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Ab initio chemical potentials of solid and liquid solutions
and the chemistry of the Earth’s core
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A general set of methods is presented for calculating chemical potentials in solid and liquid mixtures
usingab initio techniques based on density functional theory~DFT!. The methods are designed to
give anab initio approach to treating chemical equilibrium between coexisting solid and liquid
solutions, and particularly the partitioning ratios of solutes between such solutions. For the liquid
phase, the methods are based on the general technique of thermodynamic integration, applied to
calculate the change of free energy associated with the continuous interconversion of solvent and
solute atoms, the required thermal averages being computed by DFT molecular dynamics
simulation. For the solid phase, free energies and hence chemical potentials are obtained using DFT
calculation of vibrational frequencies of systems containing substitutional solute atoms, with
anharmonic contributions calculated, where needed, by thermodynamic integration. The practical
use of the methods is illustrated by applying them to study chemical equilibrium between the outer
liquid and inner solid parts of the Earth’s core, modeled as solutions of S, Si, and O in Fe. The
calculations place strong constraints on the chemical composition of the core, and allow an estimate
of the temperature at the inner-core/outer-core boundary. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1464121#
id
-
n

t
la
nt
d

e
t

id

el
-
o
th

e
er

-
he

ch
of a
f
,
ree
op-
ijs
T
Fe

of
-

to

lat-
l-
. It
rgy
m

he

ent
rgy
I. INTRODUCTION

We present here a set of techniques that allow theab
initio calculation of chemical potentials in solid and liqu
solutions, and hence theab initio treatment of chemical equi
librium between solid and liquid phases. There are ma
areas of chemical physics where such techniques migh
important, but we believe they have a particular role to p
in studying the partitioning of impurities between differe
phases under extreme conditions, where experiments are
ficult or impossible. As an illustration of the power of th
techniques, we will describe how we have applied them
study chemical equilibrium between the solid and liqu
parts of the Earth’s core.

The techniques to be presented form a natural sequ
recent developments in theab initio thermodynamics of con
densed matter based on electronic density-functional the
~DFT!.1 For many years, DFT has been used to calculate
phonon spectra of perfect crystals,2 and it is only a short step
from that to the calculation of free energies and other th
modynamic quantities in the harmonic approximation. Th
have already been several reports of DFT calculations
high-temperature crystal thermodynamics,3–9 including
solid–solid phase equilibria10–13using this approach. For liq
uids,ab initio thermodynamics first became possible with t
Car–Parrinello technique14 of DFT molecular dynamics
7120021-9606/2002/116(16)/7127/10/$19.00
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simulation, which immediately gave a way to calculate su
quantities as pressure, internal energy and temperature
liquid in thermal equilibrium. The first DFT treatment o
solid–liquid equilibrium was achieved by Sugino and Car15

who used thermodynamic integration to compute the f
energies of solid and liquid Si, and hence the melting pr
erties of the material. Closely related is the work of de W
et al.16 on the melting of Al. We have recently reported DF
calculations of the free energies and melting curves of
~Refs. 9, 17, and 18! and Al ~Ref. 19! over a wide range of
pressures; Jesson and Madden20 have recently presentedab
initio calculations of the zero-pressure melting properties
Al using their ‘‘orbital free’’ approach. The work of Smar
giassi and Car21 and Smargiassi and Madden22 on the free
energy of formation of defects in crystals is also relevant
the ideas to be presented here.

Thermodynamic integration has been the key to calcu
ing theab initio free energy of liquids and anharmonic so
ids, and hence to the treatment of solid–liquid equilibrium
provides a means of computing the difference of free ene
between theab initio system and a reference model syste
whose free energy is known. We will show that it is also t
key to calculatingab initio chemical potentials of liquids and
anharmonic solids, but here it is used in a rather differ
way. The chemical potential of a species is the free ene
7 © 2002 American Institute of Physics
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change when an atom of that species is added to the sys
The difference of chemical potentials of two species is the
fore the free energy change when an atom of one speci
replaced by an atom of the other, or equivalently when o
atom is transmuted into the other. The role of thermodyna
integration here is to provide a way of calculating the fr
energy change associated with such transmutations, an
shall show how this can be accomplished in practical D
simulations. This general approach is closely related to id
that have been used for a long time in classical simulation
recent example of classical thermodynamic integration w
molecular transmutation to calculate solvation free energ
in aqueous solution can be found in Ref. 23, which giv
references to earlier literature.

Although the techniques we shall present are fairly g
eral, we do impose two restrictions at present: First, the
oretical framework is developed for the case of a tw
component mixture; second, one of the components
present at low, but not very low, concentration, in a sens
be clarified in Sec. II. The situation envisaged therefore c
sists of fairly dilute solid and liquid solutions in coexistenc

There are vast numbers of problems both in the chem
industry and in the natural world that depend on the pa
tioning of chemical components between coexisting pha
and the ability to calculate chemical potentialsab initio
should make it possible to address some of these problem
a new way. Our original incentive for developing these te
niques was the desire to understand better the chemistr
the Earth’s core, and this is a good example of a prob
whereab initio calculations can supply information that
difficult to obtain experimentally because of the extrem
conditions of temperature (T;6000 K! and pressure (p
;330 GPa!. The core is composed mainly of Fe, and co
prises an outer liquid part and an inner solid part.24 The
density of the outer core is;6% too low to be pure Fe,24–28

and cosmochemical and geochemical arguments show
the main light impurities are probably S, O, and Si.26 The
inner core has grown over geological time by crystallizat
from the outer core, and the partitioning of impurities b
tween liquid and solid is crucial for understanding the ev
lution and contemporary dynamics of the core. The size
the density discontinuity~'4.5%! ~Refs. 29 and 30! at the
inner-core/outer-core boundary can only be interpreted if
understands this partitioning, and also provides a constr
on possible chemical compositions. We shall show how
ab initio techniques for calculating chemical potentials sh
completely new light on this problem. Brief reports of the
calculations have already appeared.27,31,32

In developing the theoretical basis of our techniques,
define our technical aims in Sec. II by summarizing the st
dard thermodynamic relations describing phase equilibriu
The difference of chemical potentials of solute and solv
atoms, and the free energy change associated with the t
mutation of solvent into solute are discussed in Sec. III.
Sec. IV, we then develop theab initio techniques themselves
We shall explain how thermodynamic integration can
used to perform the solvent–solute transmutation so a
obtain the difference of chemical potentials in the liquid; w
also describe the techniques for calculating chemical po
Downloaded 11 Apr 2002 to 128.40.44.2. Redistribution subject to AIP
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tials in solid solutions, both in the harmonic approximati
and using thermodynamic integration to handle anharmo
ity. Section V presents our results for the case of S, O, an
dissolved in solid and liquid Fe under Earth’s core con
tions, and summarizes the implications of the results for
partitioning of these impurities between the inner and ou
core and the chemical composition of the core. Discuss
and conclusions are given in Sec. VI.

II. CHEMICAL EQUILIBRIUM: THERMODYNAMICS

Our task in this section is to identify the thermodynam
quantities that will need to be calculatedab initio. Chemical
equilibrium between two multicomponent phases is char
terized by equality of the chemical potentials of each co
ponent in the two phases. For a two-component solution c
sisting of solute X dissolved in solvent A, equilibrium
between solid and liquid phases requires that

mX
l ~p,Tm ,cX

l !5mX
s ~p,Tm ,cX

s !, ~1!

mA
l ~p,Tm ,cX

l !5mA
s ~p,Tm ,cX

s !, ~2!

wheremX andmA are the chemical potentials of solute an
solvent, p is the pressure, andcX is the mole fraction of
solute, with superscriptsl ands for liquid and solid, respec-
tively; Tm is the melting temperature, i.e., the temperature
which the liquid and solid solutions are in equilibrium
which depends on the impurity mole fractions. The tw
equations impose two relations betweencX

l , cX
s , andTm at

the givenp. In the low-concentration limitcX→0, mX di-
verges logarithmically, and it is useful to write

mX~p,T,cX!5kBT ln cX1m̄X~p,T,cX!, ~3!

where m̄X(p,T,cX) is well behaved for allcX . In an ideal
solution,m̄X is independent ofcX , but in reality the interac-
tion between solute atoms causes it to vary withcX . Com-
bining Eqs.~1! and ~3!, we obtain

cX
s /cX

l 5exp@~m̄X
l 2m̄X

s !/kBTm#, ~4!

so that the ratio of the mole fractionscX
s andcX

l in solid and
liquid is determined by the thermodynamic quantitiesm̄X

l and
m̄X

s . The melting temperatureTm entering Eq.~4! differs
from the melting temperatureTm

0 of the pure solvent, and
may be regarded as determined by Eq.~2!.

We now develop a practical way of solving Eqs.~2! and
~4!. We are interested in the case of moderately lowcX , but
we wish to take account of the variation ofm̄X with cX to
lowest order. We therefore expandm̄X as

m̄X~p,T,cX!5mX
† ~p,T!1lX~p,T!cX1O~cX

2 !, ~5!

and we shall systematically neglect the termsO(cX
2 ). Since it

will be important later, we stress here that this represents
concentration dependence ofm̄X at constant pressure. Equa
tion ~4! then becomes

cX
s /cX

l 5exp@~mX
†l2mX

†s1lX
l cX

l 2lX
s cX

s !/kBTm#. ~6!

To obtain an equation forTm , we need the correspondin
expansion formA . We use the Gibbs–Duhem equation,

cAdmA1cXdmX50, ~7!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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which gives

mA~p,T,cX!5mA
0 ~p,T!1~kBT1lX~p,T!!

3 ln~12cX!1lX~p,T!cX1O~cX
2 !, ~8!

wheremA
0 is the chemical potential of the pure solvent, a

we have used the fact thatcA512cX . To linear order incX ,
this gives

mA~p,T,cX!5mA
0 ~p,T!2kBTcX1O~cX

2 !. ~9!

We apply this in Eq.~2! by expandingmA
0 (p,T) to linear

order in the differenceTm2Tm
0 betweenTm and the melting

temperatureTm
0 of pure solvent. This yields

2kBTmcX
l 1mA

0l~p,Tm
0 !1~Tm2Tm

0 !S ]mA
0l

]T
D

T5T
m
0

52kBTmcX
s 1mA

0s~p,Tm
0 !1~Tm2Tm

0 !S ]mA
0s

]T
D

T5T
m
0

.

~10!

SincemA
0s(p,Tm

0 )5mA
0s(p,Tm

0 ), we can rewrite this equation
as

kBTmcX
l 1~Tm2Tm

0 !sA
0l5kBTmcX

s 1~Tm2Tm
0 !sA

0s , ~11!

wheresA
0 52(]mA

0 /]T)T5T
m
0 is the entropy per atom of pur

solvent at the melting temperature. The shift of melting te
perature due to the presence of the solute is then

~Tm2Tm
0 !5

kBTm

DsA
0 ~cX

s 2cX
l !, ~12!

whereDsA
0[sA

0l2sA
0s is the entropy of fusion of pure solven

Equations~6! and ~12! must be solved self-consistently.
We see from Eqs.~6! and ~12! that the main thermody

namic quantities to be calculatedab initio aremX
† andlX for

the solid and liquid solution. We also requireab initio values
for the melting temperature and entropy of fusion of pu
solvent. In addition, we shall find it necessary to obtainab
initio values of the partial molar volumes of the solu
which will be discussed later. We next turn to the statistic
mechanical considerations needed to develop a strateg
calculatingmX

† andlX .

III. INTERCONVERSION OF SOLVENT AND SOLUTE:
STATISTICAL MECHANICS

The chemical potential of a solute X in solid or liqu
solvent A is the change of Gibbs free energy when one a
of X is added to the system at constant pressure and temp
ture. In our practicalab initio calculations, we work at con
stant volume rather than constant pressure, so we prefe
equivalent statement that the solute chemical potential is
change of Helmholtz free energy when the solute atom
added at constant volume and temperature. However,
impractical to add solute atoms to a system in anab initio
simulation. It is more convenient to convert solvent into s
ute, which means working with the differencemX2mA of the
chemical potentials. The chemical potentialmX and hence
Downloaded 11 Apr 2002 to 128.40.44.2. Redistribution subject to AIP
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m̄X can then be obtained frommX2mA by making use of the
Gibbs free energies of pure solid and liquid A, calculat
separately. We have sketched this technique briefly in
previous papers,27,31,32and we now describe it in more detai

The Helmholtz free energy of a system containingNA

solvent atoms andNX solute atoms is

F~NA ,NX!52kBT lnH 1

NA!NX!LA
3NALX

3NX

3E
V
dR exp@2bU~NA ,NX ;R!#J , ~13!

where b51/kBT, and LX and LA are the thermal wave
lengths of A and X, given byLA5h/(2pMAkBT)1/2, with
MA the atomic mass of A, and similarly forLX . The quan-
tity U(NA ,NX ;R) is the total energy function of the syste
of NA solvent andNX solute atoms, which depends on th
positions of all the atoms, indicated byR, and *VdR indi-
cates integration over the whole configuration space of
system contained in volumeV.

The difference of chemical potentialsmXA[mX2mA is
equal to the change ofF when a single atom of A is con
verted into X, and is given by

mXA5F~NA21,NX11!2F~NA ,NX!

52kBT ln~NA /NX!2kBT ln~LA
3 /LX

3 !

2kBT lnH *VdR exp@2bU~NA21,NX11;R!#

*VdR exp@2bU~NA ,NX ;R!#
J .

~14!

We express this as

mXA5kBT ln
cX

12cX

13kBT ln
LX

LA

1m~cX!, ~15!

where we define

m~cX!52kBT lnH *VdR exp@2bU~NA21,NX11;R!#

*VdR exp@2bU~NA ,NX ;R!#
J .

~16!

The intensive quantitym(cX) depends only on pressure, tem
perature and concentration@we write it asm(p,T,cX)], or
alternatively on volume, temperature, and concentration@we
then write it asm( v̄,T,cX), where v̄ is the mean atomic
volumeV/(NA1NX)]. Expanding Eq.~15! to linear order in
cX , we have

mXA5kBT ln cX1kBTcX13kBT ln
LX

LA

1m~cX!. ~17!

Compare now with Eqs.~3!, ~5!, and~9!,

mXA5kBT ln cX1mX
† 1lXcX2mA

0 1kBTcX , ~18!

and we have

m~cX!13kBT ln
LX

LA

5mX
† 2mA

0 1lXcX . ~19!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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If values are available form(p,T,cX) at different values of
cX for a given pressurep, we can obtain the quantitiesmXA

†

[mX
† 2mA

0 23kBT ln(LX /LA) andlX for that pressure. We
then need the pure-solvent chemical potentialsmA

0 for liquid
and solid, whoseab initio calculations has been described
detail elsewhere.9,17,18

We conclude this section by rewritingcX
s /cX

l from Eq.
~4! in terms ofmXA

† , lX , andmA
0 for liquid and solid,

cX
s /cX

l 5
exp@~mXA

†l 2mXA
†s 1lX

l cX
l 2lX

s cX
s !/kBTm#

exp@~mA
0s2mA

0l !/kBTm#
. ~20!

If the concentrations are small enough for the difference
tweenTm and Tm

0 to be negligible, thenmA
0s5mA

0l , and the
denominator is unity; but in general deviations of the d
nominator from unity should be included.

IV. AB INITIO CHEMICAL POTENTIALS

A. The liquid solution

For the liquid, we calculate the quantitym(cX) of Eq.
~16! by a form of ‘‘thermodynamic integrations.’’ We firs
outline a simple way of doing this that is correct in princip
but suffers from practical problems; we then show how
method can be modified to give a practical procedure.

Thermodynamic integration33 is a general technique fo
computing the Helmholtz free energy differenceF12F0 of
two systems containing the same numberN of atoms, but
having different total energy functionsU1(R) and U0(R).
The differenceF12F0 is the reversible work done on con
tinuously switching the total energy function fromU0 to U1

at constant volume, which is given by

F12F05E
0

1

dl^U12U0&l , ~21!

where the averagê•& is calculated in thermal equilibrium fo
the system governed by the ‘‘hybrid’’ energy functionUl

[(12l)U01lU1 . This is a well established technique fo
the ab initio calculations of liquid-state free energies,15,16

which was used in our recentab initio investigation9,17,18of
the high pressure melting curve of Fe.

In order to computem(cX), we could in principle choose
U0 to be the total energy for the system ofNA atoms of
solvent andNX of solute, andU1 to be the same forNA

21 atoms of A andNX11 of X. We evaluatêU12U0&l by
performingab initio molecular dynamics with time evolutio
generated byUl , and taking the time average ofU12U0 .
This is repeated for several values ofl, and the integration
overl is done numerically. This type of ‘‘alchemical’’ trans
mutation of A into X obviously does not correspond to
real-world process, but in terms ofab initio statistical me-
chanics is a perfectly rigorous way of obtaining the quan
m(cX). It demands an unusual kind of simulation. For t
atom positionsr1 , . . . ,rN at each instant of time, we have t
perform two independentab initio calculations, one for each
chemical composition. As well asU0 and U1 for the given
positions, we calculate two sets ofab initio forces F0i

[2¹iU0 and F1i[2¹iU1 , and the linear combination
Fl i[(12l)F0i1lF1i are used to generate the time evo
tion.
Downloaded 11 Apr 2002 to 128.40.44.2. Redistribution subject to AIP
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The major problem with this scheme is one of statisti
The thermal averagê•&l is evaluated as a time average, b
since only a single atom is transmuted the scheme does
benefit from averaging over atoms. The efficiency of the
eraging can be considerably improved if one is prepared
transmute several atoms simultaneously. If we do this, t
instead of obtainingm(cX) at a given mole fractioncX , we
obtain an integral ofm(cX) over a range ofcX values. The
information we need can still be extracted, as we now
scribe.

Consider the change of Helmholtz free energy when
start fromN atoms of pure solvent and transmuteNX of them
into solute atoms at constant volume and temperature. T
can clearly be calculated by thermodynamic integration
ing the procedure outlined above. Denoting this change
free energy byW(N,NX), we can express it as

W~N,NX!

52kBT lnH *VdR exp@2bU~N2NX ,NX ;R!#

*VdR exp@2bU~N,0;R!#
J . ~22!

We then have

W~N,NX!5E
0

1

dl^U12U0&l , ~23!

with U1(R)5U(N2NX ,NX ;R) and U0(R)5U(N,0;R).
Our procedure will be to calculateW(N,NX) at several val-
ues ofNX /N5cX at a chosen volume, and then fit the resu
in the following way:

W~N,NX!/NX5a1bcX . ~24!

The information needed can now be extracted by noting
for a given mean atomic volumev̄, the quantitym( v̄,T,cX)
is

m~ v̄,T,cX!5~]W/]NX!V,T5a12bcX . ~25!

It follows immediately that

mXA
† 5 lim

cX→0
m~ v̄,T,cX!5a. ~26!

To obtainlX from the coefficientb, we note that

lX5 lim
cX→0

~]m~p,T,cX!/]cX!p

and

2b5 lim
cX→0

~]m~ v̄,T,cX /]cX! v̄.

The fact that one derivative is isobaric and the other iso
oric is significant. The quantitylX that we seek describes th
isobaric concentration dependence of solute chemical po
tial. But since ourab initio calculations are done at fixe
volume, the immediately available quantityb is an isochoric
derivative.

The relation between the constant-pressure and cons
volume derivatives ofm is examined in the Appendix, wher
we show that

~]m/]cX!p5~]m/]cX! v̄2nBT~vX2vA!2, ~27!

whereBT is the isothermal bulk modulus, andvX andvA are
the partial atomic volumes of solute and solvent. We co
clude that
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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lX52b2nBT~vX2vA!2. ~28!

Here, the quantitiesBT , vX , and vA can be evaluated a
infinite dilution. The calculation ofBT and vA involves ab
initio molecular dynamics simulations on the pure solve
and presents no problem. We return below~Sec. IV C! to the
ab initio calculation ofvX . With this, we have a complet
procedure for determiningmXA

† andlX .

B. The solid solution

If anharmonic effects are negligible, then the free ene
of the solid can be obtained fromab initio photon frequen-
cies, so that thermodynamic integration is not needed, an
statistical averaging is involved in theab initio calculations.
There is then nothing to prevent us from calculatingm(cX)
directly from the free energy change when solvent atoms
replaced by solute atoms. We assume for the moment
this is adequate, and return later to the question of an
monic effects.

We start by considering the zero-concentration limit
m(cX), namelymXA

† , which is the nonconfigurational fre
energy change when an atom in the perfect A crystal is
placed by an X atom. This can be written as

mXA
† 5mXA

†perf1mXA
†harm, ~29!

wheremXA
†perf is the free energy change for the perfect non

brating crystal, andmXA
†harm is the harmonic vibrationa

part—we refer tomXA
†perf as a ‘‘free energy’’ to allow for the

possibility of thermal electronic excitations, which are im
portant in high-temperature Fe.9 The calculation ofmXA

†perf is
straightforward, and involves only the difference ofab initio
~free! energies of the static fully relaxed crystal containing
single substitutional X atom and the static perfect crystal,
two systems having the same volume.

In the high-temperature limit, whereT is well above the
Debye temperature,mXA

†harm can be written as

mXA
†harm5kBT(

n
ln~vn8/vn!, ~30!

wherevn8 andvn are the harmonic frequencies of the norm
modes of the impure and pure crystals, and the sum g
over all modes. The frequencies are calculatedab initio, and
we use the ‘‘small-displacement’’ method described in de
elsewhere.9,34,35This involves DFT calculations of the forc
on every atom in the system induced by displacement o
single atom, and this has to be done for all symmetry
equivalent atoms and displacements. To obtainlX in the har-
monic approximation, we must include the effect of intera
tions between solute atoms. The key to this is to note that
calculation of the partition function, i.e., the integral ov
configuration space of Eq.~13!, can be broken into~a! a sum
of distinct configurations, i.e., assignments of solute atom
lattice sites, and~b! an integral over vibrational displace
ments of the atoms away from their relaxed equilibrium p
sitions for each such configuration. This means that the
tistical mechanics of the solid solution maps exactly o
that of a lattice gas, and the free energy of the solid solu
is
Downloaded 11 Apr 2002 to 128.40.44.2. Redistribution subject to AIP
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F~NA ,NX!52kBT lnS (
g

e2bFgD , ~31!

where the sum goes over all distinct configurationsg, and
Fg is the nonconfigurational free energy of the system
eachg.

It is convenient to relateF(NA ,NX) to the free energy
FA of the pure A crystal having the same number of latt
sites. The differenceDF(N,NX)[F(NA ,NX)2FA is the
change of free energy whenNX atoms of A in the pure crys-
tal are transmuted into X atoms. We have

DF~NA ,NX!52kBT lnS (
g

e2b~Fg2FA!D . ~32!

Now in the limit cX→0, we can neglect the interactions b
tween X atoms, and we get

Fg2FA→NXmXA
† . ~33!

At higher concentrations, we need to include the free ene
of interaction between pairs of X atoms, and we write

Fg2FA>NXmXA
† 1

1

2 (
mÞn

fmn , ~34!

where fmn is the nonconfigurational free energy chan
when a pair of X atoms are brought from widely separa
sites in the otherwise perfect crystal to the sitesm andn. We
then have

DF~N,NX!5NXmXA
†

2kBT lnS (
g

expF2
1

2
b (

mÞn
fmnG D . ~35!

In the later practical calculations, we approximate by sett
fmn equal to zero except whenm andn are nearest-neighbo
lattice sites, the interaction free energy being then called s
ply f.

It is now an exercise in the statistical mechanics of l
tice gases to show that the leading order incX ,

DF~N,NX!5NXmXA
† 1NkBT@cX ln cX

1~12cX!ln cX#1 1
2NkBTcX

2z~12e2bf!,

~36!

wherez is the coordination number of the lattice. The deriv
tive ]DF(N,NX)/]NX gives usmX2mA , from which we
straightforwardly extractlX , which is given by

lX5kBTz~12e2bf!. ~37!

As in the case of the liquid, this formula should be correc
from constant volume to constant pressure, so that the
rect formula is

lX5kBTz~12e2bf!2nBT~vX2vA!2 ~38!

with BT , vX , andvA the isothermal bulk modulus and pa
tial molar volumes in the dilute solid solution. The calcul
tion of BT andvA presents no problems; we return to theab
initio calculation ofvX in Sec. IV C.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In addition to using this analytic derivation to obtainlX ,
we have also performed Monte Carlo calculations on
lattice gas to obtain numerical values ofDF(N,NX). These
serve both to confirm the correctness of the analytic resu
the region of lowcX and also to assess deviations from t
linear dependence ofm̄X on cX ascX increases.

The remaining task is to calculate the nearest-neigh
interaction free energyf. This follows exactly the schem
for calculatingmXA

† , where nowf is the nonconfigurationa
free-energy change when two neighboring atoms in the
fect crystal A are replaced by X atoms, minus twicemXA

† .
This can be written as

f5fperf1fharm, ~39!

wherefperf is the ~free! energy change for the perfect no
vibrating crystal, andfharm is the harmonic vibrational part
The static partfperf is obtained from the difference ofab
initio free energies of the relaxed equilibrium system co
taining neighboring X atoms and the perfect pure A latti
We obtainfharm from the harmonic vibrational frequencie
of the system containing the neighboring X atoms by a f
mula exactly analogous to Eq.~30!.

We now return very briefly to the question of anharm
nicity. In many cases, very high precision may not be nee
for the chemical potentials, so that anharmonic correction
m̄X

s can be neglected. But in one case that will be import
later, that of substitutional O in Fe, we know that anharmo
effects are large. The techniques we have used to treat t
are described in detail elsewhere.31 The strategy is based o
thermodynamic integration between reference models re
senting both the pure Fe and the impure Fe/X systems,
lowed by further thermodynamic integrations between theab
initio and reference systems.

C. Partial molar volumes in the liquid and solid
solutions

The partial molar volumevX of solute orvA of solvent is
the change of volume of the system when one atom of X
A is added at constant pressure and temperature. The
umes are related to the chemical potentials by

vX5~]mX /]p!T,cX
, vA5~]mA /]p!T,cX

. ~40!

We note that the total volume of the system is given byV
5NXvX1NAvA . As for the chemical potentials, we find
easier to consider the interconversion of solvent and sol
and to work with the differencevXA[vX2vA . The liquid is
treated byab initio molecular dynamics in which the pres
sure for a given volume is calculated during the simulati
~In our practical calculations, we work at constantV.! The
straightforward way of obtaining the dilute limit ofvX is
therefore to calculate the change of pressureDp resulting
from the replacement of a chosen numberNX of atoms in the
pure solvent by X. The pressure change per atomdp
5Dp/NX then gives usvXA by the relationvXA5Vdp/BT .

It is clearly possible to follow the same route for th
solid. However, if the solid is treated by harmonic frequen
calculations with or without thermodynamic integration f
the anharmonic contribution, then the partial molar volum
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must be obtained from the chemical potentials via Eq.~40!.
This requires calculation ofmX at different volumes followed
by numerical differentiation.

V. ILLUSTRATION: CHEMICAL EQUILIBRIUM
IN THE EARTH’s CORE

In applying the techniques to study chemical phase eq
librium between the Earth’s inner and outer core, our aim
to show how they can yield important new information abo
the chemical composition and temperature of the core, b
of which are controversial. Our strategy exploits the fact t
the density as a function of depth in the core is accura
known from seismic measurements;30 in particular, it is quite
well established that there is a density discontinuity of 4
60.5% across the inner-core/outer-core boundary~ICB!.29

Recentab initio studies of the melting properties of pure F
concur in giving a volume of fusion of;1.8%,18,28 which is
clearly much smaller. This means that there must be a s
stantial partitioning of light solute elements from solid
liquid to account for the large observed discontinuity.

This discontinuity can be studied with our methods.
we suppose initially that the core is a binary solution of
with one of the leading impurity candidates S, Si, or O26

then the solute mole fraction in the liquid core can be fix
by requiring that the density reproduce the seismically
served density. Calculation of the chemical potentialsmX in
the liquid and solid then gives us the mole fraction in t
solid, from which we can deduce the solid density, and he
the density discontinuity. Agreement or disagreement w
the known discontinuity puts a constraint on the compo
tion. At the same time, the shift of melting temperature giv
by Eq.~12! gives us information about the temperature at
ICB.

In the following, we first summarize the general tec
niques used in all the calculations~Sec. V A!. We then de-
scribe separately the calculations on the liquid and solid
loys ~Secs. V B and V C, respectively!, presenting results for
the chemical potentials and partial molar volumes. In S
V D, we then combine the results with seismic data to obt
constraints on the chemical composition and temperatur
the Earth’s core.

A. General techniques

Our ab initio calculations are based on the well esta
lished DFT methods used in virtually allab initio investiga-
tions of solid and liquid Fe,9,17,18,36–39including our own
previous work on pure Fe and its solid and liquid alloys w
S and O.27,31,40,41We employ the generalized gradient a
proximation for exchange-correlation energy, as formula
by Perdewet al.,42 which is known to give very accurat
results for the low-pressure elastic, vibrational and magn
properties of body-centered cubic~bcc! Fe, the bcc→hcp
transition pressure, and the pressure–volume relation for
Fe up to over 300 GPa.36,39 There is also very recent evi
dence for their accuracy in predicting the high-pressure p
non spectrum of hcp Fe.43 We use the ultrasoft pseudopote
tial implementation44 of DFT with plane-wave basis sets, a
approach which has been demonstrated to give results
solid Fe that are virtually identical to those of all-electro
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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DFT methods.39 Our calculations are performed using th
VASP code,45 which is exceptionally stable and efficient fo
metals. We implemented a scheme for the extrapolation
the charge density which increases the efficiency of the
lecular dynamics simulations by nearly a factor of 2.46 The
technical details of pseudopotentials, plane-wave cuto
etc., are the same as in our previous work.41 All the calcula-
tions are performed neglecting magnetic moments, whic
an approximation justified by the high pressure even
FeO.31

B. The liquid

Our ab initio molecular dynamics simulations on the liq
uid, which we used to calculateW(N,NX) and hence the
chemical potentials, were all performed on systems of
atoms, with a time step of 1 fs and withG-point sampling of
the electronic Brillouin zone. In our previous calculations
pure liquid Fe,18 we showed thatG-point sampling on a 67-
atom cell underestimates the free energy by;10 meV/atom;
this is a completely negligible error for present purposes. T
calculations were done atT57000 K and at the volume/atom
V/N56.97 Å/atom, which for pure Fe gives a pressure
370 GPa. This pressure is somewhat higher than the
pressure of 330 GPa.30 The temperature is also higher tha
that at the ICB; ourab initio melting curve gives a melting
temperature of;6350 K ~or ;6200 K after the correction
due to our estimate of likely DFT errors!18 at the ICB pres-
sure of 330 GPa, which is already higher than some o
estimates.28,47 But we shall see below that depression
freezing point due to impurity partitioning lowers this by
further;700 K. We have made rough estimates which sh
that the difference between 7000 K and our estimated I
temperature is unlikely to change the chemical potentials
S and Si by more than 0.1 eV and that of O by more than
eV, which will have no significant effect on our conclusion
The difference of pressures should also make little diff
ence.

We have used thermodynamic integration to calcul
W(N,NX) for the three solute elements S, Si, and O forNX

53, 6, and 12, corresponding to mole fractions of 4.7
9.4%, and 18.8%. In doing this, we have aimed to choose
number ofl values large enough and the duration of t
simulation at eachl value long enough to give a precision o
W(N,NX)/NX of ;0.05 eV for S and Si and'0.1 eV for O.
In principle, appropriate equilibration time should be d
carded from the simulations, but in practice we found t
ignoring equilibration does not affect the results within t
statistical error. To illustrate how the thermal average^U1

2U0&l in Eq. ~23! depends onl, we display this quantity in
Fig. 1 at five equally spacedl values for the oxygen system
with NX512. We see that the dependence onl is not far
from linear. Using Simpson’s rule to perform the integral, w
compared results forW(N,NX)/NX using the fivel values
0.0, 0.25, 0.50, 0.75, and 1.00 with those obtained using o
the three values of 0.0, 0.5, and 1.0, and found that t
differ by less than the statistical error. Since the replacem
of E by O is a greater perturbation than that of Fe by S o
~see below!, we have taken this as justification for using on
three l values in all the thermodynamic integrations. O
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numerical results forW(N,NX)/NX for X5S, Si and O, to-
gether with the linear least-square fit of Eq.~24!, are reported
in Fig. 2, and the resulting values ofa[mXA

† andb are given
in Table I.

As explained in Sec. IV A, theb values have to be cor
rected as in Eq.~28! in order to obtainlX , and this requires
the partial molar volumesvX . We obtain the partial molar
volumes from the simulations just described by studying
pressure change resulting from the replacement ofNX atoms
in the pure liquid by atoms of X at constant volume—this
straightforward, since the pressure is automatically cal
lated during the constant-volume simulations. We find t
within the statistical errors the change of pressure is linea
cX for all three impurity species. We then use the fact th
vX2vA5( v̄/BT)(]p/]cX)T ; for BT we use the bulk modu-

FIG. 1. The integrand̂U12U0&l ~eV units! appearing in the thermody-
namic integration used to calculate the free energy changeW(N,NX), when
NX atoms of pure solvent are converted into solute atoms, with total num
of atoms in the system5N @see Eq.~23!#. Results shown refer to oxygen
solute forNX512 andN564. Filled circles show values computed fromab
initio molecular dynamics simulations, with bars indicating statistical erro
Curve is a polynomial fit to the computed values.

FIG. 2. The calculated free energy changeW(N,NX) when NX atoms of
pure solvent are converted into solute atoms, with total number of atom
the system5N. Quantity plotted isW(N,NX)/NX ~eV units! as a function
of concentrationcX5NX /N for liquid and solid solutions of S, Si, and O in
Fe. Filled circles are results for liquid, with bars indicating statistical erro
and straight dotted line being a least-squares fit to these data. Contin
curves for S and Si show results for solid solution obtained from Mo
Carlo calculations based onab initio free energy of nearest-neighbor inte
action. Open circle with error bar is result for O in solid from thermod
namic integration.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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lus of the pure liquid, which we know from our previou
work.18 The calculatedvX values are 6.65, 6.65, and 4.25 Å3

for S, Si, and O, respectively, compared with the volume
atom in the pure liquid of 6.97 Å3. We note that S and S
have almost exactly the same volume as Fe, but that
volume of O is considerably smaller. Using thesevX values
in Eq. ~28!, we now obtain the results forlX given in Table
I. We see that the difference between 2b andlX is very small
for sulfur and silicon, as expected, but is substantial for o
gen.

C. The solid

The available evidence strongly indicates that the sta
crystal structure of Fe at the pressures and temperature
the Earth’s core is hexagonal close packed~hcp!,48 and this is
the structure adopted in our calculations. We first present
calculations for S and Si, and then summarize briefly
results for the more complex case of O, which have alre
been reported elsewhere.

1. Sulfur and silicon

The calculations are performed on a 43432 hcp super-
cell containing 64 atoms, with a 33332 Monkhorst–Pack49

grid of electronick-points which give free energies con
verged within a few meV/atom. In our calculations on t
static zero-temperature lattice, we find that when a single
is replaced by Si or Si at constant volume, the relaxation
neighboring atoms is very small, and the pressure chang
also small. For the atomic volumev56.97 Å3/atom, the par-
tial molar volumes calculated without lattice vibrations gi
the differencesvS5vFe520.32 andvSi2vFe520.32 Å3,
which are extremely small compared withvFe. We assume
that these differences will not be significantly effected
thermal effects.

We now turn to the harmonic frequenciesvn and vn8
needed for the harmonic difference of chemical potent
mXA

†harm@see Eq.~30!#. We calculate these using a supercell
64 atoms in all calculations. For the pure Fe system only
independent displacements of a single atom are neede

TABLE I. Calculated chemical potentials~eV units! and partial atomic vol-
umesvX ~Å3 units! of solutes X5S, Si, and O in liquid and hcp solid Fe a
conditions close to those of the Earth’s core~see text!. Chemical potential of
X is represented at low mole fractioncX by mX5kBT ln cX1m̄X , with m̄X

linearized asm̄X>mX
† 1lXcX . The quantitymXA

† is mX
† 2mFe

0 , with mFe
0 the

chemical potential of pure solvent Fe;vXA is vX2vFe, with vFe the volume
per atom in pure Fe. The meaning of the calculated quantitybX used to
obtainlX is explained in Sec. IV A. Superscriptsl ands indicate liquid and
solid.

Solute S Si O

mXA
†l 3.560.05 2.3560.02 26.2560.2

bX
l 3.13 1.86 5.6

vXA
l 20.32 20.32 22.72

lX
l 6.15 3.6 3.25

mXA
†s 3.7560.05 2.4060.02 23.6560.2

bX
s 3.0 1.4

vXA
s 20.32 20.32 22.35

lX
s 5.9 2.7

mXA
†l 2mXA

†s 20.2560.04 20.0560.02 22.660.2
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obtain the full force constant matrix.9 We displace the atom
by '0.015 Å in each direction, which is known to be sma
enough to ensure accurate linearity between forces and
placements. For the calculations where one Fe is substit
with S or Si, the symmetry is much reduced, and the num
of atoms to be displaced is 15, with the total number
independent displacements being 33. For the systems
two solute atoms, the symmetry of the system is redu
even further, and we need to displace 20 atoms in all poss
directions, for a total of 60 displacements. There are t
distinct ways of putting two S or Si atoms on neare
neighbor sites: the first has both sites in the same basal p
and the second has them in adjacent basal planes. Within
errors, we cannot detect the free energy difference betw
the two arrangements. Since the zero temperature valu
the differencevX2vFe is very small, we have not attempte
to calculate its high temperature value in the harmonic
proximation, and we report in Table I the zero temperat
value. The correction tolX is negligible anyway and can b
ignored.

For sulfur and silicon we neglect anharmonic corre
tions. In our previous work on pure Fe~Ref. 9! we showed
that at ICB conditions the anharmonic contribution to t
free energy is roughly 60 meV/atom. In this case we
concerned with free energy differences between the pure
system and a system where one of the Fe atoms has
substituted with X, so the difference of the relative anh
monic contributions to the free energies is presuma
smaller than that.

Our calculated values ofmXA
†s and lX

s at v56.97
Å3/atom andT57000 K are reported in Table I.

2. Oxygen

As emphasized above and in previous work,31 substitu-
tional O in hcp Fe is highly anharmonic, because O is c
siderably smaller than Fe and has great freedom of mo
ment, so that the harmonic approximation is complet
inadequate for calculatedmO Fe

†s . We gave a brief summary in
Sec. IV B of the thermodynamic integration techniques us
to do the calculations. The numerical result formO Fe

†s at v
56.97 Å3/atom andT57000 K is reported in Table I. We
have not attempted to calculatelX for X50, since this would
be extremely demanding, and turns out to be unnecessa
our analysis of core composition.

To calculatevO2vFe in the solid we have repeated th
calculations at different volumes and numerically differen
ated the results, as described in Sec. IV C. The value ofvO

2vFe is reported in Table I.

D. Core composition and temperature

Some crucial features of our results are immediat
clear from Table I; the liquid–solid differencemXA

†l 2mXA
†s is

negative in all cases; its magnitude is somewhat smaller t
kBT for S and Si, but is much bigger thankBT for O. This
implies that the solutes will all partition from solid to liquid
as expected; but the partitioning will be weak for S and
and very strong for O.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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To see the implications in more detail, consider the c
of Fe/S. If we postulate that the core is an Fe/S binary al
then we can estimate the mole fractioncS

l in the outer core
by noting that the density of pure liquid iron at the IC
pressure is'6% higher than the values obtained from se
mic data.30 We therefore add sulfur to the liquid until th
density is reduced to the required value, which givescS

l

50.16. Now if we ignored the dependence ofm̄S on concen-
tration, then the valuemS

†l2mS
†s520.25 eV would give

cS
s/cS

l 50.66, so thatcS
s50.11. However, the positivelS val-

ues mean that bothm̄S
l andm̄S

s increase strongly with increas
ing mole fraction of S, and this will tend to equalize the mo
fractions in solid and liquid. If we solve Eq.~4! self-
consistently forcS

s with the givencS
l , we findcS

s50.14. But
a 14% mole fraction of S in the inner core is complete
incompatible with the seismic measurements. We can use
cS

s volume together with the partial molar volumevS
s to cal-

culate the change of density of the solid due to dissolved
and hence the ICB density discontinuity. We find the disc
tinuity is increased from the pure-Fe value of 1.8% up
2.760.5%, which is still much less than the seismic value
4.560.5%. This means that the binary Fe/S alloy can
ruled out as a model for core composition. The argumen
still stronger for Si, since the chemical potentials in solid a
liquid are even more similar than for S. We conclude that
binary Fe/Si model must also be ruled out.

For O, the situation is the opposite. The difference
chemical potentials in liquid and solid has the very lar
valuemO Fe

†l 2mO Fe
†s 522.6 eV, which implies a strong parti

tioning from solid to liquid. If we repeat our analysis of th
outer-core density with the partial molar volumevO

l , we find
that an oxygen mole fractioncO

l 50.18 is needed to matc
the density of the outer core. Equation~4! then givescO

s

>0.003, so that the O concentration in the inner core is v
small. With our calculatedvO

s value, we then find an ICB
density discontinuity of 7.860.2%, which is markedly large
than the seismic value. A binary Fe/O model can thus also
ruled out.

Although all the binary models fail, the seismic data c
clearly be accounted for by ternary or quaternary alloys
the three impurities.Ab initio calculations on such liquid an
solid alloys would certainly be feasible with the methods
have developed, but would need a considerably greate
fort. If we assume for the moment that the different impu
ties do not affect each other’s chemical potentials, we
use our present results to construct a model for the c
composition. We have seen that S and Si alone cannot
plain the density jump at ICB, so there must be some O
the outer core. If we dissolve some O in liquid iron, togeth
with S/Si, maintaining the density of the alloy equal to t
density of the core, we increase the density jump at the I
This is because hardly any O goes into the solid. We the
fore continue to add O until we match the density jump
ICB. The resulting chemical compositions of the inner a
outer core are summarized in Table II.

With these compositions, Eq.~4! now allows us to de-
termine the shift of melting temperature from that of pure
at the ICB pressure; we findDTm527006100 K. Compar-
ing this with our easierab initio melting temperatureTm
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5620026350 K for pure Fe atp5330 GPa,18 we obtain the
estimateTICB;5600 K for the temperature at the bounda
between inner and outer core. This is quite close to estim
that have been made in other ways.17 The implications of our
temperature and chemical composition results for the un
standing of the Earth’s dynamics and past history will
explored elsewhere.

VI. DISCUSSION AND CONCLUSIONS

We have shown the practical feasibility of calculatin
completelyab initio chemical potentials in liquids and solids
and hence theab initio treatment of chemical equilibrium
between coexisting phases. The practical benefits of be
able to do such calculations have also been illustrated
showing how they can help to improve our understanding
a controversial and important chemical-equilibrium proble
in the earth sciences. We note that, although the calculat
are demanding at present because of the need to per
substantialab initio molecular dynamics simulations, the un
derlying concepts are rather straightforward, and represe
simple extension of well-known classical techniques.

In conclusion, we want to stress that the techniqu
should have rather wide applications. Although we have c
sen to focus on the partitioning of impurities between co
isting solid and liquid phases, the methods could equa
well be used to study partitioning between liquid phases
between solid phases. The ability to calculateab initio
chemical potentials in liquids also makes it possible to c
template theab initio calculation of the solubility of solids,
liquids or gases in liquids. The practical application of the
ideas is likely to be limited only by the need to find econom
cal thermodynamic integration paths for transforming che
cal species into each other.
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TABLE II. Estimated molar percentages of sulfur, silicon, and oxygen in
Earth’s solid inner core and liquid outer core obtained by combiningab
initio calculations and seismic data. Sulfur/silicon entries refer to total p
centages of sulfur and/or silicon.

Solid Liquid

Sulfur/Silicon 8.562.5 1062.5
Oxygen 0.260.1 8.062.5
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APPENDIX: FROM CONSTANT VOLUME TO
CONSTANT PRESSURE

We explained in the text that the isobaric dependence
solute chemical potential on concentration is obtained fr
(]m/]cX)p , where m is the nontrivial part of the solute
chemical potential, defined in Eq.~16!. However, the quan-
tity given by our ab initio calculations is (]m/]cX)V . We
derive here the relation between the isobaric and isoch
derivatives ofm.

We start by noting that

~]m/]cX!p5~]m/]cX!V1~]m/]V!cX
~]V/]cX!p

~A1!
5~]m/]cX!V1~]m/]V!cX

N~vX2vA!,

with T held constant throughout, whereN is the total number
of atoms, and we have used the basic definition of the pa
molar volumesvX and vA of solute and solvent. Next, w
refer to Eq.~15! to see that

~]m/]V!cX
5~]~mX2mA!/]V!cX

, ~A2!

which can be reexpressed as

~]m/]V!cX
5~]~mX2mA!/]p!cX~]p/]V!cX

52~vX2vA!BT /V, ~A3!

with BT the isothermal bulk modulus, and we have used
relations (]mX /]p)cX

5vX and (]mA /]p)cA
5vA . Combin-

ing Eqs.~A1! and ~A3!, we have

~]m/]cX!p5~]m/]cX!V2nBT~vX2vA!2, ~A4!

wheren5N/V is the overall atomic number density.
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