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D Alfè1,2, L Vočadlo1, G D Price1 and M J Gillan2

1 Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT,
UK
2 Department of Physics and Astronomy, University College London, Gower Street,
London WC1E 6BT, UK

Received 20 January 2004
Published 26 March 2004
Online at stacks.iop.org/JPhysCM/16/S973
DOI: 10.1088/0953-8984/16/14/006

Abstract
A number of melting curves of various materials have recently been measured
experimentally and calculated theoretically, but the agreement between
different groups is not always good. We discuss here some of the problems
which may arise in both experiments and theory. We also report the melting
curves of Fe and Al calculated recently using quantum mechanics techniques,
based on density functional theory with generalized gradient approximations.
For Al our results are in very good agreement with both low pressure diamond-
anvil-cell experiments (Boehler and Ross 1997 Earth Planet. Sci. Lett. 153 223,
Hänström and Lazor 2000 J. Alloys Compounds 305 209) and high pressure
shock wave experiments (Shaner et al 1984 High Pressure in Science and
Technology ed Homan et al (Amsterdam: North-Holland) p 137). For Fe
our results agree with the shock wave experiments of Brown and McQueen
(1986 J. Geophys. Res. 91 7485) and Nguyen and Holmes (2000 AIP Shock
Compression of Condensed Matter 505 81) and the recent diamond-anvil-cell
experiments of Shen et al (1998 Geophys. Res. Lett. 25 373). Our results
are at variance with the recent calculations of Laio et al (2000 Science 287
1027) and, to a lesser extent, with the calculations of Belonoshko et al (2000
Phys. Rev. Lett. 84 3638). The reasons for these disagreements are discussed.

1. Introduction

The melting curves of materials have great scientific and technological interest. The problem
is to understand how a solid melts and to determine the temperature where this happens. A
number of theoretical models have been proposed to explain this phenomenon, among which
two in particular deserve special consideration. These are the Lindemann criterion [10] and
the Born criterion [11]. The Lindemann criterion is based on the concept that melting occurs
when the root mean square displacement of the atoms reaches a critical fraction of the nearest-
neighbour distance, so it relates melting to a vibrational instability. The Born criterion instead
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is related to an elastic instability, i.e. melting occurs when the shear modulus vanishes and the
crystal no longer has the rigidity to withstand melting.

Experimentally, a number of high pressure melting curves of different materials have been
measured, including Cu [12], Ta [13, 14], Mo [13, 15], W, V, Ti, Cr [13], Al [1–3], Mg, Sr, Ca,
Ba [17], MgO [18] and Fe [19, 20, 6, 7, 21, 4, 5, 22]. At zero pressure these measurements
are mainly performed in diamond-anvil cells (DAC) and present relatively few problems. As
pressure is increased beyond about 100 GPa DAC experiments become progressively more
difficult, and above 200 GPa the only data available are those based on shock wave (SW)
experiments. It is important to note, however, that even in the low pressure region some DAC
experiments seem to show problems. An historical example is the low pressure melting curve
of iron, for which discrepancies between different groups at 50–60 GPa are still of the order of
500 K [20, 6, 7]. Discrepancies between DAC melting curves extrapolated to high pressure and
data extracted from SW experiments do not always agree. Unlike the case of Al, for which DAC
and SW agree very well [1–3],we can find disagreements in Fe of up to 1000 K [20, 6, 7, 4, 5, 22]
(depending on which DAC melting curves one considers). Disagreement between DAC and
SW becomes spectacular in Ta and Mo, with differences in Tm estimated to be up to 6000 K
at 300 GPa [13–15]. It is well known that in SW experiments temperatures are not measured,
but rather estimated using some assumption for the Grüneisen parameter and the specific heat.
Therefore it is mandatory to use some caution when considering melting temperatures based
on SW. However, data based on DAC should also be considered with care, especially in light
of the large discrepancies still present for iron. These large discrepancies point to unresolved
problems in the DAC community. Estimates of Tm from DAC have at least three sources
of uncertainties. The first is that temperature is often measured by fitting emission data to
black body radiation, which therefore implies knowledge of the emissivity as a function of
light wavelength λ and pressure p. This is not always known, so the assumption of the
independence of the emissivity on λ and p is usually used. The second problem is with the
identification of melting. For example, for determining the melting temperature of Fe, in some
cases [20] melting was determined visually as the onset of convective motion on the surface.
As pointed out by Shen et al [16] visual observation (fluid flow) is less obvious as pressure
increases, with the existence of temperature gaps between occasional small movement (not
fluid flow) and fluid-like motion. Therefore there is difficulty in identifying the precise onset
of melting. In other cases [6] the appearance of x-ray diffraction peaks was used as a signature
of the presence of the crystalline phase. In this case one can only be sure of the presence of
the crystalline solid, as the disappearance of the diffraction peaks does not necessarily mean
melting, so these measurements only provide a lower bound to the melting temperature. A
second problem of this technique is that x-ray diffraction peaks come from the bulk, and if the
sample is heated from the surface with a laser, the bulk is usually at a lower temperature than
the surface. Therefore this lower bound of the melting temperature can be overestimated. A
third problem in the experiments is the possibility of super-heating or under-cooling. This has
sometimes been used to address the problem of the differences in the melting temperatures of
Fe, V, Mo, W and Ta between DAC and SW experiments. However, recently Luo et al [23]
analysed the systematics of super-heating and under-cooling and showed that super-heating
would have to be too large to explain these differences.

An alternative approach to the experimental melting of materials is based on determining
Tm by theoretical calculations which go beyond the Lindemann and/or the Born criteria. These
calculations are based on explicit simulations of materials in which the interatomic interactions
are accurately modelled. The first calculations of melting properties relied on the use of model
potentials constructed so as to reproduce some well known experimental properties of the
material. More recently, with the increased availability of large computer power, it has been
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possible to refine these models with the help of quantum mechanical calculations. It is now
possible to construct model potentials which accurately reproduce a wider range of physical
properties of the system, as calculated using quantum mechanics. Finally, in the past few years
it has even become possible to calculate melting curves directly from first principles, as shown
for the first time by Sugino and Car [24] who calculated the zero-pressure melting temperature
of Si using density functional theory (DFT) with the local density approximation (LDA), and
later by de Wijs et al [25] who used DFT-LDA to calculate the zero-pressure melting point of Al.

The melting temperature Tm at a chosen pressure p is defined by the point where the Gibbs
free energy of solid and liquid are equal:

Gsolid(p, Tm) = G liquid(p, Tm). (1)

Two different approaches to melting have traditionally been used. The first is based to the
explicit calculation of Gsolid and G liquid as a function of pressure and temperature. We call
this the free energy approach. The second approach is based on the explicit simulation of
solid and liquid in coexistence. We call this the coexistence approach. Melting curves based
on either of these two techniques and classical model potentials are available for a number
of materials, including MgO [26, 27], Al [28–31], Fe [32, 9, 8], Cu [33, 34] and Ta [35].
Some of these calculations reproduce very accurately the experiments, as for Al and Cu for
example, but this is not the case for MgO, Fe and Ta. For MgO there is a large discrepancy
in the slopes of the melting curve between the experiments of Zerr and Boehler [18], who
report a very low value of dTm/d p ≈ 30 G GPa−1 and the calculations of Vočadlo and
Price [26], with dTm/d p ≈ 100 G GPa−1. Recently Tangey and Scandolo [27] have used a
much more refined interatomic potential for MgO which reproduces extremely well a number
of physical properties, including the whole phonon spectrum. They calculate the value of the
melting slope at zero pressure to be between 152 and 170 K GPa−1. The discrepancy with
the experiment of Zerr and Boehler [18] is serious. The melting of Ta has been calculated
recently by Moriarty et al [35], using the model generalized pseudopotential theory. This
is a highly sophisticated approach in which the interaction potential is formally written as
the sum of two-, three- and four-body terms. These terms are then parametrized and the
parameters are fitted to full quantum mechanical calculations. The calculated melting curve
is in very good agreement with the shock datum, but again is in very serious disagreement
with the extrapolations of DAC experiments [13]. Once again, the calculated slope of the
melting temperature is much larger than the experimental one. For Fe the situation is more
complicated, as a relatively large number of experiments and calculations exist to date. At low
pressure (<75 GPa) the results of Boehler [20] are about 500 K lower than the more recent
findings of Shen et al [6], which are reported to be a lower bound to the melting temperature.
At high pressure the extrapolations of the DAC measurements of Boehler fall well below the
shock datum of Brown and McQueen [4] and the more recent experiments of Nguyen and
Holmes [5]. Recently, calculations of the melting curve of Fe based on model potentials have
shown significant discrepancies. The Laio et al [8] calculations are in agreement with the
melting curve of Boehler [20], but Belonoshko et al [9] find appreciably larger temperatures.
These calculations were based on model potentials fitted to quantum mechanical calculations
so, as is usually the case, there is no guarantee that these models can reproduce the physical
properties of materials away from the region where they have been constructed. In particular,
to accurately predict the melting temperature the model is required to describe both solid
and liquid with the same quality. Since melting is defined by the point where the Gibbs free
energies of solid and liquid are equal, a small error in the description of the energy differences
between solid and liquid can result in a large error in the melting temperature. We return to
this issue below.
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Recently, we have approached the problem of melting from a different point of view: we
have calculated the melting curves of Fe [36, 37], Al [39, 40] and Cu [41] using direct quantum
mechanical calculations. In this paper we summarize the main ideas which are at the root of
our calculations and we report the melting curves of Fe and Al. The melting curve of Cu will
be reported elsewhere [41].

We have used two approaches to the problem of melting. First, we have explicitly
calculated the free energy of solid and liquid and determined the melting curve from
equation (1). This has been applied both to Al [39] and Fe [36, 37]. Subsequently, we
have used the coexistence approach for Fe [38] with a model, as a full quantum mechanical
simulation of solid and liquid iron in coexistence is still out of reach of current computational
power. We showed that, once appropriate corrections are introduced [38], the point on the
melting curve calculated using the model can be corrected to extract the full ab initio results
and the results are the same as those obtained from the full quantum mechanical free energy
approach.

Despite being still prohibitive for Fe, it has become possible to perform direct coexistence
simulations on Al, and we have recently used this approach to calculate the melting curve of
Al close to zero pressure. We showed that the results are in very good agreement with those
obtained from the free energy approach, as expected. These calculations will be reported
elsewhere [40].

2. Calculation methodology

The calculations are based on density functional theory (DFT) techniques [42]. The exchange-
correlation functional Exc is the generalized gradient approximation known as Perdew–Wang
1991 [43, 44]. For Al we used the ultrasoft pseudopotential method [45]. For Fe, we used the
projector-augmented-wave (PAW) implementation of DFT [46–48], a technique that shares
the properties both of all-electron methods, such as full-potential linearized augmented plane
waves (FLAPW) [49], and the ultrasoft pseudopotential method [45]. The calculations were
done using the VASP code [50, 51], with the implementation of an efficient extrapolation
of the electronic charge density [52]. Brillouin-zone (BZ) sampling was performed using
Monkhorst–Pack (MP) special points [53]. Convergence with respect to BZ sampling was
carefully checked in all cases. The plane wave cut-off was 130 eV for Al and 300 eV for Fe.
The time step used in the dynamical simulations was 3 fs for Al and 1 fs for Fe.

2.1. Free energies

The techniques used to calculate free energies for solids and liquids have been reported and
extensively discussed in previous papers [54, 37], so we only outline the main ideas here. The
Helmholtz free energy of a system of N atoms in a volume V at temperature T is given by

F = −kBT ln

{
1

N!�3N

∫
dR1 · · · dRN exp[−βU(R1, . . . , RN ; T )]

}
, (2)

where � = h/(2π MkBT )1/2 is the thermal wavelength, with M being the nuclear mass,
β = 1/kBT , h is the Planck constant and kB is the Boltzmann constant. We emphasize that
U(R1, . . . , RN ; T ) is the free energy of the electrons in the system and therefore depends
on T . A direct use of equation (2) to calculate the free energy of the system is impractical,
as one would need to know the value of the (free) energy U for every position of the atoms
in the system. An alternative approach is to use the technique known as thermodynamic
integration (see, for example, [55]), which is a completely general procedure for determining



Melting curve of materials: theory versus experiments S977

the difference of free energies F1–F0 of two systems whose total-energy functions are U1

and U0. The basic idea is that F1–F0 represents the reversible work done on continuously and
isothermally switching the energy function from U0 to U1. To do this switching, a continuously
variable energy function Uλ is defined as

Uλ = (1 − λ)U0 + λU1, (3)

so that the energy goes from U0 to U1 as λ goes from 0 to 1. In classical statistical mechanics,
the work done in an infinitesimal change dλ is

dF = 〈dUλ/dλ〉λ dλ = 〈U1 − U0〉λ dλ, (4)

where 〈·〉λ represents the thermal average evaluated for the system governed by Uλ. It follows
that

F1 − F0 =
∫ 1

0
dλ 〈U1 − U0〉λ. (5)

In practice, this formula can be applied by calculating 〈U1 − U0〉λ for a suitable set of λ values
and performing the integration numerically. The average 〈U1 − U0〉λ is evaluated by sampling
over configuration space. It is obvious that the final result for F1 does not depend on the
particular choice of the reference system, but the computational effort crucially depends on
this choice. The reason for this is that in order to evaluate the quantity 〈U1 − U0〉λ with a
chosen statistical accuracy one needs to sample the phase space at a number of points which
depends on the size of the fluctuations of U1 − U0, so it is important to look for a reference
system which minimizes the size of these fluctuations.

2.2. Solid–liquid coexistence

In this section we discuss the coexistence approach. With this method solid and liquid are
simulated in coexistence and the p, T values extracted from the simulation give a point on the
melting curve. The method can be implemented in a number of different ways. In the work
of Morris et al [30], coexisting solid and liquid Al were simulated with the total number of
atoms N , volume V and internal energy E fixed. They showed that, provided V and E are
appropriately chosen, the two phases coexist stably over long periods of time and the average
pressure p and temperature T in the system give a point on the melting curve. An alternative
procedure would be to simulate at constant (N, V , T ). Yet another approach was used in the
work of Laio et al [8] on the high-pressure melting of Fe; this used constant-stress simulations,
with enthalpy almost exactly conserved. The approach of Belonoshko et al [9] is different
again. Here, the (N, p, T ) ensemble is used. The system initially contains coexisting solid
and liquid, but since p and T generally do not lie on the melting line the system ultimately
becomes entirely solid or liquid. This approach does not directly yield points on the melting
curve, but instead provides upper or lower bounds, so that a series of simulations is needed
to locate the transition point. Whichever scheme is used, some way is needed of monitoring
which phases are present. In the (N, V , E) method of Morris et al [30], graphical inspection of
particle positions appears to have been used, supplemented by calculation of radial distribution
functions to confirm the crystal structure of the solid. In the (N, p, T ) method of Belonoshko
et al [9], the primary diagnostic is the discontinuity of volume as the system transforms from
solid to liquid.

As mentioned earlier in the paper, since the coexistence method is intrinsically
computationally more demanding than the free energy approach, all the calculations of melting
properties performed so far have been done using classical potentials, including the melting
curves of Fe produced by Laio et al [8] and Belonoshko et al [9]. It follows, as noted earlier,
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that the melting properties are those of the potentials used in the calculations. In particular,
the melting curves will in general be different from those that would be obtained by a direct
coexistence simulation using first-principles calculations. However, as we showed in our
previous paper [38], it is possible to assess these errors and correct them, which is done as
follows.

The difference in the melting temperature at a fixed pressure can be formulated in terms of
the differences of the Gibbs free energies between the model potential and the ab initio system.
At a chosen pressure p, the melting temperatures of the two systems TAI and Tmod are defined
by: G ls

AI(p, TAI) = 0 and G ls
mod(p, Tmod) = 0, where G ls is the difference between the Gibbs

free energies of the liquid and solid. The ab initio and the model potential melting temperatures
are different, in general, because G ls

AI(p, Tmod) �= 0. Working at the given pressure, we take
the variable p as read and express the ab initio value of G ls as

G ls
AI(T ) = G ls

mod + ζ�G ls(T ), (6)

where we denote differences between the ab initio system and the model potential with the
symbol � and the parameter ζ is introduced so that the ab initio melting temperature TAI can
be written as a power series:

TAI = Tmod + ζ T ′ + · · · . (7)

Since the Gibbs free energies are equal in the two phases, this TAI is the solution of G ls
AI(T ) = 0,

which is

G ls
mod(Tmod + ζ T ′ + · · ·) + ζ�G ls(Tmod + ζ T ′ + · · ·) = 0. (8)

Expanding in powers of ζ and equating powers, one obtains for T ′:

T ′ = �G ls(Tmod)/Sls
mod (9)

where Sls
mod is the entropy of fusion of the model potential. Since entropies of fusion are

of the order of kB/atom, then a difference �G ls of 10 meV/atom implies a shift of melting
temperature of about 100 K, so that substantial errors will need to be corrected for unless
the reference total energy function matches the ab initio one very precisely. The free energy
differences �G ls can be calculated using thermodynamic integration, or if the model potentials
mimic the ab initio system closely enough, a perturbational approach. If the calculations are
performed in the (N, V , T ) ensemble it is easy to show that

�F = 〈�U〉mod − 1
2 β〈δ�U 2〉mod + · · · , (10)

where δ�U ≡ �U − 〈�U〉mod and the averages are taken in the model potential ensemble.
The relation between �G and �F , is readily shown to be

�G = �F − 1
2 V κT �p2, (11)

where κT is the isothermal compressibility and �p is the change of pressure when Umod is
replaced by UAI at constant V and T .

3. Results and discussion

3.1. Aluminium

In figure 1 we report the melting curve of Al (full curve) compared with the DAC experiments
of [1, 2] and the SW experiments of [3]. The agreement is exceptionally good and,as mentioned
in the introduction Al is one special case in which DAC and SW experiments agree very well.

We want to discuss one technical point here which will become particularly important
in the discussion of the results for Fe. As mentioned in our previous paper [39], the GGA
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Figure 1. Comparison of our calculated melting curve of Al with experimental results. Full and
dotted curves: our results from [39] without and with free-energy correction (see the text); diamonds
and triangles: DAC measurements of [1] and [2], respectively; squares: shock experiments of [3].

does not describe the zero-pressure phonon spectrum of Al very accurately. The reason can
be traced to the calculated GGA zero-pressure lattice parameter, which is calculated to be too
large. This error directly propagates in the Gibbs free energy and therefore affects the melting
curve. We noted [39] that if the phonons are calculated at the experimental lattice parameter
then the agreement with experiments is excellent. Therefore, we devised a correction to the
Helmholtz free energy such that the pressure is rectified:

Fcorr = F + δpV . (12)

Using Fcorr in our calculations we found the corrected melting curve, represented by the dotted
curve in figure 1, where we assumed δP to be the same in the whole P/T range. The zero-
pressure corrected melting temperature is 912 K, which is in very good agreement with the
experimental value 933 K. The correction is less important at high pressure, where dTm/dP
is smaller.

3.2. Iron

In figure 2 we report the melting curve of Fe (full curve) compared with the DAC experiments
of [20, 6, 19, 7], the SW experiments of [4, 5, 22] and the calculations of [8, 9]. The early
results of Williams et al [19] lie considerably above those of other groups and are now generally
discounted. This still leaves a range of about 400 K in the experimental Tm at 100 GPa. Even
allowing for this uncertainty, we acknowledge that our melting curve lies appreciably above
the surviving DAC curves, with our Tm being above that of Shen et al [6] by about 400 K at
100 GPa. Our melting curve agrees quite well with the SW results [4, 5].

On the same figure we also report the corrected melting curve (broken curve) resulting
from a modification of the Helmholtz free energy according to equation (12). Here we take the
pressure error δp ≡ −(∂δF/∂V )T to be linear in the volume, so that δF can be represented
as δF = b1V + b2V 2, where b1 and b2 are adjustable parameters determined by least-squares
fitting to the experimental pressure. We find that this free-energy correction leads to a lowering
of the melting curve by about 350 K in the region of 50 GPa and by about 70 K in the region
of 300 GPa. This correction brings our low-temperature melting curve into quite respectable
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Figure 2. Comparison of our calculated melting curve of Fe with experimental and different
ab initio results: heavy solid and long dashed curves: our results from [37, 38] work without and
with free-energy correction (see text); filled circles: present corrected coexistence results (see text);
dotted curve: ab initio results of [8]; light curve: ab initio results of [9]; chained curve and short
dashed curve: DAC measurements of [19] and [20]; open diamonds: DAC measurements of [6];
star: DAC measurements of [7]; open squares, open circle and full diamond: shock experiments
of [22, 4] and [5]. Error bars are those quoted in the original references.

agreement with the DAC measurements of Shen et al, while leaving the agreement with the
shock points of Nguyen and Holmes essentially unaffected. There is still a considerable
discrepancy with the DAC curve of Boehler [20] and the ab initio results of Laio et al [8].

We now turn the discussion to the discrepancies with the calculations of Laio et al [8] and
Belonoshko et al [9]. These two sets of calculations were performed using model potentials
fitted to ab initio simulations in different ways. As mentioned earlier, the melting curve
obtained in these calculations is necessarily the melting curve of the model potential, and not
the ab initio one. We have repeated the simulation of Belonoshko et al [9] at the two volumes
v = 7.12 and 8.6 and reproduced melting temperatures close to those originally calculated [9].
In figure 2 we report the melting temperatures at the pressures corresponding to these two
volumes after we applied the corrections described in section 2.2. As expected, the results are
in perfect agreement with those obtained using the free energy approach. This resolves the
discrepancies between the work of Belonoshko et al [9] and ours [36, 37]. We argue that a
similar argument would also resolve the discrepancies with the results of Laio et al [8].

4. Conclusions

We have reported the melting curve of Al in the pressure range 0–150 GPa and the melting curve
of Fe in the pressure range 50–350 GPa. Our calculations are based on quantum mechanics
within the framework of density functional theory, with the use of the generalized gradient
corrections. We have shown that our results are robust with respect to different approaches to
melting, namely the direct calculation of free energies or the coexistence approach with the
aid of a well constructed model potential. We believe that this work settles the issue regarding
the difference between our melting curve of iron [36, 37] and that calculated by Belonoshko
et al [9]. The other melting curve by Laio et al [8] is also based on the coexistence method
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and we argue that this also would come into close agreement with ours once the corrections
described here and our previous paper [38] are applied.

Our melting curve agrees quite well with the shock datum of Brown and McQueen [4] and
the point obtained from the measurements of Nguyen and Holmes [5]. It also agrees with the
low pressure DAC experiments of Shen et al [6], but there is still a considerable discrepancy
with the DAC data reported by Boehler [20]. We stress that large discrepancies still exist
between the DAC experiments performed in the group of Boehler and SW experiments for a
number of materials, including Fe, and especially Mo and Ta. Discrepancies between different
DAC experiments on Fe are also still very large. In particular, it appears that the slopes of the
melting curves obtained in the DAC experiments of the Boehler group are always very low. In
some cases, like W, Ta and Mo [13], the slopes even approach zero. This implies zero volume
change on melting, which is possible, but seems unlikely. We believe that more experimental
work is therefore needed in order to resolve these issues.
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[26] Vočadlo L and Price G D 1996 Phys. Chem. Minerals 23 42
[27] Tangey P and Scandolo S, unpublished
[28] Moriarty J A, Young D A and Ross M 1984 Phys. Rev. B 30 578
[29] Mei J and Davenport J W 1992 Phys. Rev. B 46 21
[30] Morris J R, Wang C Z, Ho K M and Chan C T 1994 Phys. Rev. B 49 3109
[31] Straub G K, Aidun J B, Willis J M, Sanchez-Castro C R and Wallace D C 1994 Phys. Rev. B 50 5055



S982 D Alfè et al
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