F ` = F – dpV (10)

FIG. 1. Comparison of melting curve of Fe from present calculations with previous experimental and ab initio results.
Heavy solid and dashed curves: present work without and with free-energy correction (see text); chain curve: ab
initio results of Laio et al. (2000); dots, light dashes and squares: DAC measurements of Williams et al. (1987),
Boehler (1993) and Shen et al. (1998); triangles, diamond and solid square: shock experiments of Yoo et al. (1993),
Brown and McQueen (1986) and Nguyen and Holmes (unpublished). Error bars are those quoted in the original

references.
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where dp is a volume-dependent correction to the
pressure calculated from a � t to the experimental
data. We now use the `̀ corrected’’ free energy F `
to calculate the melting curve and report it in
Fig. 1 as a dashed line. The effect of the
correction is to reduce the melting temperature,
and more so in the low-pressure end. The low end
of the corrected melting curve is now going
through the error bars of the measurements by
Shen et al. (1998).

Constraints on the composition of the Earth �s
core

We now turn to the second main aim of this
paper: the calculation of the chemical potential
of a solute in a solution. As an illustration we use
the method to put new constraints on the
composition of the Earth’s core. The new
constraints are based on the following argument.
We begin with a working hypothesis: the core is
a binary mixture of iron and one light element
Fe/X. To test this hypothesis we exploit the
boundary between the inner and the outer core
(ICB). Thermodynamic equilibrium between
solid and liquid implies that the chemical
potentials of all the constituents have to be
equal in the two phases. By calculating the
chemical potentials of the impurity X in both
liquid and solid as a function of concentration
and imposing the continuity at ICB we can
calculate the partition of the impurity between
liquid and solid. Combining this with the density
of pure iron we can work out the density jump at
ICB. If the calculated density jump is incompa-
tible with the seismological measurements
(Masters and Shearer, 1990) the hypothesis will
be ruled out. The ab initio technical details are
exactly the same as for the work on pure iron, but
we use ultrasoft pseudopotentials rather than the
PAW method.

Chemical equilibrium

The chemical equilibrium between two different
phases is characterized by the continuity of the
chemical potentials of all species across the phase
boundaries. In particular, in the case of a two-
species mixture of a solvent A and a solute X in
equilibrium between solid and liquid we have:

mX
l (p,Tm,cX

l ) = mX
s (p,Tm,cX

s ) (11)

mA
l (p,Tm,cA

l ) = mA
s (p,Tm,cA

s ) (12)

where m is the chemical potential, p is the
pressure, Tm is the melting temperature, cX is
the concentration of solute, and we have used
superscripts l and s for liquid and solid,
respectively. In the limit of the concentration of
the solute cX going to zero the chemical potential
mX diverges logarithmically. It is useful then to
write

mX(p,Tm,cX) = kBT lncX + X(p,Tm,cX) (13)

so that X(p,Tm,cX) is a well behaved quantity for
all values of cX. In ideal solution theory the
quantity X is simply assumed to be independent
of concentration, but in reality the interaction
between solute atoms causes it to vary with cX.
Combining equations 11 and 13 we obtain:

cX
s /cX

l = exp[( X
l – X

s )/kBT] (14)

This means that the ratio of the mole fractions
cX

s and cX
l of X in solid and liquid is determined by

the thermodynamic quantities X
l and X

s . The
partition of the solute between solid and liquid
modi� es the melting temperature of the mixture
with respect to the melting temperature of pure
solvent; it is easy to show that the shift in melting
temperature is given by:

Tm – T0
m ¼

kBT
DS0

…cs
X – cl

X† …15†

where Tm
0 is the melting temperature of pure A

and DS0 = S0
l – S0

s is the entropy change on
melting for pure A.

We now brie� y describe how we calculate the
thermodynamic quantities X

s and X
l using ab

initio techniques. A more detailed description of
the techniques involved has been reported else-
where (Alfè et al., 2000c,d, 2002b,d). The
chemical potential of a solute X in solid or
liquid solvent A is equal to the change of Gibbs
free energy as one atom of X is added to the
system at constant pressure p and constant
temperature T. Alternatively, it is also equal to
the change of Helmholtz free energy as the atom
of solute is added at constant volume V and
temperature. However, it is impratical to add
solute atoms to a system in an ab initio
simulation. Computationally, it is more conve-
nient to convert solvent into solute, which means
working with the difference mX – mA of the
chemical potentials of X and A. The chemical
potential mX and hence X is obtained from mX –
mA by making use of the Gibbs free energies of
pure solid and liquid A calculated separately.

m̃

m̃

m̃

m̃ m̃

m̃ m̃

m̃ m̃

m̃
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Chemical potential in the liquid
To calculate the chemical potential difference

X – A in the liquid we make use of thermo-
dynamic integration. In the limit of zero
concentration this is just the change of
Helmholtz free energy as one atom of A is
transmuted into X:

DF ¼
1

0

dlhUAX – UAil …16†

where UA is the ab initio potential energy function
for the pure A system and UAX that for the system
where one of the A atoms has been converted into X.
These calculations demand an unusual kind of
simulation. We perform two simultaneous simula-
tions, in the � rst the system is pure A, and in the
second, one of the A atoms has been substituted by
an X atom. The positions of all the atoms are the
same in the two simulations. We calculate the ab
initio (free) energies and the forces in both
simulations, we move the atoms with the forces fl

= lfAX + (1 – l)fA, where fA and fAX are the forces
in the pure A and the A/X systems respectively, and
we accumulate the time average of UAX – UA. The
simulations are repeated at a suf� cient number of l
values so that the integral in equation 16 can be
calculated with the required accuracy. To calculate
the chemical potential of the solute X away from the
dilute limit we repeat the procedure at a � nite
concentrationof X in A, and transmute again one of
the A atoms into X. In fact, transmuting only one
atom is statisticallyvery inef� cient, so we transmute
several. This provides an integral of the chemical
potential over a range of concentrations, but by
repeating the calculations with a different total
number of A atoms transmuted into X, the results
can be processed to extract the required dependence
of the chemical potential on concentration. We
found that for small concentrations (<0.2) the
chemical potential X can be approximated well
by the linear form X & mX

{ + lXcX, where lX is a
constant (do not confuse lX with the dummy
parameter l used in thermodynamic integration).

Chemical potential in the solid

To calculate the chemical potential for the solid
we found it convenient to consider the free energy
difference between the two systems where one
solvent atom A is converted into a solute atom X.
It is useful to separate this free energy difference
as the sum of three terms:

FX – FA = FXA = +FXA
perf + FXA

harm + FXA
anharm (17)

where FXA
perf is the change of free energy due to

substitution of one A atom by an X atom in the
perfect non-vibrating crystal, FXA

harm is the
contribution due to the change in the vibrational
frequencies:

Fharm
XA ¼ 3kBT

Ns

X

s

1
OBZ

BZ

d ln
o0

q;s

oq;s
…18†

Here, Ns is the number of phonon branches (three
for each atom in the unit cell), OBZ is the volume
of the Brillouin zone and o q̀,s, oq,s are the phonon
frequencies in the A/X and in the pure A systems
respectively. The last term FXA

anharm is the
remainder, which we call the anharmonic
contribution. To calculate FXA

perf we calculate � rst
FA

perf in an N atoms perfect crystal and then FXA
perf

on the same system but with one of the A atoms
substituted by one X atom, and relaxing the cell
until the forces on all the atoms are zero. To
evaluate F XA

harm we calculate the phonon frequen-
cies in the whole Brillouin zone for both systems
using the small displacement method (Alfè, 1998;
Kresse et al., 1995). The anharmonic contribution
FXA

anharm can be calculated using thermodynamic
integration, which has been described in detail in
our previous paper (Alfè et al., 2000d). This
procedure gives us the zero concentration limit of
the chemical potential difference X – A. To
calculate X – A away from the dilute limit, we
note that the part of the statistical mechanics
associated with the rearrangement of X atoms on
lattice sites is rigorously equivalent to a lattice-gas
problem, for which we can use standard Monte
Carlo methods (Chandler, 1987) to evaluate the
free energy. The crucial input from ab initio
calculations is then the interaction free energy of X
atoms when they are on neighbouring sites. This
interaction free energy is just the change of F
when a pair of X atoms initially on distant sites are
placed on nearest-neighbour sites. The change of
E in this process is obtained from a straightfor-
ward ab initio calculation, and the contribution
from the entropy change is obtained from an ab
initio calculation of the lattice vibrational
frequencies for the X-X pair on neighbouringsites.

Results and discussion

Results of the calculations are summarized in
Table 1, where we report the values of mX

{ and lX.
We start the discussion for the Fe/S binary

m̃ m̃

m̃
m̃

m̃ m̃
m̃ m̃
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system. The difference of chemical potential
between solid and liquid is mS

{l – mS
{s =

–0.25 eV in the limit of zero concentration. Its
negative value favours partitioning of S into the
liquid, as expected, but its magnitude is smaller
than kBT, so that the partitioning is weak. If we
were to ignore the dependence on concentration
of the chemical potentials, we would get from
equation 14 cS

s /cS
l = 0.66. More importantly, the

dependence of the chemical potential on concen-
tration is such that both s

l and X
s increase

strongly with increasing mole fraction of S. This
is due to an apparent repulsion among the S atoms
and is consistent with what we found in our
previous work on Fe/S (Alfè and Gillan, 1998). It
arises because the S valence states lie at least
~10 eV below the Fermi energy, so that chemical
bonding between S atoms is very weak. If two
isolated S atoms are brought together, two Fe-S
bonds are lost and one Fe-Fe bond is gained. The
relative strengths of the Fe-S and Fe-Fe bonds
mean that this process is energetically unfavour-
able. The dependence of s on cs causes a
deviation from the behaviour of ideal mixtures,
which is therefore fully taken into account here.
The apparent S-S repulsion (departure from
ideality) favours equilibration of concentrations
between liquid and solid, and therefore at higher
concentrations the partitioning between solid and
liquid is even smaller. At the sulphur mole
fraction cS

l = 0.16 needed to match the density
of the liquid outer core we � nd the solution cS

s =
0.14. The conclusion is that if the outer core were
a binary Fe/S mixture, the mole fraction of S in
the inner core would have to be ~14%. But this is
completely incompatible with seismic measure-
ments, which give an accurate value for the
density difference between liquid and solid at the
ICB of 4.5±0.5% (Masters and Shearer, 1990).
The reason why this is incompatible is that,
according to our earlier ab initio calculations

(Alfè et al., 1999a), the density difference
between coexisting liquid and solid pure Fe at
the ICB pressure is only ~1.8%. Our present
calculationsshow that the volume of the S atom in
both solid and liquid is almost identical to that of
Fe. This is true to a suf� cient accuracy that the
fractional change of density in each phase can be
calculated simply as cS(mS – mFe)/mFe, where mS

and mFe are the atomic masses of S and Fe. This
means that if cS

l and cS
s were equal, the density

difference between liquid and solid would remain
unchanged at 1.8%. The small difference between
cS

l and cS
s has the effect of increasing the density

difference to only 2.7±0.5%, which is still well
below the seismic value of 4.5±0.5%. We
therefore rule out the binary Fe/S model for core
composition.

For Si, the above argument is even stronger,
because the chemical potentials in solid and liquid
are even more similar, which means that the
binary mixture Fe/Si also has to be ruled out as a
possible composition of the Earth’s core.

For oxygen, the situation is completely
different. The difference of chemical potentials
in liquid and solid is very large, mO

{l – mO
{s =

–2.6 eV, which implies a strong partitioning
between liquid and solid. At the oxygen mole
fraction cO

l = 0.18 needed to match the density of
the liquid core we � nd cO

s & 0.003, which gives a
density discontinuity of 7.8±0.2%, markedly
larger than the discontinuity at the ICB.
Therefore the binary mixture Fe/O is also
incompatible with seismological data.

The reason for the very different behaviour of
S/Si on one side, and O on the other, is mainly due
to the different sizes of these impurities. Sulphur
and silicon are almost the same size as iron at core
conditions, and this results in an almost perfect
arrangement of these elements as substitutional
impurities in the h.c.p. iron crystal. This is the
main reason why the chemical potentials of these

m̃ m̃

m̃

TABLE 1. Calculated chemical potentials (eV units) of impurities in
the Earth’s liquid outer core and solid inner core. Chemical
potential mX = kBTlncX + X of impurity X is represented at low
mole fraction cX by the linearized form X & mX

{ + lXcX, with
superscripts l and s indicating liquid and solid, respectively.

Impurity mX
{l – mX

{s lX
l lX

s

S –0.25±0.04 6.2±0.2 6.0±0.2
Si –0.05±0.02 3.5±0.1 2.8±0.1
O –2.6±0.2 3.25±1.3

m̃
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impurities are so similar in liquid and solid. For
oxygen the situation is completely different. The
oxygen atoms are signi� cantly smaller than the
iron atoms. They are not small enough to � t in the
iron crystal as interstitial impurities, but even as
substitutional impurity they do not � t very well,
since the rigidity of the Fe crystal prevents an
ef� cient arrangment of the Fe atoms around the
O. This rigidity is absent in the liquid, and this is
the reason for the strong O partition between
liquid and solid.

In conclusion, none of the three binary mixtures
can account for the composition of the core.
However, it can clearly be accounted for with
ternary of quaternary mixtures of these three
impurities. Ab initio calculations on ternary or
quaternary mixtures are certainly feasible, but for
the moment they are still too demanding. If we
assume that different impurities do not affect the
respective chemical potentials we can use the
results obtained here to construct a model for the
composition of the Earth’s core. Since oxygen is
hardly going into the solid, we need to use
sulphur/silicon to reduce the density of solid iron
untill it matches the density of the core. We � nd
that we need ~8% of S/Si. This implies that we
must have ~10% of S/Si in the liquid, and to
match the density of the liquid we need to add
~8% of oxygen. These results are summarized in
Table 2. Using these results in conjunction with
equation 15 we also � nd a shift of melting
temperature DTm = –700±100 K with respect to
the melting temperature of pure iron.

Conclusions

We have illustrated the techniques for the
calculation of chemical potentials in both pure
systems and binary mixtures. As an application of
the methods we have presented the whole melting
curve of iron under Earth’s core conditions and

put some new constraints on the composition of
the core. These developments open a completely
new way to ab initio calculations, as we have
shown that now � nite temperature thermodynamic
properties can be calculated to the extent of
determining complete melting curves. An
additional example of our method is the recent
calculation of the melting curve of Al in the range
0 –150 GPa (VocÏ adlo and Alfè, 2002). Moreover,
it is now possible to study chemical equilibrium
of solutions completely from � rst principles,
without the need to resort to simpli� ed approxi-
mated descriptions of the atomic interactions
using empirical potentials. We have to acknowl-
edge that these calculations would have not been
possible without access to powerful computers,
which are therefore the fundamental instrument
for this type of theoretical research today and in
the days to come.
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VocÏ adlo, L., Alfè, D., Brodholt, J.P., Price, G.D. and
Gillan, M.J. (2000) Ab initio free energy calculations
on the polymorphs of iron at core conditions. Physics
of the Earth and Planetary Interiors, 117, 123 –137.

Wang, Y. and Perdew, J. (1991) Correlation hole of the
spin-polarized electron gas, with exact small-wave-
vector and high-density scaling. Physical Review B,
44, 13298 –13307.

Wei, S.H. and Krakauer, H. (1985) Local-density-
functional calculation of the pressure-induce d
metallization of BaSe and BaTe. Physical Review
Letters, 55, 1200 –1203.

Williams, Q., Jeanloz, R., Bass, J.D., Svendesen, B. and
Ahrens, T.J. (1987) The melting curve of iron to 250
gigapascals – a constraint on the temperature at
earths center. Science, 286, 181 –182.

Yoo, C.S., Holmes, N.C., Ross, M., Webb, D.J. and
Pike, C. (1993) Shock temperatures and melting of
iron at Earth core conditions. Physical Review
Letters, 70, 3931 –3934.

[Manuscript received 15 October 2001:
revised 21 December 2002]

CORE CONDITIONSFROMFIRST-PRINCIPLES CALCULATIONS

123

http://fiordiliji.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0031-9007^28^2974L.1823[aid=4174179]
http://fiordiliji.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0301-7249^28^29106L.205[aid=4174181]
http://fiordiliji.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0031-9201^28^29117L.123[aid=4174183]
http://fiordiliji.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0163-1829^28^2944L.13298[aid=2456463]
http://fiordiliji.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0031-9007^28^2974L.1823[aid=4174179]
http://fiordiliji.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0031-9201^28^29117L.123[aid=4174183]
http://fiordiliji.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0163-1829^28^2944L.13298[aid=2456463]

