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Abstract

The high-pressure melting curve of iron is of major importance to the Earth’s sciences, as it provides a close estimate of the temperature of

the Earth’s core. Despite being studied experimentally for more than a decade and, more recently, using theoretical quantum mechanics

techniques, there are still large discrepancies between different groups. In this article, we will describe our theoretical approach to the

problem and discuss the reason of the discrepancies with other theoretical calculations.

q 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The thermodynamic properties of iron, and in particular

its high-pressure melting curve, have been the subject of

intense investigation in the past few decades. The reason

for this substantial interest is that iron is most certainly the

main constituent of the Earth’s core, therefore, by knowing

its melting temperature at the pressure of the inner–outer

core boundary (ICB) one has a good estimate of the

temperature of the core. However, the conditions of the

ICB are so extreme that they are still out of reach of

conventional static high-pressure experiments performed in

diamond anvil cells (DAC). These methods allow inves-

tigation up to pressures and temperatures of about 200 GPa

and 3000 K. Unfortunately though, despite the strenuous

effort of the past few decades, the DAC experimental

situation is still not resolved, with discrepancies between

different groups of up to 500 K even at pressures as low as

60 GPa [1–3]. To investigate the high-pressure region of

the phase diagram one has to resort to shock wave

techniques. In these experiments, one directly obtains the

typical pressure versus volume relation called the Hugo-

niot, and in particular the p; V point where melting occurs.

More precisely, the two points pi; Vi and pf ; Vf where

melting begins and ends, respectively, with a two phase

region in between. The temperature is not directly

accessible, and it is usually estimated by making assump-

tions on the specific heat and the Grüneisen parameter. A

number of experimental data is available to date, and they

fix the melting of iron on the Hugoniot in the pressure

region 221–243 GPa, with temperatures estimated in the

range 5000–6000 K.

Recent advances in computer power have made it

possible for theoretical techniques, based on quantum

mechanics methods, to be used to calculate the high-

pressure melting curve of iron from first principles. Two

different approaches have been used in the past few years.

The first is based on the calculation of free energies, with

the melting temperature Tm defined at each fixed pressure

by Glðp;TmÞ ¼ Gsðp;TmÞ; where Glðp;TÞ and Gsðp;TÞ are

the Gibbs free energies of liquid and solid, respectively;

we call this the free energy approach [4–6]. The second is

based on the direct simulations of solid and liquid in

coexistence; we call this the coexistence approach [7,8].

The results obtained from different groups differ by as

much as 1000 K. The reasons for these discrepancies have

been addressed in our previous paper [9], and can be

summarised as follows. The coexistence simulations

performed so far have been implemented using classical

empirical potentials fitted to first principles calculations.

Of course, in doing so one obtains the melting temperature

of the potential employed, which is by no means

guaranteed to be equal to the one which would be

obtained directly using first principles simulations. We

showed in our previous paper [9] that if the classical
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potential is close enough to the quantum mechanics

system (in a sense which will become clear later in the

article), one can develop a method to correct for the

possible difference between the two melting temperatures,

and we showed this by applying the corrections to a high-

pressure melting point of Fe calculated using the potential

due to Belonoshko et al. [8]. This potential has also been

used to study the stability of body centred cubic iron under

Earth’s core conditions [10], an issue that has attracted

renewed interest recently [11].

Recently, thanks to the currently available computer

power, it has even become possible to perform coexistence

simulations directly from first principles, and we have

calculated points on the low-pressure melting curve of

aluminium to demonstrate this [12]. The excellent agree-

ment obtained between the coexistence method [12] and the

free energy approach [13] is an additional confirmation

that, when applied consistently, the two techniques work

equally well.

In this article, we will summarise the main ideas of the

free energy approach and the coexistence approach and in

addition to our previous calculations we also report our

results from the coexistence approach for a low-pressure

melting point of iron.

The article is organised as follows. In Section 2 we

summarise the main ingredients used in our first principles

calculations. In Section 3 we introduce the free energy

approach, and we describe the techniques used to calculate

the free energies of liquid and solid iron in Sections 3.1 and

3.2, respectively. Section 3.3 contains the resulting melting

curve with a discussion of errors. In Section 4 we discuss

the coexistence method and the techniques employed to

correct the melting temperature obtained from a classical

potential, and in Section 4.1 we report the resulting

melting temperatures. Section 5 contains discussion and

conclusions.

2. Technical details

The technical details employed in our calculations on

high-pressure Fe have been reported extensively in our

previous papers [5,6,14], so we give only a brief

summary here. They are based on density functional

theory (DFT) techniques [15]. The exchange-correlation

functional Exc is the generalised gradient approximation

known as Perdew–Wang 1991 [16,17]. We use the

projector-augmented-wave (PAW) implementation of

DFT [14,18,19], a technique that shares the properties

both of all-electron methods such as full-potential

linearised augmented plane waves (FLAPW) [20] and

the ultrasoft pseudopotential method [21]. The calcu-

lations were done using the VASP code [22,23], with the

implementation of an efficient extrapolation of the

electronic charge density [24]. Details of the core radii,

augmentation-charge cut-offs, etc. are exactly as in our

earlier papers [5,6,14]. Our division into valence and

core states is also the same as before: the 3p electrons

are treated as core states, but their response to the high

compression is represented by an effective pair potential,

with the latter constructed using PAW calculations in

which the 3p states are explicitly included as valence

states. Brillouin-zone (BZ) sampling was performed using

Monkhorst–Pack (MP) special points [25]. The plane

wave cut-off was 300 eV in all calculations. The time-

step used in the dynamical simulations was 1 fs.

The accuracy of DFT depends very much on the

approximation used for the electronic exchange-correlation

energy Exc: It is known that the local density approxi-

mation is not fully satisfactory for Fe [26], but that

modern generalised-gradient approximations (GGA) repro-

duce a wide range of properties very accurately. These

include the equilibrium lattice parameter, bulk modulus

and magnetic moment of body-centred cubic (b.c.c.) Fe at

ambient pressures [27–29], and the phonon dispersion

relations of the b.c.c. phase [14,30]. There has been much

DFT work on different crystal structures of Fe at high

pressures, and experimental low-temperature results for

the pressure as a function of volume pðVÞ up to

p ¼ 300 GPa for the h.c.p. structure are accurately

predicted [31], although the agreement is not perfect, as

can be observed in Fig. 1. We shall come back to this

small disagreement in the discussion of the errors in

Section 3.3. Further evidence for the accuracy of DFT

comes from the successful prediction of the b.c.c. to h.c.p.

transition pressure [27,28], and comparison with the

measured phonon density of states of the h.c.p. phase up

to pressures of ,150 GPa [32]. With ab initio molecular

dynamics, DFT calculations can also be performed on the

liquid state, and we have reported extensive calculations

both on pure liquid Fe [14,29,33] and on liquid Fe/S and

Fe/O alloys [34–36].

Fig. 1. Pressure as a function of atomic volume of h.c.p. Fe. Solid circles are

present PAW calculations; dotted and chain curves are FLAPW and FP-

LMTO results of Ref. [27,28], respectively, diamonds are experimental

values of Ref. [31].
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3. Free energies

Having established the good quality description of a

number of structural, magnetic and dynamical properties of

iron we now move to the discussion of free energies.

At this point it is important to examine the issue of the

accuracy needed in these calculations. As emphasised

elsewhere [5,37], it is easy to show that in order to get the

melting temperature with an error of less than <100 K the

error on the difference of Gibbs free energies between solid

and liquid has to be kept below <10 meV/atom. This is a

very small quantity, and it is much smaller than typical

accuracy achievable with DFT techniques. However, we

are not interested in absolute accuracies, but rather in the

error in the difference of free energies between solid and

liquid. In fact, DFT works very well for energy differences,

especially in those cases where the structural and electronic

properties of the different phases are very similar, like solid

and liquid iron at high p; T conditions. This means that we

can rely on large cancellation of errors between the

description of solid and liquid. It is conceivable therefore

that, provided all other sources of technical errors are

brought under control, the remaining error due to the actual

implementation of DFT is small. We will come back to this

point later in the article, where we will analyse more

closely the possible DFT–GGA errors. Technical errors not

related to DFT–GGA can in principle be made as small as

wanted, and we have taken care that these were of the order

of our target of 10 meV/atom.

The techniques used to calculate free energies for solids

and liquids have been reported and extensively discussed in

previous papers [5,6], so we only outline the main ideas

here. The Helmholtz free energy of a system of N atoms in a

volume V at temperature T is given by

F ¼2 kBT ln

�
1

N!L3N

ð
dR1…dRN

� exp½2bUðR1;…RN ; TÞ�

�
; ð1Þ

where L ¼ h=ð2pMkBTÞ1=2 is the thermal wavelength,

with M being the nuclear mass, b ¼ 1=kBT ; h is the

Planck constant and kB the Boltzmann constant. We

emphasise that UðR1;…RN ; TÞ is the free energy of the

electrons in the system and therefore depends on T : A

direct use of Eq. (1) to calculate the free energy of the

system is impractical, as one would need to know the

value of the (free) energy U for every position of

the atoms in the system. An alternative approach is to

use the technique known as thermodynamic integration

(see e.g. Ref. [38]), which is a completely general

procedure for determining the difference of free energies

F1 2 F0 of two systems whose total-energy functions are

U1 and U0: The basic idea is that F1 2 F0 represents the

reversible work done on continuously and isothermally

switching the energy function from U0 to U1: To do this

switching, a continuously variable energy function Ul is

defined as

Ul ¼ ð1 2 lÞU0 þ lU1; ð2Þ

so that the energy goes from U0 to U1 as l goes from 0

to 1. In classical statistical mechanics, the work done in

an infinitesimal change dl is

dF ¼ kdUl=dllldl ¼ kU1 2 U0lldl; ð3Þ

where k·ll represents the thermal average evaluated for

the system governed by Ul: It follows that

F1 2 F0 ¼
ð1

0
dlkU1 2 U0ll: ð4Þ

In practice, this formula can be applied by calculating

kU1 2 U0ll for a suitable set of l values and performing

the integration numerically. The average kU1 2 U0ll is

evaluated by sampling over configuration space. It is

obvious that the final result for F1 does not depend on

the particular choice of the reference system, but the

computational effort crucially depends on this choice.

The reason for this is that in order to evaluate the

quantity kU1 2 U0ll with a chosen statistical accuracy

one needs to sample the phase space at a number of

points which depends on the size of the fluctuations of

U1 2 U0; so it is important to look for a reference

system which minimises the size of these fluctuations.

3.1. The liquid

The problem of mimicking the fluctuations of ab initio

energy U1 in high-p/high-T liquid Fe using a reference

system was studied in detail in a previous paper [14]. We

showed there that a U0 consisting of a sum of pair potentials

U0 ¼ Uth þ Upair; ð5Þ

in which

Upair ¼
1

2

X
i–j

fðlRi 2 RjlÞ; ð6Þ

can be arranged to mimic the fluctuations of U1 very

precisely, if we choose fðrÞ to be a repulsive inverse-power

potential fðrÞ ¼ B=ra; with suitable values of B and a: In

this expression for U0; we have included a term Uth which

depends on thermodynamic state, but does not depend on

the positions Ri:

Calculations of F were performed at 18 thermodynamic

states spanning the conditions of V and T of the Earth’s core.

Convergence of the results with respect to size and k-point

sampling has been carefully checked with combined errors

reduced to less than <5 meV/atom; statistical errors in the

evaluation of the integral in Eq. (2) were of the order of

<2 meV/atom. Free energies were then fitted to a poly-

nomial function of V and T ; for the exact form of this function

and more details we refer to our earlier paper [6]. The fitting
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reproduced the calculations to within a few milli-electron

volt per atom at all points, so that we estimate the error on our

free energies to be less than 10 meV/atom.

3.2. The solid

The free energy of the solid is conveniently written as

follows

Fsol ¼ Fperf þ Fharm þ Fanharm; ð7Þ

where Fperf is the free energy of the perfect non-vibrating

crystal (it is a free energy because we take into account

electronic excitations), Fharm is the contribution due to the

vibrations above zero temperature, which at core tempera-

tures is very well approximated by the classical limit

Fharm ¼ 2
3kBT

VBZNi

� �X
i

ð
BZ

ln
kBT

"vq;i

 !
dq; ð8Þ

with errors of less than 1 meV/atom at T . 3000 K. Here

VBZ is the volume of the BZ, Ni is the number of atoms in

the primitive cell and vq;i is the frequency of the ith phonon

branch at wave vector q: The full quantum mechanics

expression for the harmonic free energy is not more difficult

to calculate than the classical limit. The reason for taking

the classical limit is for consistency with the treatment of the

liquid, for which the free energy has been calculated with

molecular dynamics, using a classical treatment of the iron

nuclei.

The calculation of Fperf involves simple electronic

structure calculations on perfect crystals; it can be easily

done on small computers and it is virtually exact. The

evaluation of Fharm involves the calculations of the phonon

frequencies vq;i in the whole BZ, for which we used our

own implementation [39] of the small displacement method

[5,40]. In this method, a supercell is constructed and the

atoms in the primitive cell are displaced by small amounts.

The forces induced on all the atoms in the supercell are used

to construct the force constant matrix, whose eigenvalues

are related to the phonon frequencies. Errors on Fharm arise

from the finite size of the displacement of the atoms in the

primitive cell, the finite size of the supercell and k-points

sampling; we have taken care to reduce these errors below

3 meV/atom.

The last term contributing to the total free energy of the

solid, Fanharm; has been calculated using thermodynamic

integration. We used as reference system a linear combi-

nation of the ab initio harmonic potential, Uharm and the

inverse power potential used as reference system for the

liquid

Uref ¼ aUIP þ bUharm; ð9Þ

with the two parameters a and b adjusted in order to

minimise the fluctuations in the energy differences between

the reference system and the full ab initio system. The

anharmonic contribution to the free energy is relatively

large at melting, it stabilises the solid by about 50 meV/a-

tom, and contributes to raise the melting temperature by

about 500 K. Errors in the anharmonic contribution to the

free energy are estimated to be about 10 meV/atom, so that

total errors in the free energy of the solid are of the order of

15 meV/atom.

3.3. The melting curve

In this section we discuss the melting curve of Fe

reported in Fig. 2 from 50 to 400 GPa. The solid black line is

the result obtained by combining the free energies of solid

and liquid, and we predict a temperature of 6350 ^ 300 K at

ICB, where the error quoted is the result of the combined

statistical errors in the free energies of solid and liquid. This

value is about 300 K lower than the values originally

reported in Ref. [4], and the correction is the result of more

precise calculations of the anharmonic contribution to the

free energy of the solid, as reported earlier [5,6].

Also in Fig. 2, we show the ab initio melting curve

reported by Laio et al. [7] and by Belonoshko et al. [8]. In

addition, we compare with experimental melting curves or

points obtained by shock experiments or by static-

compression using the DAC. DAC determinations of the

melting curve of Fe and other transition metals have been

performed by several research groups [2,3,41,42]. The early

results of Williams et al. [1] lie considerably above those of

other groups, and are now generally discounted. This still

leaves a range of ca. 400 K in the experimental Tm at

100 GPa. Even allowing for this uncertainty, we acknowl-

edge that our melting curve lies appreciably above the

surviving DAC curves, with our Tm being above that of

Fig. 2. Comparison of melting curve of Fe from present calculations with

previous experimental and ab initio results: heavy solid and dashed curves:

present work without and with free-energy correction (see text); black filled

circles: present corrected coexistence results (see text); green curve: ab

initio results of Ref. [7]; blue curve: ab initio results of Ref. [8]; grey and

red dashed curves: DAC measurements of Refs. [1,2]; green diamonds:

DAC measurements of Ref. [3]; black open squares, blue open circle and

magenta diamond: shock experiments of Refs. [43–45]. Error bars are

those quoted in original references.
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Shen et al. [3] by ca. 400 K at 100 GPa. We return to this

discrepancy below.

Shock measurements should in principle be able to fix a

point on the high-pressure melting curve at the thermodyn-

amic state where melting first occurs on the Hugoniot.

However, temperature is notoriously difficult to measure in

shock experiments. The temperatures obtained by Yoo et al.

[43] using pyrometric techniques are generally regarded as

being too high by at least 1000 K. This has been confirmed

by our recent ab initio calculations [5] of Hugoniot

temperature for h.c.p. Fe. We therefore disregard their

data point on the melting curve. In the shock measurements

of Brown and McQueen [44] and Nguyen and Holmes [45],

no attempt was made to measure temperature, which was

estimated using models for the specific heat and Grüneisen

parameter; the approximate validity of these models is

supported by our ab initio calculations [5] on h.c.p. Fe.

However, the identification of the Hugoniot melting point

has been hampered by the possible existence of a solid–

solid transition. In their measurements of sound velocity on

the Hugoniot, Brown and McQueen [44] believed that they

had observed a solid–solid transition as well as a separate

melting transition. We plot in Fig. 2 the point reported by

Brown and McQueen [44] and the point obtained from the

measurements of Nguyen and Holmes [45]. For the latter,

the pressure of 221 GPa is taken directly from their

measurement of the onset of melting, while the temperature

at this point is taken from our calculation of the Hugoniot

temperature of the h.c.p. solid at this pressure, as reported in

Ref. [5].

We want to discuss now possible systematic errors in our

melting temperatures. First, we recall that even with the best

available GGA for exchange-correlation energy the low-

temperature pðVÞ relation for h.c.p. Fe is not in perfect

agreement with experiment. This has been shown by a

number of independent calculations using all-electron

techniques [27,28] as well as pseudopotential [29] and

PAW [14,19] techniques, all of which agree closely with

each other. Roughly speaking, the pressure is under-

predicted by ca. 10 GPa at near-ambient pressures and by

ca. 8 GPa in the region of 300 GPa. The pressure error can

be thought of as arising from an error in the Helmholtz free

energy, so that the true free energy Ftrue can be written as

Ftrue ¼ FGGA þ dF; where FGGA is our calculated free

energy and dF is the correction. If we now neglect the

temperature dependence of dF; and simply add dFðVÞ to the

calculated free energies of solid and liquid, this gives a way

of gauging our likely errors. We find that this free-energy

correction leads to a lowering of the melting curve by ca.

350 K in the region of 50 GPa and by ca. 70 K in the region

of 300 GPa.

The second error source we consider is the PAW

implementation, and specifically our choice of the division

into core and valence states, and the PAW core radii. At

Earth’s core pressures, the 3p electrons, and to a lesser

extent the 3s electrons, must be treated as valence states.

But in our PAW implementation [5,14] the 3s and 3p are

core states, with the associated error partially compensated

for by inclusion of an effective pair potential. Moreover, the

core radius of 1.16 Å have used [5,14] may also affect the

calculations, because under such high pressures and

temperatures the atoms come so close that the cores overlap.

We estimated this error in our earlier paper [6], and

found that the effect is small, and stabilises the liquid by

6 meV/atom, which has the effect of shifting the melting

curve down by ,60 K.

As we show in Fig. 2, if we include both these corrections

they bring our low-temperature melting curve into quite

respectable agreement with the DAC measurements of Shen

et al. [3], while leaving the agreement with the shock point

of Nguyen and Holmes [45] essentially unaffected. There is

still a considerable discrepancy with the DAC curve of

Boehler [2].

4. The coexistence method

In this section we discuss the coexistence approach to the

calculation of melting properties. With this method solid

and liquid are simulated in coexistence, and the p; T values

extracted from the simulation give a point on the melting

curve. The method can be implemented in a number of

different ways. In the work of Morris et al. [46], coexisting

solid and liquid Al were simulated with the total number of

atoms N; volume V and internal energy E fixed. They

showed that, provided V and E are appropriately chosen, the

two phases coexist stably over long periods of time, and the

average pressure p and temperature T in the system give a

point on the melting curve. An alternative procedure would

be to simulate at constant ðN;V ;TÞ: Yet another approach

was used in the work of Laio et al. [7] on the high-pressure

melting of Fe; this used constant-stress simulations, with

enthalpy almost exactly conserved. The approach of

Belonoshko et al. [8] is different again. Here, the ðN; p;TÞ

ensemble is used. The system initially contains coexisting

solid and liquid, but since p and T generally do not lie on the

melting line, the system ultimately becomes entirely solid or

liquid. This approach does not directly yield points on the

melting curve, but instead provides upper or lower bounds,

so that a series of simulations is needed to locate the

transition point. Whichever scheme is used, some way is

needed of monitoring which phases are present. In the

ðN;V ;EÞ method of Morris et al. [46], graphical inspection

of particle positions appears to have been used, sup-

plemented by calculating of radial distribution functions to

confirm the crystal structure of the solid. In the ðN; p;TÞ

method of Belonoshko et al. [8], the primary diagnostic is

the discontinuity of volume as the system transforms from

solid to liquid.

Because the coexistence method is intrinsically compu-

tationally more demanding than the free energy approach,

all the calculations of melting properties performed so far
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have been done using classical potentials, including the

melting curves of Fe produced by Laio et al. [7] and

Belonoshko et al. [8]. It follows that the melting properties

are those of the potentials used in the calculations. In

particular, the melting curves will in general be different

from those that would be obtained by a direct coexistence

simulation using first principles calculations. However, as

we showed in our previous paper [6], it is possible to assess

these errors and correct them. The difference in the melting

temperature at a fixed pressure can be formulated in terms of

the differences of the Gibbs free energies between the model

potential and the ab initio system. At a chosen pressure p;

the melting temperatures of the two systems are defined by:

Gls
AIðp;TAIÞ ¼ 0 and Gls

modðp;TmodÞ ¼ 0; where Gls is the

difference between the Gibbs free energies of liquid and

solid. The ab initio and the model potential melting

temperatures are different, in general, because

Gls
AIðp;TmodÞ – 0: Working at the given pressure, we

take the variable p as read and express the ab initio value

of Gls as

Gls
AIðTÞ ¼ Gls

mod þ zDGlsðTÞ; ð10Þ

where with the symbol D we denote differences between the

ab initio system and the model potential, and the parameter

z is introduced so that the ab initio melting temperature TAI

can be written as a power series

TAI ¼ Tmod þ zT 0 þ …: ð11Þ

Since the Gibbs free energies are equal in the two phases,

this TAI is the solution of Gls
AIðTÞ ¼ 0; which is

Gls
modðTmod þ zT 0 þ…Þþ zDGlsðTmod þ zT 0 þ…Þ ¼ 0: ð12Þ

Expanding in powers of z and equating powers, one obtains

for T 0

T 0 ¼DGlsðTmodÞ=S
ls
mod ð13Þ

where Sls
mod is the entropy of fusion of the model potential.

Since entropies of fusion are on the order of kB per atom,

then a difference DGls of 10 meV/atom implies a shift of

melting temperature of ca. 100 K, so that substantial errors

will need to be corrected for unless the reference total

energy function matches the ab initio one very precisely.

The free energy differences DGls can be calculated using

thermodynamic integration, or if the model potentials

mimic the ab initio system closely enough, a perturbational

approach. If the calculations are performed in the ðN;V ;TÞ

ensemble it is easy to show that

DF ¼ kDUlmod 2
1

2
bkdDU2lmod þ…; ð14Þ

where dDU ;DU2 kDUl; and the averages are taken in the

model potential ensemble. The relation between DG and

DF; is readily shown to be

DG¼DF2
1

2
VkTDp2

; ð15Þ

where kT is the isothermal compressibility and Dp is the

change of pressure when Umod is replaced by UAI at constant

V and T :

4.1. The melting curve

We now come to the results. The model potential for our

coexistence simulations is the embedded-atom model

(EAM) recently used by Belonoshko et al. [8] to calculate

the high-pressure melting curve of Fe. Our coexistence

simulations have originally been done in the ðN;V ;EÞ

ensemble with cells containing 8000 atoms, and we went up

to 64,000 atoms to test size effects. More recently, we found

that even cells containing 1000–2000 atoms are big enough

to calculate melting temperatures with a size error of a few

percentage at most. We performed the calculations at two

different thermodynamic conditions, one with a volume per

atom n ¼ 7:12 �A; which is close to the average of the

volumes of liquid and solid iron at ICB conditions, and a

second one with a volume per atom n ¼ 8:6 Å, which

corresponds to a pressure of about 127 GPa, close to the

pressure of the core mantle boundary [47]. We have

carefully checked that the effect of small non-hydrostatic

stresses does not affect significantly the calculated melting

temperatures. In the top panel of Fig. 3 we report

the temperature along the simulation for the system with

n ¼ 7:12 Å, and in the bottom panel the three diagonal

components of the stress tensor. The three of diagonal

components oscillate around zero average and we do not

display them. From this simulation we extract the values

T ¼ 6550 ^ 100 K and p ¼ 305 ^ 1 GPa, which are in

Fig. 3. Time variation of temperature (upper panel) and the three

components of stress tensor Pxx (solid curve), Pyy (dashed curve) and Pzz

(dotted curve) (upper panel), during a simulation of solid and liquid Fe

coexisting at a pressure of 305 GPa. Simulations were performed on a

system of 8000 atoms using the embedded-atom potential of Belonoshko

et al. [8], with c=a ratio of the hexagonal cell equal to 1.66.
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agreement with the value 6680 K reported by Belonoshko

et al. [8] within the combined statistical errors. At n ¼ 8:6

Å,we obtain T ¼ 3650 ^ 50 and p ¼ 127 ^ 1; which is also

in agreement with the value 3720 K reported by Belonoshko

et al. [8].

We now correct for the differences between this model

potential and our ab initio system using Eqs. (14) and (15).

Results for n ¼ 7:12 have been reported earlier in Ref. [9],

where we found that free energy differences between the ab

initio and the EAM systems have the effect of stabilising the

liquid with respect to the solid by about 35 meV/atom

compared with the EAM. Errors due to the finite size of the

systems and k-points sampling have been carefully checked

and reported in our previous paper [9]. Now, using the

calculated value Sls
mod ¼ 0:88 kB/atom we obtain the first

order correction T 0 ¼ 2450 K, so that our corrected melting

temperature at p ¼ 305 GPa is 6100 ^ 100 K, in perfect

agreement with the value T ¼ 6100 ^ 300 K obtained with

the free energy approach.

At n ¼ 8:6 we find opposite behaviour for the free energy

differences, and in particular that the solid is stabilised with

respect to the liquid by 50 meV/atom. At these conditions

we calculate Sls ¼ 0:85kB/atom and we obtain a first order

correction T 0 ¼ 680 K, so that our corrected melting

temperature at p ¼ 127 GPa is 4330 ^ 100 K, which is

also in excellent agreement with the value 4270 ^ 300 K

obtained with the free energy approach.

These two points are also reported in Fig. 2.

5. Discussion and conclusions

Melting is defined by the locus of points where the Gibbs

free energies of solid and liquid are equal. In this article, we

have reported the melting curve of iron calculated using two

different approaches. The first approach is based on the

direct calculation of the Gibbs free energies of solid and

liquid using ab initio techniques. In the second approach a

model potential is fitted to ab initio calculations and melting

is determined by solid–liquid coexistence simulations. In

the latter approach the melting temperature obtained from

the simulations is the one of the model potential, and here

we have prescribed a way to correct for the possible

differences with the ab initio melting temperature. We have

shown that once these corrections are taken into account the

results from the two methods agree closely.

We believe that this work settles the issue regarding the

difference between our melting curve of iron [4,6] and that

calculated by Belonoshko et al. [8]. The other melting curve

by Laio et al. [7] is also based on the coexistence method,

and we argue that this also would come into close agreement

with ours once the corrections described here and our

previous paper [9] are applied.

Our melting curve agrees quite well with the shock

datum of Brown and McQueen [44] and the point obtained

from the measurements of Nguyen and Holmes [45]. It also

agrees with the low-pressure DAC experiments of Shen et al.

[3], but there is still a considerable discrepancy with the

DAC data reported by Boehler [2].
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