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The computational cost of quantum Monte Carlo (QMC) calculations of realistic periodic 
systems depends strongly on the method of storing and evaluating the many-particle wave 
function. Previous work by Williamson et al. (2001) [35] and Alfè and Gillan, (2004) [36]
has demonstrated the reduction of the O (N3) cost of evaluating the Slater determinant 
with planewaves to O (N2) using localized basis functions. We compare four polynomial 
approximations as basis functions – interpolating Lagrange polynomials, interpolating 
piecewise-polynomial-form (pp-) splines, and basis-form (B-) splines (interpolating and 
smoothing). All these basis functions provide a similar speedup relative to the planewave 
basis. The pp-splines have eight times the memory requirement of the other methods. To 
test the accuracy of the basis functions, we apply them to the ground state structures 
of Si, Al, and MgO. The polynomial approximations differ in accuracy most strongly for 
MgO, and smoothing B-splines most closely reproduce the planewave value for of the 
variational Monte Carlo energy. Using separate approximations for the Laplacian of the 
orbitals increases the accuracy sufficiently to justify the increased memory requirement, 
making smoothing B-splines, with separate approximation for the Laplacian, the preferred 
choice for approximating planewave-represented orbitals in QMC calculations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Quantum Monte Carlo (QMC) methods can accurately calculate the electronic structure of real materials [1–3]. The two 
most commonly used QMC methods for zero temperature calculations are variational Monte Carlo (VMC), which can com-
pute expectation values of operators for optimized trial wave functions, and fixed-node diffusion Monte Carlo (DMC), which 
improves upon VMC results by using the imaginary-time evolution operator to project the trial wave function onto the 
ground state subject to the fixed-node boundary condition [4]. QMC has been used to calculate a variety of properties such 
as cohesive energies, defect formation energies, and phase transition pressures [5–32]. The accuracy is limited mostly by 
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the fixed-node approximation [4,22] and the computational power required to reduce statistical uncertainty (the subject of 
this paper).

Minimizing the time for a QMC calculation of a property (e.g., energy) to a given statistical accuracy requires minimizing 
the evaluation cost of the orbitals – used in the trial wave function �(R) – at each sampling point R of the electron 
coordinates. The QMC energy, EQMC, is a weighted average of the local energy,

E L(R) = H�(R)

�(R)
, (1)

at NMC stochastically-chosen configurations:

EQMC = 1

NMC

NMC∑
i=1

wi E L(Ri). (2)

The statistical uncertainty in EQMC is proportional to 1/
√

NMC. Thus, repeated evaluation of the wave function �(R) and 
the Hamiltonian H acting on the wave function, which requires both the wave function and its first and second derivatives, 
reduces the statistical uncertainty in the calculated property. The root-mean-square fluctuation of the local energy in VMC

σVMC =
√√√√ 1

NMC

NMC∑
i=1

(E L(Ri) − EVMC)2 (3)

indicates the quality of �(R) because the individual local energies equal the average when �(R) is an exact eigenfunction 
of H . QMC simulations frequently use the Slater–Jastrow form of the wave function [1], �(R) = J (R)D(R), where J (R)

is a Jastrow factor [33] (in this work, a simple electron–electron Jastrow with no free parameters is used to impose the 
electron–electron cusp condition) and D(R) is a Slater determinant [34] of single-particle orbitals.

The orbitals used in QMC wave functions typically come from density-functional or Hartree–Fock calculations and, in 
periodic systems, are Bloch functions of the form

φnk(r) = unk(r)eik·r, (4)

where unk(r) has the periodicity of the crystal lattice, n is the band index, and k the crystal momentum. The periodic 
function, unk(r), is represented by a linear combination of basis functions. Frequently QMC calculations are performed using 
simulation cells larger than the primitive cell to reduce Coulomb finite-size errors. However, since unk(r) is periodic in the 
primitive cell, representing it by basis-function expansions in just the primitive cell is sufficient to simulate larger cells.

The computational cost per N-electron Monte Carlo move of evaluating the Slater determinant is O(N3), when spatially-
extended basis functions are used to represent the orbitals, since N orbitals are evaluated for each of the N electrons, and 
each orbital is a sum over O (N) basis functions. Spatially-localized basis functions avoid the linear scaling of the number of 
basis functions with system size since only those basis functions that are non-zero at a given point contribute to the wave 
function value at that point, resulting in O(N2) scaling.

Planewaves, despite their undesirable scaling, are a popular choice for basis functions for the density-functional and 
Hartree–Fock methods because of their desirable analytic properties. The advantage of a planewave representation is 
that planewaves form an orthogonal basis, and, in the infinite sum, a complete single-particle basis. Thus, adding more 
planewaves to a truncated basis (as is always used in practice) systematically improves the wave function representation 
towards the infinite single-particle basis limit. The energy of the highest frequency planewave included in the sum, the cut-
off energy Ecut = h̄2Gcut

2/2 me, characterizes a given truncated planewave basis by setting the smallest length scale about 
which the wave function has information. Thus, a planewave-based orbital φPW is a sum over each planewave G below the 
cutoff multiplying a real- or complex-valued coefficient cGnk unique to that planewave, the band index n, and the crystal 
momentum k:

unk(r) = φPW(r) =
∑

G

cGnk exp(ıG · r). (5)

Williamson et al. [35] first applied the pp-form spline interpolation method to approximate planewave-based orbitals 
by localized basis functions in QMC calculations. They report an O (N) reduction in the time scaling. Alfè and Gillan [36]
introducing the related method of B-spline approximation in QMC, report significant reduction in the calculation time while 
maintaining planewave-level accuracy.

This work compares the three methods previously applied to QMC (pp-splines [35], interpolating B-splines [37], and 
smoothing B-splines [36,38]) with a fourth method (Lagrange polynomials) originally implemented by one of us in QMC but 
heretofore unpublished. Section 2 introduces, compares and contrasts the four methods. Section 3.1 compares the accuracy 
of the polynomial methods in reproducing the QMC energies and fluctuations in the local energy relative to the corre-
sponding values from the planewave expansion. Section 3.1 also studies whether it is advantageous to construct separate 
approximations for the gradient and the Laplacian of the orbitals. Section 3.2 compares the time cost in QMC calculations of 
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polynomial methods and planewave expansions. Section 3.3 compares the memory requirements of the polynomial meth-
ods and planewaves. Section 4 concludes that higher accuracy and lower memory requirement make smoothing B-splines, 
with a separate approximation for the Laplacian, the best choice. Appendix A describes the details of the approximating 
polynomials.

2. Methods

The four methods of approximating the planewave-represented single-particle orbitals with polynomials that we study in 
this paper are: interpolating Lagrange polynomials [39], interpolating piecewise-polynomial-form splines (pp-splines) [40]
(often simply called interpolating splines), and basis-form splines (B-splines) (both interpolating [40,41] and smoothing 
[36,38]). For the pp-splines, we employ the Princeton pspline package [42], and, for interpolating B-splines, the einspline

package [43], interfaced to the champ QMC program [44].
Common features. The methods share several aspects. They construct the orbital approximation by a trivariate polynomial 

tensor product. Each of the methods can employ polynomials of arbitrary order, n. We use cubic polynomials, the customary 
choice. The methods transform the Cartesian coordinates to reduced coordinates prior to evaluating the polynomial approxi-
mation (see Eq. (7) and the Coordinate paragraph). They use a grid of real-space points with associated coefficients and have 
a natural grid spacing defined by the highest-energy planewave in the planewave sum representing the orbital (see Eq. (6)
and the Grid paragraph). They share two possibilities for evaluating the required derivatives of a polynomial-represented 
function: (1) derivatives of the polynomials or (2) separate polynomial approximations of the planewave-represented deriva-
tives.

Distinctive features. As Lagrange-interpolated functions have discontinuous derivatives at the grid points, ensuring conti-
nuity in the derivative-dependent energies requires a separate interpolation for each of the components of the gradient and 
for the Laplacian of the orbitals, increasing the memory requirement by a factor of five. In contrast to Lagrange interpolation, 
splines of degree n have continuous derivatives up to order n − 1 at the grid points, and, thus, the gradient and Laplacian of 
the splined function can approximate the gradient and Laplacian of the planewave sum, though this choice leads to a loss of 
accuracy. Spline functions have two free parameters in each dimension that are used to set the boundary conditions. Since 
planewave-based orbitals are periodic, we choose the boundary conditions to have matching first and second derivatives 
at the boundaries in each dimension. The formulation of both B-splines and pp-splines may be either interpolating (exact 
function values at the grid points) [43] or smoothing [36,38]. Smoothing splines are advantageous when the data is noisy, 
but this is not the case in our application. Instead, our rationale is the following: the planewave coefficients of each orbital 
specify that orbital, and the particular form of smoothing spline we use [36,38] is constructed to exactly reproduce the 
nonzero coefficients (see Appendix A.3.2) although the truncated, cubic order of the polynomials means that the smooth-
ing spline is still an approximation and does not exactly reproduce the planewave sum at any particular point, including 
the grid points. The approximation of using any spline (either smoothing or interpolating) to approximate the planewave 
sum carries particular ramifications for the accuracy of the orbital derivatives since the Laplacian of the spline will be two 
polynomial orders smaller than the spline itself. For the case presented in this work, the Laplacian of a cubic-order spline 
is a first-order polynomial and hence provides a very coarse approximation of the Laplacian of the original planewave sum. 
Section 3.1 compares the outcome of these choices on the accuracy. Since fixing the values at the grid points and specify-
ing the boundary conditions uniquely determines the interpolating spline function, interpolating B-splines and pp-splines 
yield identical function values [40]. Due to the reduced number of coefficients stored per point, interpolating B-splines are 
preferable to pp-splines provided the time required for their evaluation is not larger than for pp-splines.

Grid. Each of the interpolation methods permits either uniform or nonuniform grids. For simplicity, we employ uni-
form grids, but the number of grid points in each dimension needs not be the same. The highest-energy planewave in the 
planewave sum representing a given orbital defines a natural maximal grid spacing, above which short length scale informa-
tion is lost. One point per maximum and minimum of the highest-energy planewave Gmax, or two points per wavelength, 
λmin = 2π/Gmax, defines this natural spacing hnatural:

hnatural = λmin

2
= π

Gmax
. (6)

Coordinates. To simplify the form of the polynomials for the evaluation of the splines, we formulate the methods such 
that the point where the function is evaluated lies in the interval [0, 1) in each dimension. The spline evaluation for a given 
point requires the coefficients at the four neighboring grid points in each dimension and requires transforming the Cartesian 
coordinates to reduced coordinates. The primitive-cell lattice vectors of the crystal ai need not be orthogonal. The reduced 
vector, r̃ = (r̃1, ̃r2, ̃r3) = (x̃, ỹ, ̃z), corresponding to the Cartesian vector r, is

r̃i = Ngrid,i

((
a−1r

)
i
− �

(
a−1r

)
i
�
)

− �Ngrid,i

((
a−1r

)
i
− �

(
a−1r

)
i
�
)
�, (7)

where � � is the floor function, which returns the integer part of a number and a is the 3 × 3 matrix of lattice vec-
tors ai . Multiplying the Cartesian coordinate by a−1 transforms it to crystal coordinates. Subtracting the integer part of 
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Fig. 1. (Color online.) Relative mean absolute error of the orbitals, gradient of the orbitals, and Laplacian of the orbitals as a function of planewave cutoff 
in rock-salt MgO (chosen for greatest contrast in results) at natural grid spacing for each of the approximation methods: Lagrange polynomials (squares), 
pp-splines and interpolating B-splines (diamonds), and smoothing B-splines (triangles). Error bars indicate one standard deviation from the mean of the 
data point. The error in the gradient and Laplacian of the orbitals is the error in a direct approximation of the gradient and Laplacian, respectively, of the 
orbital, not the gradient or Laplacian of an approximation of the orbital. The large fluctuation in the error of the Laplacian is due to the small, stochastically 
chosen sample used to calculate the mean. Smoothing B-splines show the smallest error relative to the planewave value at all grid spacings although the 
statistical uncertainty in the average over the components of the gradient obscures that result.

the crystal coordinates forces the coordinate inside the primitive cell, restricting the magnitude of the coordinate val-
ues to be between zero and one. Multiplying the crystal coordinates by the number of grid points Ngrid,i along the ith
lattice vector transforms the crystal coordinates into units of the grid point interval. Subtracting the integer part of the 
interval-unit crystal coordinate (i.e., the index of the grid point smaller than and closest to ri ) yields the reduced coordi-
nate r̃, each component of which is in the interval [0, 1). To obtain the Cartesian coordinate gradient and Laplacian starting 
from the reduced coordinate gradient and Hessian requires we use the chain rule, yielding ∇φ(r) = Ngrid,i(a−1)T∇̃φ(r̃) and 
∇2φ(r) = Ngrid,i

2 ∑
i, j((a−1)(a−1)T)i j∂

2φ(r̃)/∂ r̃i∂ r̃ j . Appendix A gives the explicit forms of the approximating functions.

3. Results

Three quantities compare the performance of Lagrange interpolation, pp-spline interpolation, B-spline interpolation and 
B-spline smoothing, within quantum Monte Carlo calculations of periodic systems: (i) the accuracy in reproducing the 
planewave orbital values, (ii) the speedup from the planewave-based calculation, and (iii) the computer memory required.

The results presented in this section are obtained for single-particle orbitals at the � point, that are obtained with the 
LDA exchange-correlation functional in density functional theory and Troullier–Martins pseudopotentials [45].1

3.1. Accuracy

To understand the accuracy of the polynomial approximation to the planewave sum in the context of QMC, we compare 
the error in the orbital value, gradient of the orbital, Laplacian of the orbital, the total VMC energy, and the root-mean-
square fluctuation in the VMC local energy relative to the corresponding quantity computed using the planewave sum. 
Increasing the planewave cutoff tests the accuracy of the approximations as the planewave basis becomes more complete.2

We find that the choice of k-point in our test does not affect the conclusions as similar results were obtained for various 
k-points (�, L, and X high-symmetry points in diamond Si) and different simulation cell sizes (2, 8, 16, and 32-atom cells in 
diamond Si). However, significant differences in accuracy of the approximations occur for the three different materials tested, 
diamond Si, fcc Al and rock-salt MgO (see Appendix B). Since the approximation methods show the greatest differences from 
each other for the case of MgO in the rock-salt structure, we focus here on those results.

Fig. 1 shows the relative mean absolute error in the orbital, its gradient, and its Laplacian as a function of the planewave 
cutoff for the four approximation methods at natural grid spacing in rock-salt MgO. The relative mean absolute error is 

1 Mg – valence configuration: 2s22p63d0.1, cutoff radii = 1.20, 1.50, 1.80 a.u. respectively. O – valence configuration: 2s22p43d0, cutoff radii =
1.0, 1.0, 1.0 a.u. respectively with Hamann’s generalized state method [46] for the d-channel. Si – valence configuration: 3s23p23d0, cutoff radii =
2.25, 2.25, 2.25 a.u. respectively. Al – valence configuration: 3s23p13d0, cutoff radii = 2.28, 2.28, 2.28 a.u. respectively with the generalized state method 
for the d-channel.

2 Reducing the grid spacing for fixed planewave cutoff results in all quantities converging to their planewave values for the selected cutoff (see Ap-
pendix B).
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Fig. 2. (Color online.) VMC total energy as a function of planewave basis cutoff in rock-salt MgO for each of the approximation methods at the natural 
grid spacing for that cutoff. Error bars on points indicate one standard deviation of statistical uncertainty in the total energies. Smoothing B-splines with 
separate approximations for the orbitals and the Laplacian of the orbitals lie within one standard deviation of statistical uncertainty of the planewave value 
for all cutoffs tested. (Note: Lagrange polynomials appear on the figure only at a cutoff of 250 Ha [≈ 6800 eV].)

Fig. 3. (Color online.) Root-mean-square fluctuation of the VMC local energy, σ , as a function of planewave basis cutoff in rock-salt MgO for each of the 
approximation methods at the natural grid spacing for that cutoff. Error bars on points indicate one standard deviation of statistical uncertainty in the 
values. Once the planewave value has converged, near 120 Ha (≈ 3270 eV), the smoothing B-splines with a separate approximation for the Laplacian is 
within statistical uncertainty of the planewave σ . (Note: Lagrange polynomials and smoothing B-splines without separate approximation for the Laplacian 
appear on the figure only at a cutoff of 250 Ha [≈ 6800 eV] – interpolating B-splines without separate interpolation for the Laplacian do not appear at all 
on this scale.)

the mean absolute error divided by the mean absolute value computed from the planewave sum. Since pp-splines and 
interpolating B-splines give identical function values [40], they lie on a single curve and set of points.

For each of the approximations, the gradient and Laplacian used by the QMC calculation can be obtained either by 
taking derivatives of the polynomial-approximated orbital, or, by constructing separate polynomial approximations for the 
gradient and the Laplacian of the planewave sum. The central and lower panels of Fig. 1 show the accuracy of separate 
approximations of the gradient and Laplacian of the planewave sum. When separately approximating any derivatives of the 
orbitals, the resulting energy need not be an upper bound to the true energy, but the separate approximations recover the 
planewave value in the limit of infinite basis set.

Spline interpolation is more accurate than Lagrange interpolation for all planewave cutoffs. Splines utilize all the tabu-
lated function values (a global approximation) to enforce first and second derivative continuity across grid points, whereas 
Lagrange interpolation uses just the closest 64 points (a local approximation) and has derivative discontinuities at the grid 
points. This leads to larger fluctuations in the error of Lagrange interpolation compared to splines.

Figs. 2 and 3 show the quantities of importance to QMC calculations, the total VMC energy EVMC and the standard devi-
ation of the local energy σVMC, respectively, as a function of planewave cutoff in rock-salt MgO for the four approximations. 
The deviations of EVMC and σVMC from the planewave values reflect the errors in the orbitals, their gradients and Laplacian. 
Smoothing B-splines are more accurate than interpolating splines, which in turn are more accurate than Lagrange interpola-
tion. Furthermore, separately approximating the Laplacian in the spline approximations significantly improves the accuracy 
of EVMC and σVMC while separate approximation of the gradient (shown for interpolating but not smoothing B-splines) 
makes no statistically significant change to the accuracy of these quantities. The standard deviation of the local energy σVMC
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Fig. 4. (Color online.) VMC time per Monte Carlo step versus number of atoms. All three approximations speed up the planewave calculation by a factor 
of O (N) with nearly the same prefactor, recommending all approximation methods equally on the basis of speed. Further optimization of the smoothing 
B-splines routines has reduced the time scaling prefactor by an order of magnitude from the data shown here. The similarity in form of the approximation 
methods (see Eqs. (A.3), (A.12), (A.19)) and the fact that all methods need to retrieve a similar number of coefficients from memory account for the 
similarity in evaluation speed despite differences in approximation properties.

is more sensitive than the total energy EVMC to the errors in the approximations because errors in the local energies par-
tially cancel when averaging the local energy to obtain EVMC. In all systems tested, convergence of EVMC to within 1 mHa 
is observed for planewave cutoff energies 9–25 Ha smaller than for the convergence of σVMC to the same level.

3.2. Speedup

Fig. 4 illustrates that the three methods of polynomial approximation speed up the planewave calculation by the same 
factor which scales as O (N). Tests on three different computer platforms (3.0 GHz Intel Pentium 4, 2.4 GHz Intel Xeon, 
900 MHz Intel Itanium 2) show that the time scaling (in seconds) with the number of atoms N for the approximating 
polynomials is of the order of 10−4 N2 + 10−6 N3 compared to the scaling for planewaves of 10−3 N3. The difference in 
computational time between the Lagrange polynomials and the B-splines is less than 10% and varies between the different 
computers.

While pp-splines store eight coefficients at each grid point, and Lagrange interpolation and B-splines store just one, 
all methods require accessing the same number of coefficients (64 for cubic polynomials in 3D) from memory for each 
function evaluation. However, Lagrange and B-splines access one coefficient from each of the 64 nearest-neighbor points 
whereas pp-splines access eight coefficients from each of the eight nearest-neighbor points. This reduction in accessed 
neighbor points could make pp-splines faster since the data access is more local. However, the calculations show that, for 
the implementation of pp-splines used here [42], no speedup occurs in practice. Additionally, further optimization of the 
smoothing B-splines routines has reduced the time scaling prefactor by an order of magnitude.

3.3. Memory

At the natural grid spacing, the polynomial approximations store a total number of values equal to or greater than the 
number of planewaves, depending on the geometry used to select planewaves. If the planewave expansion includes only 
planewaves that lie within a parallelepiped defined by three reciprocal lattice vectors, then the number of grid points at 
natural spacing (see Eq. (6)) equals the number of planewave coefficients. However, it is customary to include planewaves in 
a sphere up to some energy cutoff in the planewave sum, in which case the number of grid points is larger than the number 
of planewave coefficients. For example, in a cubic lattice, the ratio of the number of grid points at natural grid spacing to 
the number of planewaves is the ratio of the volume of a cube to the volume of the inscribed sphere, namely 6/π . Overall 
memory usage in these types of calculations grows cubically with reducing grid spacing, linearly with increasing number of 
planewaves, and linearly with increasing number of orbitals.

Trivariate, cubic pp-splines store eight values per grid point for each function, namely the function values, the three 
second derivatives along each direction, three mixed fourth-order derivatives, and one mixed sixth-order derivative (see 
[42] or Eq. (A.13) for details). Lagrange interpolation and B-splines store only one value per grid point for each function. In 
the case of Lagrange interpolation, the stored values are the function values, whereas, for B-splines, the stored values are 
the derived B-spline coefficients (see Appendix A).

All the approximations can obtain the gradient and the Laplacian by either taking appropriate derivatives of the splined 
functions or by generating separate approximations for the gradient and the Laplacian. Separate approximations for the 
Laplacian increase the memory requirement by a factor of two, and, separate approximations for the Laplacian and the gra-
dient increase the memory requirement by a factor of five. Since the gradient and Laplacian of the Lagrange interpolation are 
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not continuous, we always use separate approximations for the Laplacian and the gradient when using Lagrange interpola-
tion. For splines, the increased accuracy achieved by using separate approximations warrants using separate approximations 
for the Laplacian but not for the gradient.

4. Conclusions

The four polynomial approximation methods – interpolating Lagrange polynomials, interpolating pp-splines, interpolating 
B-splines, and smoothing B-splines – speed up planewave-based quantum Monte Carlo (QMC) calculations by O (N), where 
N is the number of atoms in the system. At natural grid spacing, smoothing B-splines are more accurate than interpolat-
ing splines, which are in turn more accurate than Lagrange interpolation for all planewave cutoff values tested. Separately 
approximating the Laplacian of the orbitals results in the total energy and root-mean-square fluctuation of the local energy 
to be closest to the values obtained using the planewave sum. High accuracy and low memory requirement make smooth-
ing B-splines, with the Laplacian splined separately from the orbitals, the best choice for approximating planewave-based 
orbitals in QMC calculations.
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Appendix A. Explicit forms of approximation methods

A.1. Lagrange interpolation

In one dimension, the Lagrange interpolation formula for a function f (x) is

L(x) =
m+� n+1

2 �∑
i=m−� n

2 �
	i(x) f (xi) (A.1)

where the basis polynomials of order n are

	i(x) =
m+� n+1

2 �∏
j=m−� n

2 �, j �=i

x − x j

xi − x j
, (A.2)

where the grid point m is such that xm ≤ x < xm+1.
A tensor product of the one-dimensional basis constructs basis functions for representing multidimensional functions. 

Hence, the cubic Lagrange interpolation formula for the 3-dimensional orbital using the reduced coordinates of Eq. (7)
is

φLagr(x̃, ỹ, z̃) =
2∑

i=−1

	i(x̃)
2∑

j=−1

	 j( ỹ)

2∑
k=−1

	k(z̃) φPW(i, j,k), (A.3)

where

	i(x̃) =
2∏

j=−1, j �=i

x̃ − j

i − j
, (A.4)

or

	−1(x̃) = −1

6
x̃(x̃ − 1)(x̃ − 2)

= −1
x̃3 + 1

x̃2 − 1
x̃ (A.5a)
6 2 3
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	0(x̃) = 1

2
(x̃ + 1)(x̃ − 1)(x̃ − 2)

= 1

2
x̃3 − x̃2 − 1

2
x̃ + 1 (A.5b)

	1(x̃) = −1

2
(x̃ + 1)x̃(x̃ − 2)

= −1

2
x̃3 + 1

2
x̃2 + x̃ (A.5c)

	2(x̃) = 1

6
(x̃ + 1)x̃(x̃ − 1)

= 1

6
x̃3 − 1

6
x̃. (A.5d)

The basis may also be viewed as piecewise-defined functions centered at and symmetric about the grid points. The poly-
nomials then use grid-centered coordinates ξ = x̃ − xi , where xi is the coordinate of the grid point associated with the 
polynomial:

	(ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2 (|ξ | + 1)(|ξ | − 1)(|ξ | − 2)

= 1
2 |ξ |3 − ξ2 − 1

2 |ξ | + 1, 0 ≤ |ξ | < 1,

− 1
6 (|ξ | − 1)(|ξ | − 2)(|ξ | − 3)

= − 1
6 |ξ |3 + ξ2 − 11

6 |ξ | + 1, 1 ≤ |ξ | < 2,

0, |ξ | ≥ 2.

(A.6)

The first of these equations is obtained by substituting x̃ = ξ in Eq. (A.5b) or x̃ = ξ + 1 in Eq. (A.5c), and, the second by 
substituting x̃ = ξ − 1 in Eq. (A.5a) or x̃ = ξ + 2 in Eq. (A.5d). This basis does not have any continuous derivatives across 
grid points.

A.2. Piecewise-polynomial-form splines

Interpolating splines of degree n are piecewise nth-order polynomials that reproduce the function values at the grid 
points. The derivatives of the interpolating splines are continuous up to order n − 1 across the grid points but do not 
precisely match those of the function being approximated. In d dimensions, the implementation of pp-splines that we 
employ [42] stores 2d coefficients at each grid point. These coefficients are the function values and the 2d − 1 second 
derivatives.

In one dimension, the cubic pp-spline-represented single-particle orbital is:

φpp-spl(x̃) =
2∑

κ=1

1∑
i=0

sκi (x̃) σ κ
i . (A.7)

The cubic pp-spline basis polynomials sκi for uniform grid spacing are [52]:

s1
0(x̃) = −x̃ + 1 (A.8a)

s2
0(x̃) = −1

6
x̃3 + 1

2
x̃2 − 1

3
x̃ (A.8b)

s1
1(x̃) = x̃ (A.8c)

s2
1(x̃) = 1

6
x̃3 − 1

6
x̃. (A.8d)

In the grid-centered picture, the basis functions are:

s1(ξ) =
{−|ξ | + 1, 0 ≤ |ξ | < 1,

0, |ξ | ≥ 1
(A.9a)

s2(ξ) =
{− 1

6 |ξ |3 + 1
2 ξ2 − 1

3 |ξ |, 0 ≤ |ξ | < 1,

0, |ξ | ≥ 1.
(A.9b)

The cubic pp-spline coefficients σκ include the planewave values φPW at the grid points and the constructed second-
derivatives [42]:

σ 1
i = φPW(x̃i) (A.10a)

σ 2
i = ∂2φpp-spl(x̃)

∂ x̃2

∣∣∣∣ (A.10b)

x̃i



W.D. Parker et al. / Journal of Computational Physics 287 (2015) 77–87 85
The second derivatives are obtained by imposing the condition that the first and second derivatives be continuous at 
the grid points and two additional boundary conditions, which results in a matrix equation with a diagonally dominant 
matrix [52]. For periodic boundary conditions, the matrix equation is tridiagonal with corner elements

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 1 0 0 . . . 0 0 0 1
1 4 1 0 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 1 4 1 0
0 0 0 0 . . . 0 1 4 1
1 0 0 0 . . . 0 0 1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2(x̃1)
...

σ 2(x̃i)
...

σ 2(x̃Ngrid,x)

⎞
⎟⎟⎟⎟⎟⎟⎠

= 6

h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φPW(x̃Ngrid,x) − 2φPW(x̃1) + φPW(x̃2)

φPW(x̃1) − 2φPW(x̃2) + φPW(x̃3)
...

φPW(x̃i−1) − 2φPW(x̃i) + φPW(x̃i+1)
...

φPW(x̃Ngrid,x−1) − 2φPW(x̃Ngrid,x) + φPW(x̃1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A.11)

In three dimensions, the cubic pp-spline-represented single-particle orbital is:

φpp-spl(x̃, ỹ, z̃) =
2∑

κ,μ,ν=1

1∑
i=0

sκi (x̃)
1∑

j=0

sμj ( ỹ)

1∑
k=0

sνk (z̃) σ
κ,μ,ν
i, j,k . (A.12)

The trivariate cubic pp-spline coefficients σκ,μ,ν include the planewave values φPW at the knots and the constructed second-
derivatives and cross-derivatives [42]:

σ 1,1,1
i, j,k = φPW(x̃i, ỹi, z̃i) (A.13a)

σ 2,1,1
i, j,k = ∂2φpp-spl(x̃, ỹ, z̃)

∂ x̃2

∣∣∣∣
x̃i , ỹi ,z̃i

(A.13b)

σ 1,2,1
i, j,k = ∂2φpp-spl(x̃, ỹ, z̃)

∂ ỹ2

∣∣∣∣
x̃i , ỹi ,z̃i

(A.13c)

σ 1,1,2
i, j,k = ∂2φpp-spl(x̃, ỹ, z̃)

∂ z̃2

∣∣∣∣
x̃i , ỹi ,z̃i

(A.13d)

σ 2,2,1
i, j,k = ∂4φpp-spl(x̃, ỹ, z̃)

∂ x̃2∂ ỹ2

∣∣∣∣
x̃i , ỹi ,z̃i

(A.13e)

σ 1,2,2
i, j,k = ∂4φpp-spl(x̃, ỹ, z̃)

∂ ỹ2∂ z̃2

∣∣∣∣
x̃i , ỹi ,z̃i

(A.13f)

σ 2,1,2
i, j,k = ∂4φpp-spl(x̃, ỹ, z̃)

∂ z̃2∂ x̃2

∣∣∣∣
x̃i , ỹi ,z̃i

(A.13g)

σ 2,2,2
i, j,k = ∂6φpp-spl(x̃, ỹ, z̃)

∂ x̃2∂ ỹ2∂ z̃2

∣∣∣∣
x̃i , ỹi ,z̃i

. (A.13h)

A.3. B-splines

B-splines are a local basis for splines with one basis function centered at each grid point (or between grid points for 
even-order functions), such that each basis function is localized and has continuous value and derivative up to some order. 
Then, the resulting spline automatically has the same continuity. In 1D, an odd-degree B-spline function, bi(x̃), of degree n, 
is a piece-wise nth-order polynomial that is nonzero only in an interval of length n + 1 and has continuous value and 
derivatives up to order n − 1.

The general formula for a B-spline basis polynomial of degree k arises from a recurrence relation [40]

bk
j(x̃) = ωk

j(x̃)bk−1
j + (1 − ωk

j+1)b
k−1
j+1(x̃) (A.14)

where

ωk
j(x̃) = x̃ − x̃ j

x̃ j+k − x̃ j
(A.15)

and the B-spline basis polynomial of degree zero associated with grid point x̃ j is a constant C between x̃ j and x̃ j+1

b0
j =

{
C, x̃ j ≤ x̃ < x̃ j+1,

0, x̃ < x̃ or x̃ ≥ x̃ .
(A.16)
j j+1
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With this definition, the basis function bk
j(x̃) is nonzero in the interval (x̃ j, ̃x j+k+1). Instead, defining bk

j(x̃) so that bk
j(x̃) is 

nonzero in the interval (x̃ j−� k+1
2 �, ̃x j+� k+2

2 �) centers basis bk
j(x̃) at x̃ j for odd k. Choosing C = 3

2 so that the maximum of b3
j

equals one, the cubic (k = 3) B-spline basis polynomials for uniform grid spacing are

b−1(x̃) = −1

4
x̃3 + 3

4
x̃2 − 3

4
x̃ + 1

4
(A.17a)

b0(x̃) = 3

4
x̃3 − 3

2
x̃2 + 1 (A.17b)

b1(x̃) = −3

4
x̃3 + 3

4
x̃2 + 3

4
x̃ + 1

4
(A.17c)

b2(x̃) = 1

4
x̃3. (A.17d)

In the grid-centered picture (bi(x̃) = b(x̃ − x̃i)), the basis is [40]

b(ξ) =
⎧⎨
⎩

3
4 |ξ |3 − 3

2 ξ2 + 1, 0 ≤ |ξ | < 1,
1
4 (2 − |ξ |)3, 1 ≤ |ξ | < 2,

0, |ξ | ≥ 2.

(A.18)

This basis has continuous first and second derivatives across grid points.
The cubic B-spline-represented single-particle orbital in reduced coordinates is

φB-spl(x̃, ỹ, z̃) =
2∑

l=−1

bl(x̃)
2∑

m=−1

bm( ỹ)

2∑
n=−1

bn(z̃) βlmn (A.19)

A.3.1. Interpolating B-spline coefficients
To determine the interpolating B-spline coefficients, we expand the function φPW(x, y, z) at each of the grid points in 

the B-spline basis

Mx∑
l=1

M y∑
m=1

Mz∑
n=1

Bx
il B

y
jm Bz

kn βlmn = φPW(x̃i, ỹ j, z̃k), 1 ≤ i ≤ Mx, 1 ≤ j ≤ M y, 1 ≤ n ≤ Mz (A.20)

Bx
il B

y
jm Bz

kn = bl(x̃i)bm( ỹ j)bn(z̃k) is the value at (x̃i, ỹ j, ̃zk) of the basis function centered at grid point at (x̃i , ỹ j, ̃zk), and Mi

is the number of grid points in the ith direction. Since a cubic B-spline basis function is nonzero at only 3 grid points 
along the direction of each lattice vector the matrix B is triadic. For periodic or antiperiodic boundary conditions, B is 
tridiagonal with corner elements. Solving these equations in three stages [37] produces the B-spline coefficients, βlmn , at 
a computational cost of O(Mx M y Mz), which is negligible compared to the cost of the QMC calculation. An advantage of 
interpolating B-splines [43] over smoothing B-splines is that interpolations do not require an evenly-spaced grid.

A.3.2. Smoothing B-spline coefficients
Instead of choosing the B-spline coefficients to construct an interpolating approximation, an alternative is to choose them 

such that the Fourier components of the approximation exactly match the nonzero components of the planewave expansion. 
This gives

βlmn =
∑

G

cG

γG
exp(ı [G · (xl, ym, zn)]) (A.21)

where γG is the 3D Fourier transform of an individual basis spline [36,38]:

γG =
∏

m={x,y,z}

3 [3 − 4 cos(Gm) + cos(2Gm)]

Gm
4

= 24
∏

m={x,y,z}

(
sin(Gm/2))

Gm

)4

= 3

2

∏
m={x,y,z}

sinc4
(

Gm

2

)
. (A.22)

Fourier expanding the B-spline representation of Eq. (A.19) with the choice of βlmn given in Eq. (A.21) yields Fourier compo-
nents that exactly match the nonzero components of the planewave expansion. However, the B-spline has additional higher 
frequency components that are very small in magnitude.
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Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jcp.2015.01.037.
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