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We present calculations of the free energy, and hence the melting properties, of a simple
tight-binding model for transition metals in the region of d-band filling near the middle of a d-series,
the parameters of the model being designed to mimic molybdenum. The melting properties are
calculated for pressures ranging from ambient to several megabars. The model is intended to be the
simplest possible tight-binding representation of the two basic parts of the energy: first, the pairwise
repulsion due to Fermi exclusion; and second, the d-band bonding energy described in terms of an
electronic density of states that depends on structure. In addition to the number of d-electrons, the
model contains four parameters, which are adjusted to fit the pressure dependent d-band-width and
the zero-temperature pressure-volume relation of Mo. We show that the resulting model reproduces
well the phonon dispersion relations of Mo in the body-centered-cubic structure, as well as the radial
distribution function of the high-temperature solid and liquid given by earlier first-principles
simulations. Our free energy calculations start from the free energy of the liquid and solid phases of
the purely repulsive pair potential model, without d-band bonding. The free energy of the full
tight-binding model is obtained from this by thermodynamic integration. The resulting melting
properties of the model are quite close to those given by earlier first-principles work on Mo. An
interpretation of these melting properties is provided by showing how they are related to those of the
purely repulsive model. © 2009 American Institute of Physics. �DOI: 10.1063/1.3126683�

I. INTRODUCTION

Many years ago, a combination of experiments, first-
principles calculations and simple models led to the compre-
hensive understanding of the low-temperature energetics of
transition metals that we have today.1 Much more recently,
advances in experimental and first-principles techniques
have started to open the possibility of achieving the same
thing for the high-temperature phase diagrams, including
melting curves, of transition metals over a wide range of
pressures. However, the data obtained so far are fragmentary
and sometimes conflicting,2 and we believe that there is now
a clear need to develop simple models analogous to those
used to interpret low-temperature data. These models are
needed in order to elucidate the fundamental mechanisms
that determine high-temperature phase diagrams, while pro-
viding a framework within which to interpret and unify ex-
perimental and first-principles data. We describe here how a
simple parametrized tight-binding �TB� model can be used to
calculate the high-temperature free energies of liquid and
solid transition metals, and hence their melting properties,
and we show how the model can help to interpret the avail-
able data. In the present work, we confine ourselves to the
case of an approximately half-filled d-band, focusing particu-
larly on the interpretation of data for molybdenum.

Shock measurements gave the first experimental infor-

mation about melting curves at megabar pressures, and data
are available for several transition metals, including Fe, Mo,
Ta, and W.3–8 The thermodynamic states accessible in tradi-
tional shock experiments lie on a trajectory called the prin-
cipal Hugoniot, which provides only a single point on the
melting curve. On the other hand, major advances in static
compression techniques, based on the diamond anvil cell
�DAC�, in principle allow entire melting curves and other
phase boundaries to be mapped at pressures and temperatures
up to �200 GPa and �4000 K. Melting data from static
techniques have been reported for Fe, Mo, Ta, W, V, and
Y.2,9–12 There appear to be enormous differences between the
melting curves of some transition metals from dynamic and
static techniques, with the latter giving much lower melting
slopes. The resulting differences of Tm at megabar pressures
can be several thousand kelvins.

Melting curves from first-principles modeling began to
appear over 10 years ago,13,14 and there are now several well
established approaches, including the calculation of solid and
liquid free energies, the “reference coexistence” method, and
the explicit first-principles simulation of coexisting solid and
liquid.15–22 For Fe, all three approaches have been used, and
the agreement between them is excellent.23,24 Since density
functional theory �DFT� calculations are parameter-free, and
reproduce very accurately key quantities such as cold com-
pression curves, phonon frequencies, Hugoniot curves, and
the zero-pressure melting temperatures of transition metals,
there is every reason to expect that their predictions of melt-a�Electronic mail: c.silva@ucl.ac.uk.
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ing properties will also be reliable, and there is considerable
evidence that this is the case. For transition metals for which
static and dynamic measurements disagree seriously, first-
principles calculations support the correctness of the dy-
namic measurements.25,26

Molybdenum is one of the transition metals that have
been intensively studied by DFT simulation, and it illustrates
the recent controversies. Two independent sets of first-
principles calculations21,25,27–29 agree rather closely with
each other and support the high melting curve deduced from
shock measurements, this curve rising far more steeply with
pressure than the flat melting curve obtained from DAC
data.11 However, the shock measurements6 also indicate a
solid-solid phase boundary, which may be the transition in-
terpreted as melting in the DAC work.30 A similar conflict
between high shock and first-principles melting curves and a
low DAC melting curve is also found in Ta,11,12,26 and it has
been proposed that the transition seen in DAC may also be a
solid-solid transition. We believe that simple models may
help to resolve these controversies, by allowing the melting
properties of transition metals to be related to the fundamen-
tal mechanisms that determine their energetics.

Models for the energetics of transition metals are gener-
ally built on the principle that the total energy can be ap-
proximated as the sum of the electronic band energy and a
repulsive pairwise interaction. The many different models
that have been proposed differ mainly in their representation
of the band energy. To explain the broad features of
transition-metal energetics on a scale of several eV, including
the roughly parabolic variations of cohesive energy, lattice
parameter, and bulk modulus with band filling, it suffices to
assume a structureless d-band density of states �DOS�, whose
band width depends only on atomic volume �and chemical
element�.1,31 The simplest total-energy model based on this
idea consists of a sum of repulsive pair potentials plus a
position-independent bonding term depending on the average
atomic volume. We will refer to this as the REP+VOL
model. More sophisticated types of total-energy models, in-
cluding the closely related second moment,32 embedded-
atom, and Finnis–Sinclair models,33,34 allow the second mo-
ment of the local DOS on each atom to depend on the
distances to near neighbors. However, such models do not
contain the physics needed to account for the well-known
low-temperature structural sequence that occurs through all
the transition-metal series, from hexagonal-close-packed
�hcp�, to body-centered cubic �bcc�, to hcp, and finally to
face-centered cubic �fcc�. The energy differences of typically
a few tenths of an eV between these structures are clearly
essential for any discussion of phase diagrams, but they arise
from the structure dependent form of the DOS. There are
models that account for this by working with higher mo-
ments of the DOS than the second,1 but a more straightfor-
ward approach is to express the total-energy function directly
in terms of a TB model.35,36 In the present work, we use the
simplest possible TB total-energy model, consisting of repul-
sive pair interactions plus the sum of single-electron energies
calculated from a canonical d-band TB model, without sp
bands. We refer to this as the REP+TB model. With this
simple model, we sacrifice the ability to describe the effect

on the DOS of sp-d hybridization, and the pressure depen-
dent transfer of electrons between sp and d bands. We make
this sacrifice in order to simplify the analysis.

The principal question addressed in this paper is: What
are the main parameters that determine the melting curves
and other melting properties of transition metals, and what
are the roles of these parameters? As part of this overall
question, we would like to know at what level of detail we
need to describe the d-band bonding. In particular, do we
need a detailed description of the structure-dependent elec-
tronic DOS in order to understand melting, or is a simpler
model, such as REP+VOL, sufficient? In trying to answer
these questions, our strategy will be to relate the melting
properties of the REP+TB models to those of the pure REP
model.

Ultimately, we want to use parametrized TB models to
achieve a systematic overall understanding of the melting
properties of the entire family of transition metals. However,
even the simple models used here require rather extensive
calculations to treat melting for a single metal, and for that
reason we confine ourselves here to a narrow range of
d-band filling in the region of half filling. We shall present a
simple scheme for fixing the parameters of our model by
fitting to zero-temperature first-principles data, and we shall
see that, for the case of Mo treated here, we reproduce high-
temperature first-principles results reasonably well.

The remainder of this paper is organized as follows. In
Sec. II, we present our REP+TB model for the total-energy
function, and we describe the scheme we use to fix the model
parameters using information from T=0 K DFT calcula-
tions. In Sec. III, we present a variety of tests of the model
against DFT, both at T=0 K and for high-temperature solid
and liquid Mo. The procedures used to calculate the free
energies of the pure REP and REP+TB systems are de-
scribed in Sec. IV, where we also report our results for the
melting curves and the volume and entropy of melting. This
is followed in Sec. V by an analysis of the relationships
between the melting properties of the REP and REP+TB
systems. Discussion and conclusions are in Sec. VI.

II. THE TIGHT-BINDING TOTAL-ENERGY MODEL

The total energy Utot of our TB model for a system of N
atoms having position ri is

Utot�r1,r2, . . . ,rN� =
1

2�
i�j

VREP�rij� + UTB�r1,r2, . . . ,rN� ,

�1�

where VREP�r� is a repulsive pair potential and rij = �ri−r j�. In
conventional TB treatments, the energy UTB�r1 ,r2 , . . . ,rN�
represents the sum of single-electron energies �n of occupied
states, but here we include the effect of thermal excitation of
electrons, so that UTB is actually a free energy, defined as

UTB = 2�
n

fn�n − TS , �2�

where fn is the Fermi–Dirac occupation number of energy
eigenstate n at temperature T, and S is the electronic entropy,
given by
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S = 2kB�
n

�fn ln fn + �1 − fn�ln�1 − fn�� . �3�

The factors of 2 in Eqs. �2� and �3� account for spin. The TB
Hamiltonian used to calculate the �n is described next, and
the repulsive pair potential is described after that.

A. The canonical d-band tight-binding Hamiltonian

Since we include only d-electrons in our model, the
Hamiltonian matrix elements �i��H�j�	 �i, j label atoms, �,
� label atomic orbitals� characterize hopping transitions of
electrons between the d-orbitals xy, yz, zx, x2−y2, 3z2−r2 on
each atom. We employ an orthogonal TB model, in which
�i� � j�	=�ij���. The dependence of the matrix elements on
interatomic distance is taken to be exponential, so that

�i��H�j�	 = G���r̂ij�Ab exp�− rij/Rb� . �4�

The factor G�� depends on the unit vector r̂ij = �ri−r j� /rij in
the direction from ri to r j, and it is well known that it can be
expressed in terms of three basic matrix elements dd�, dd�,
and dd�. Here, we assume the canonical ratios37

dd� :dd� :dd�=−6:4 :−1. For convenience, and without loss
of generality, we assume the diagonal elements �i��H�i�	 to
be zero. In order to simplify the numerical simulations, we
cut off the matrix elements so that they vanish beyond a
distance Rcut. The exponential is replaced by a cubic polyno-
mial in the interval R1�r�Rcut, the polynomial coefficients
being chosen to ensure continuity of �i��H�j�	 and its first
derivative at R1 and Rcut. For the Mo model developed here,
we chose R1=4.7 Å and Rcut=4.9 Å.

The TB DOS nd�E�, defined as

nd�E� =
2

N
�

n

��E − �n� , �5�

is normalized so that 
nd�E�dE=10. Since the trace of
�i��H�j�	 is zero, the first moment �d

�1� of the DOS, defined
as

�d
�1� =� End�E�dE�� nd�E�dE �6�

is zero. To fix the values of Ab and Rb, we require that the
second moment �d

�2� of the DOS of our model, defined as

�d
�2� =� E2nd�E�dE�� nd�E�dE , �7�

should agree with the volume-dependent d-band second mo-
ment given by DFT.

To apply this procedure to bcc Mo, we performed DFT
calculations using the full-potential linearized augmented
plane-wave �LAPW� method38–41 as implemented in the
WIEN2K code.42 We used the Wu–Cohen43 form of general-
ized gradient approximation, which is known to perform well
for transition metals.44,45 Local orbitals are added to the stan-
dard LAPW basis in order to describe valence and semicore
states. The technical parameters in the calculations were set
as in Ref. 45. The total and projected d-channel densities of
states were obtained by using the modified tetrahedron
method of Blöchl et al.,46 and for the projection we used an

atomic sphere radius of typically 1.32 Å. We found that Ab

=18.5745 eV and Rb=0.8950 Å give very good agreement
with the DFT results for �d

�2� at P=0 and 350 GPa �see Table
I� and these values are used throughout this work.

The quantity �d
�2� is closely related to the width of the

d-band Wd, which is the difference between the lowest and
highest energy levels, Ed

b and Ed
t respectively, in the d-band

DOS. In DFT calculations, the bottom of the d-band Ed
b can

be determined by direct inspection of the DOS, whereas Ed
t

may be difficult to identify because of hybridization of states
with different angular momenta �see Fig. 1�. Here we iden-
tify Ed

t with an abrupt drop in the projected d-DOS at high
energies followed by a smooth continuum. For Mo, we find
that at equilibrium Ed

b and Ed
t are 	5.5 and 4.6 eV, respec-

tively, while at a pressure of P=350 GPa they are Ed
b

TABLE I. Calculated d-band-width Wd=Ed
t −Ed

b, second moment �d
�2� and

energy difference EF−Ed
b from DFT and TB at P=0 GPa �P=350 GPa in

parentheses�. Energies are in eV, and the number of d electrons is Nd=4.3.

Wd �d
�2� EF−Ed

b

DFT 10.1�19.4� 7.22�23.66� 5.88�10.78�
TB 10.8�19.4� 7.29�21.25� 5.85�10.86�
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FIG. 1. d-component of the electronic density of states of bcc Mo calculated
at T=0 K using DFT and TB at pressures of 0 GPa �top panel� and 350 GPa
�bottom panel�. The Fermi energy is set to zero �vertical lines�.
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=−10.8 and Ed
t =8.6 eV �see Fig. 1�. As shown in Table I,

these values compare well with the TB results obtained with
the Ab and Rb values quoted above.

In order to reproduce the energy difference between the
Fermi level and bottom of the d-band and the form of the
d-DOS near EF, we treat the number of d electrons Nd as an
adjustable parameter.47 This is important, since many prop-
erties of transition metals are understood in terms of the form
of the electronic DOS near the Fermi level �e.g., the relative
stability of different structures, electronic specific heat, etc�.
For Mo, we find that Nd=4.3, rather than Nd=5.0, reproduces
quite well the DFT results over a range of pressures �see Fig.
1�. We use this value of Nd, unless stated otherwise.

B. The repulsive pair potential

The pair potential VREP�r� is also assumed to have an
exponential form:

VREP�r� = Ar exp�− r/Rr� . �8�

The parameters Ar and Rr are chosen so as to reproduce as
closely as possible the measured P-V curve of bcc Mo at low
temperatures. This is essentially the same as fitting to DFT,
since with the Wu–Cohen functional the DFT and experi-
mental P-V curves are almost identical. The values Ar

=3164.3454 eV and Rr=0.3350 Å give excellent agreement
with experimental data of Ref. 6, and DFT calculations �Fig.
2�, and we use them throughout this work. The same spatial
cutoff distance and smoothing as used for the Hamiltonian
matrix elements is applied to the repulsive pair potential.

III. SIMULATION TECHNIQUES AND TESTS
OF THE MODEL

A. Molecular dynamics simulation

All the calculations on our TB model were performed
with the OXON code,48–51 using diagonalization of the
Hamiltonian for each set of ionic positions. In the molecular
dynamics �m.d.� simulations, we used the Verlet algorithm to
integrate Newton’s equations of motion, with a typical time
step of 1.25 fs. The total force acting on each atom is the

exact derivative of the total energy Utot with respect to its
atomic position. Our m.d. simulations were performed in the
canonical NVT ensemble, using Andersen’s thermostat to
avoid errors due to lack of ergodicity.52 In using this thermo-
stat, the atomic velocities were randomized by drawing them
from a Maxwellian distribution every 0.2 ps. A typical m.d.
run consisted of 2 ps for equilibration, followed by 10 ps for
the calculation of averages. The m.d. simulations were per-
formed on a 6
6
6 supercell containing N=128 atoms,
and �-point sampling was used to integrate over the first
Brillouin zone. Pressure was obtained directly in each run
using the virial formula.

B. Tests of the model

We have performed a series of zero and finite-
temperature tests of our model in order to assess its accuracy
compared with first-principles results and experimental data.
In our first test, we evaluated the relative stability of the
different crystal structures at different volumes. To this end,
we computed the energy differences �E of the hcp and fcc
structures with respect to the bcc structure at equilibrium
�V0=15.55 Å3 /atom� and a pressure of P=350 GPa �V
=9.50 Å3 /atom�. At equilibrium, we found fcc-bcc and hcp-
bcc differences of 0.40 and 0.46 eV with DFT, compared
with 0.26 and 0.42 with TB. We thus reproduce correctly the
relative zero-pressure stability of the different crystal struc-
tures, although we predict the fcc phase to be appreciably
more stable than hcp. At P=350 GPa, we found fcc-bcc and
hcp-bcc differences of 0.30 and 0.32 eV with DFT, compared
to 0.42 and 0.30 eV with TB. At this pressure, we thus pre-
dict that the energy of the hcp phase is lower than that of the
fcc phase, but bcc is correctly predicted to be the most stable
structure. We note that at both pressures the agreement be-
tween the values of �Ehcp-bcc obtained with DFT and TB is
very good.

We have also computed the phonon frequencies of bcc
Mo at the experimental equilibrium volume V0

=15.55 Å3 /atom.6 Our calculations are based on the small-
displacement method,53,54 and we have used a supercell con-
taining 64 atoms and 16
16
16 k-point grid over the first
Brillouin zone. In Fig. 3, we show our results together with
experimental data from Ref. 6 and ab initio calculations from
Ref. 25 for comparison; the agreement between the TB
curves and the others is unexpectedly good, given the sim-
plicity of our model. We note that the experimental phonon
anomaly near the H point �1,0,0� is not well reproduced by
either TB or DFT.25,56 We have calculated the phonon fre-
quencies also for the fcc and hcp structures of our TB model.
We find that for Nd=4.3 and Nd=5.0 there are always imagi-
nary frequencies, so that these structures are unstable, at least
at T=0. It worth noting that for slightly larger Nd values the
fcc and hcp phases become stable at high pressures; for in-
stance, for Nd=5.2 fcc becomes stable at P
400 GPa.

The finite-temperature tests of our model include an
analysis of the structure of the solid and liquid at different
pressures. In Fig. 4, we plot the radial distribution function
obtained from long �total simulation time �10 ps� DFT and
TB m.d. runs. The solid phase is simulated at T=2000 K
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FIG. 2. Equation of state of bcc Mo obtained from the present TB model
�solid line� and DFT �dashed line�; experimental data �dots� from Ref. 6 are
shown for comparison.
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and P=50 GPa, while the liquid is at T=8250 K and P
=250 GPa. �These are states well below and above the melt-
ing curve of Mo given by first-principles calculations.21,25� In
both phases, the DFT and TB curves agree very well, the

main difference being that TB gives interatomic distances
slightly smaller than those from DFT simulations.

In Fig. 5, we show the electronic DOS of solid and liq-
uid Mo obtained at the same thermodynamic conditions as
for the radial distribution function. Although the DOS’s ob-
tained with TB and DFT are not identical, the corresponding
bandwidths and energy differences EF−Ed

b are very similar,
especially for the crystal.

The main conclusion from all these tests is that, in spite
of the formal simplicity of our TB model, it reproduces quite
reliably many important properties of solid and liquid Mo.

IV. FREE ENERGY AND MELTING PROPERTIES
OF THE MODEL

Our overall strategy to obtain the melting properties of
our model is based on the calculation of the Helmholtz free
energy Ftot�V ,T� of the solid and liquid phases. To obtain
Ftot�V ,T�, we start from the Helmholtz free energy
FREP�V ,T� of the purely repulsive system described by the
pair potential VREP�r�, and use thermodynamic integration to
determine the difference Ftot�V ,T�−FREP�V ,T� at fixed
�V ,T�. This thermodynamic integration is based on the gen-
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FIG. 3. Phonon dispersion relations of bcc Mo calculated with the present
TB model �solid lines� and DFT �dashed lines� at the experimental equilib-
rium volume V0=15.55 Å−3. Experimental data �dots� from Ref. 55 are
shown for comparison.
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FIG. 4. Radial distribution function of solid bcc Mo at T=2000 K and P
=50 GPa from long DFT and TB m.d. runs. Bottom: Radial distribution
function of liquid Mo at T=8250 K and P=250 GPa obtained from long
DFT and TB m.d. runs.
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FIG. 5. d-band electronic density of states calculated by DFT and TB m.d.
simulation for bcc Mo at P=50 GPa, T=2000 K �top panel� and for liquid
Mo at P=250 GPa, T=8250 K �bottom panel�.
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eral principle that for total-energy functions U0 and U1, the
difference of the corresponding free energies F0�V ,T� and
F1�V ,T� at state point �V ,T� is given by

F1 − F0 = �
0

1

��U	
d
 , �9�

where �U=U1−U0 and �·	
 denotes the thermal average
in the ensemble governed by the total-energy function U


= �1−
�U0+
U1. In practice, we use this type of thermody-
namic integration to determine Ftot�V ,T�−FREP�V ,T� at a set
of �V ,T� states, the value of Ftot�V ,T� at other states being
obtained by integrating the relations P=−��Ftot /�V�T and
Etot= ����Ftot� /���V, where �=1 /kBT and Etot is the total in-
ternal energy of the system. The starting point of all the
calculations is the free energy FREP�V ,T� of the pure expo-
nential system. Surprisingly, the thermodynamic properties
of this system appear not to have been studied before, so we
have performed our own calculations of FREP�V ,T�, as de-
scribed next.

A. Free energy and phase diagram of the pure
exponential model

Details of the calculations of the free energy of the pure
exponential model will be reported elsewhere, and here we
give only a brief summary. Our values of FREP�V ,T� were
obtained by thermodynamic integration �Eq. �9��, using as
reference system the inverse-6 system interacting with pair
potential Vinv 6�r�=A /r6. We take the Helmholtz free energy
of this system from Ref. 57 for the liquid, bcc and fcc
phases, and from Ref. 58 for the hcp phase. The thermody-
namic integration calculations were performed at a series of
�V ,T� points in which the free energy difference FREP

−Finv 6 was calculated by averaging VREP−Vinv 6 over long
molecular dynamics runs in which U
 �see Eq. �9�� was var-
ied continuously at a switching rate that guaranteed revers-
ibility �that is, adiabatically�. For the solid phase, we consid-
ered 12 volumes distributed uniformly over the interval
9.68�V�30.80 Å3 /atom, and the temperature was set to
T=1000 K in all cases. For the liquid phase, 15 points
within the same volume range as used for the solid and tem-
peratures taken at intervals of 1000 K from initial guessed
melting temperatures up to 10 000 K, were considered. We

determined Ftot�V ,T� at the other state points by performing
thermodynamic integration with respect to pressure and in-
ternal energy.

Our calculated FREP�V ,T� values were cross-checked
against simulations in which the liquid coexists with the bcc,
fcc or hcp solid. These coexistence simulations were per-
formed in the �N ,V ,T� ensemble, and we used the techniques
explained in Refs. 18 and 25. Simulation boxes containing
up to 10 000 atoms were used in the calculations. For each
pair of coexisting phases, the pressure dependence of the
melting temperature Tm�P� was fitted to the equation

Tm�P� = a��1 +
P

b
�c

− 1� , �10�

which resembles the so-called Simon equation,59 but is ad-
justed to ensure that Tm=0 at P=0. Results for the bcc, hcp,
and fcc melting curves are shown in Fig. 6. For the bcc
melting curve, the values are accurately reproduced with pa-
rameters a=564.6 K, b=1.69 GPa, and c=0.5236. The vol-
umes and enthalpies per atom of the coexisting solid and
liquid were obtained from independent molecular dynamics
simulations performed on supercells containing 1000 atoms
at �P ,T� points on the melting curve. The melting volumes
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T
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FIG. 6. Phase diagram of the pure exponential model VREP obtained from
coexisting solid and liquid phase �N, V, E� simulations. The solid line in the
figure corresponds to the bcc-liquid phase boundary while the dashed and
dotted lines are the fcc-liquid and hcp-liquid ones, respectively. Dots sym-
bolize points obtained directly from the phase coexistence simulations.

TABLE II. Melting temperature Tm as a function of pressure P, volumes per atom Vl and Vs in coexisting liquid
and solid, relative volume change �V /Vs, and entropy of fusion �S of the pure exponential system for coex-
isting bcc solid and liquid. Estimated errors are given in parentheses.

P �GPa� Tm �K� Vl �Å3� Vs �Å3� �V /Vs �%� �S /kB

7.5 800�100�
58.7 3100�100� 20.74 20.39 1.73�5� 0.73�2�
88.6 3985�100� 18.45 18.17 1.54�5� 0.74�2�

141.1 5200�100� 16.09 15.86 1.49�5� 0.74�2�
204.5 6400�100� 14.38 14.20 1.28�5� 0.73�2�
269.0 7450�100� 13.23 13.06 1.32�5� 0.75�2�
333.5 8450�100� 12.36 12.21 1.20�5� 0.74�2�
409.5 9450�100� 11.57 11.45 1.07�5� 0.74�2�
491.5 10450�100�

174707-6 Cazorla, Alfè, and Gillan J. Chem. Phys. 130, 174707 �2009�

Downloaded 06 May 2009 to 128.40.78.138. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



and entropy of fusion for the bcc melting curve are given in
Table II. In fact, the melting curves obtained from the coex-
istence simulations were not perfectly consistent with the
Helmholtz free energy results. We have searched carefully
for the source of these errors, and we think it is possible that
they may come from small imprecisions of the free energies
of the inverse-6 system. To correct for these errors, we
shifted the free energies of the bcc, hcp, and fcc phases with
respect to that of the liquid; the corrections depend solely on
temperature, and are typically 10–20 meV/atom. We note
that differences between energy shifts of all three crystal
structures amount to less than 5 meV/atom, so therefore, to-
tal free energy differences between the bcc, fcc, and hcp
phases, or equivalently their relative stability, are not af-
fected appreciably by our corrections.

As a further cross-check, we calculated the free energies
of the bcc and fcc phases by thermodynamic integration,
starting from a different reference system. For this, we took a
harmonically vibrating solid, with the harmonic force-
constant matrix calculated for a system of particles interact-
ing via the repulsive pure exponential pair potential at vol-
ume V=14.19 Å3 /atom �P�204 GPa�. These calculations
are based on the small-displacement method.53,54 For both
the bcc and the fcc phases, the small discrepancies between
the free energies obtained from the inverse-6 and harmonic
reference systems are typically 10–20 meV/atom at tempera-
tures near melting.

B. Free energy and melting properties
of the TB model

Our thermodynamic integration calculations to deter-
mine the difference Ftot−FREP were performed by varying 

adiabatically from 0 to 1 over a time of 9 ps. Simulation
boxes containing 128 atoms and �-point sampling over the
first Brillouin zone were used. The quantity �U in these
calculations �see Eq. �9�� is the TB band free energy UTB �see
Eqs. �2� and �3��. In order to reduce errors due to nonadia-
baticity, we perform a complete cycle in which 
 goes from
0 to 1 and back again, and to reduce statistical errors this
whole cycle is repeated. The thermodynamic integral

0

1d
�UTB	
 is obtained as the average of the values in the
four half-cycles. The typical standard deviation of these val-
ues is less than 10 meV/atom. An example of the �UTB	


values obtained over a whole run at V=15.55 Å3 /atom and
temperature T=5048 K is shown in Fig. 7. We note that
�UTB	
 varies typically by �0.5 eV /atom as 
 varies be-
tween 0 and 1.

These thermodynamic integration calculations were per-
formed at ten �V ,T� states in each of the liquid and solid
phases. For the solid phase, a temperature of T=1000 K was
chosen for all the volumes; volumes were drawn uniformly
from the interval of 9.68–16.32 Å3 /atom. For the liquid
phase, temperatures of typically 3000 K above the melting
curve of the repulsive potential were chosen and the same set
of volumes as for the solid was used. The value of Ftot�V ,T�
at the other thermodynamic states was obtained by thermo-
dynamic integration with respect to pressure and internal
energy.

In Fig. 8, we report the melting line of our TB model for
d-band fillings Nd=4.3 and 5.0, obtained from the Helmholtz
free energy calculations described above. We have consid-
ered different Nd values in order to assess the effect of this
on the melting properties. Since our harmonic calculations
showed that only the bcc structure is vibrationally stable, we
will report only results for melting from the bcc structure. In
practice, once the free energies Ftot�V ,T� of the liquid and
solid phases are known, we have determined the melting
pressure Pm and volumes of the liquid and solid phases at
each temperature by the Maxwell double-tangent construc-
tion. The Simon formula Tm=a�1+ Pm /b�c was then used to
fit our results and interpolate at any desired pressure. For
Nd=4.3�5.0�, the values of the Simon parameters are a
=2865.9�1678.6� K, b=118.3�35.1� GPa, and c
=0.8530�0.6376�. In Table III, we report results for the frac-
tional change in volume �V /Vs and entropy of fusion �S at
points on the melting curves.

In Fig. 8, we also plot the melting curves of the pure
exponential system and of Mo obtained from DFT
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FIG. 7. Thermal average �UTB	
 of the TB energy UTB as a function of 
 in
an adiabatic thermodynamic integration calculation of the free energy dif-
ference Ftot−FREP between the REP+TB and REP systems. The plot shows
�UTB	
 from a simulation in which 
 executes a double cycle 0→1→0
→1→0, the rate of variation �d
 /dt� being 1 /9 ps−1.
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FIG. 8. Melting curve of TB model at d-band fillings Nd=4.3 �dashed line�
and 5.0 �dotted line�. The melting curve of the pure exponential model and
that of Mo from DFT simulations �Ref. 25� are show for comparison.
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calculations.25 Although accurate reproduction of real-world
data is not the main objective of this work, we note that our
model �case Nd=4.3� gives very good agreement with the
P=0 melting temperatures for Mo of Tm=2883 K from
experiment,60 and Tm=2894 K from DFT simulations.25

With increasing P, significant discrepancies between the TB
�Nd=4.3� and DFT melting curves appear. However, good
agreement is partly recovered at high-P and high-T for
Nd=5.0.

V. ANALYSIS OF MELTING RELATIONSHIPS

We pointed out in the Introduction that the gross features
of transition-metal energetics at T=0 K can be understood
on the basis of a model in which the structure of the elec-
tronic density of states DOS is ignored. This suggests that
the simplest possible model for understanding the melting
behavior of transition metals is to add to the free energy of
the pure exponential model FREP�V ,T� a bonding term Ed�V�
that depends only on volume and does not depend on tem-
perature or on the phase of the system. To test this idea, we
have carried out numerical calculations in which we have set
Ed�V� equal to the bonding energy contribution to the total
energy Utot of the bcc solid at zero temperature �Nd=4.3�. As
expected, Ed�V� varies between 	10 and 	20 eV/atom over
the volume range of interest. The resulting melting curve is
shown in Fig. 9. This very simple model necessarily shifts
the melting curve upwards, and our results show that the
computed melting temperatures are seriously overestimated,
typically by around 50%. This result shows that there must
be a significant dependence of the bonding energy on struc-
ture for given volume in the region of the melting curve. To
illustrate this, we show in Fig. 10 �top� the bonding free
energy �F=Ftot−FREP as a function of volume at T
=6000 K for the liquid and bcc solid. Remarkably, the dif-
ference between �F for liquid and solid is rather constant
and has a value of �0.2 eV /atom, �F being lower in the
liquid. This means that the structure dependence of the bond-
ing stabilizes the liquid phase over the solid and therefore
lowers the melting curve.

It is interesting to ask whether �F is significantly influ-
enced by the response of the structure to the presence of the
TB energy. To answer this, we show in Fig. 10 �bottom� the
quantity �F− �UTB	REP where �UTB	REP is the thermal aver-
age of UTB evaluated in the ensemble of the VREP potential.

The results show that �F− �UTB	REP is quite significant in
both phases. Moreover, the difference of this quantity for the
liquid and solid indicates that the structure of the liquid re-
sponds significantly more than the solid to the presence of
the TB energy. This effect contributes significantly to the
lowering of the melting curve.

VI. DISCUSSION AND CONCLUSIONS

The present work is intended as a step toward develop-
ing an overall understanding of the phase diagrams of entire
transition-metal series over a wide range of pressures and
temperatures. At T=0 K, generalized phase diagrams
�GPDs� as a function of pressure P and atomic number Z can
be computed by DFT, and we recently reported a phase dia-
gram of this kind for the 4d series.45 The construction of a
complete GPD as a function of P, T, and Z using DFT is too
difficult at present, but we believe that it should be feasible
using TB models of the kind described here. With this in
mind, it is encouraging that our REP+TB model for Mo,
parametrized using only T=0 K data, reproduces quite well
the melting curve and properties of the high-T solid and liq-
uid known from DFT. We have used the same REP+TB
model, parametrized using the same scheme, for most of the
other 4d metals, and we hope to report P-T phase diagrams
for them in due course. We note that corresponding-state

TABLE III. Melting pressure Pm as a function of temperature T, volumes per atom Vl and Vs of coexisting
liquid and solid, relative volume of fusion �V /Vs, and entropy of fusion �S, for TB model at d-band fillings
Nd=4.3�5.0�.

Pm �GPa� T �K� Vl �Å3� Vs �Å3� �V /Vs �%� �S /kB

�9.91� 2000 �16.99� �16.27� �4.37� �1.85�
5.63�50.94� 3000 16.64�14.53� 15.86�14.23� 4.92�2.93� 2.75�0.96�
56.37�111.44� 4000 14.69�12.82� 14.10�12.55� 4.18�2.15� 2.19�1.07�
111.51�163.65� 5000 13.04�11.91� 12.65�11.71� 3.13�1.65� 1.53�0.86�
166.36�215.93� 6000 12.11�11.27� 11.75�11.10� 3.12�1.56� 1.46�0.84�
211.36�281.88� 7000 11.51�10.64� 11.24�10.49� 2.39�1.46� 1.09�0.81�
276.42�373.96� 8000 10.90�9.95� 10.61�9.81� 2.76�1.45� 1.22�0.82�
335.63�459.45� 9000 10.38�9.47� 10.16�9.33� 2.13�1.53� 0.92�0.88�
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FIG. 9. Melting curve of the repulsive pure exponential potential VREP �solid
line�, pure exponential potential plus a bonding energy term depending just
on volume VREP+Ed �short-dashed line�, and full TB model Utot=VREP

+UTB at Nd=4.3 �long-dashed line� and 5.0 �dotted line�.

174707-8 Cazorla, Alfè, and Gillan J. Chem. Phys. 130, 174707 �2009�

Downloaded 06 May 2009 to 128.40.78.138. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



arguments will allow the free energies and melting data for
the pure REP model reported here to be used to obtain the
free energies of all these transition metals by thermodynamic
integration.

Since the properties of Mo over a wide range of P and T
seem to be quite well described by our REP+TB model, it is
natural to ask how the melting properties of the model are
related to those of the pure REP model, consisting only of
exponential repulsion. The melting temperature of REP goes
to zero as P→0, so it is clear that the TB energy is crucial in
determining the Tm of transition metals at ambient P. How-
ever, we might expect the repulsion to be increasingly domi-
nant at high P. There is an interesting connection here with
the melting properties of the Lennard-Jones �LJ� model for
rare gases. It was recognized long ago61 that as P→�, the
attractive r−6 potential of LJ has diminishing influence on the
properties of the coexisting solid and liquid, so that the vol-
ume and entropy of fusion tend to those the soft-sphere re-
pulsion r−12 model. As we have shown, the melting curves of
our REP+TB model for Mo with Nd=4.3 and 5.0 do become
close to that of pure REP at high P. Furthermore, the relative
melting volumes �V /Vs of REP+TB for both Nd values de-
crease steadily with increasing P, in a way that is consistent
with convergence toward the melting volume of pure REP.

However, this convergence is slow, since even at P

400 GPa, �V /Vs for REP is 1.1, while for REP+TB it is
�2.1 and 1.5 for Nd=4.3 and 5.0 respectively. The entropy
of fusion �S is 0.74kB for REP over the whole pressure range
studied. For Nd=4.3, �S decreases steadily toward this value
with increasing P, while for Nd=5.0 it remains a little above
this value for all P.

In Sec. I, we asked what are the main parameters that
determine the melting properties of transition metals. The
success of our REP+TB model for Mo suggests that the two
parameters Ar and Rr specifying the strength and range of the
interatomic repulsion, the strength and range Ab and Rb of
the TB matrix elements, and the number Nd of d-electrons,
may be enough. �Firm conclusions must, of course, await TB
calculations on other transition metals.� Our simulations
show clearly that a description of the volume-dependent
d-band width by itself is not enough. The very large
d-bonding energy Ed�V� is described by the very simple
REP+VOL model, but we have shown that this always raises
the melting curve well above that of REP, and gives Tm�P�
predictions that agree poorly with the actual melting curves
of REP+TB. The melting curves are substantially reduced
below those of REP+VOL by the rather small shifts of rela-
tive free energies of solid and liquid included in the full
REP+TB model. We have seen that a significant contribution
to these shifts comes from the response of the system �par-
ticularly the liquid� to the presence of the TB energy.

The present work may shed light on recent interpreta-
tions of the flat melting curves inferred from DAC measure-
ments. It has been proposed that the directional bonding as-
sociated with partially filled d-bands may give rise to
“preferred local structures” having icosahedral short-range
order in the liquid phase.62,63 It was suggested that the for-
mation of these local structures lowers the free energy of the
liquid, and hence depresses Tm. By contrast with simpler
models, such as the embedded-atom model, the TB model
we use fully includes directional d-bonding, and our simu-
lated liquid would presumably exhibit the effects of preferred
local structures, if they were present. The same can be said
of the DFT simulations that have been reported on Mo. Nev-
ertheless, both the present TB calculations and the earlier
DFT simulations give much steeper melting curves than the
DAC measurements, and this indicates that the full inclusion
of directional d-bonding does not lead to low melting curves,
in contradiction with the suggestions of Refs. 62 and 63.

Our TB model represents only the d-band, and ignores
the s-p band. This means that, although it mimics the pres-
sure dependent width of the d-band and gives the main fea-
tures of the DOS, it cannot reproduce the fine details, since it
neglects hybridization of d-states with sp-states. It also
means that the number of d-electrons Nd has to be treated as
an adjustable parameter, and we do not include the depen-
dence of this number on pressure or structure. It has been
suggested64 that the dependence of Nd on structure might
lead to the very flat melting curves inferred from DAC ex-
periments. However, these ideas are not supported by DFT
simulations, which fully include structure-dependent sp-d
transfer, but nevertheless give melting curves that rise much
more steeply than those from DAC. The fact that the present
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d-band-only TB models give melting curves in reasonable
agreement with DFT confirms that sp-d transfer is not ex-
pected to give flat melting curves.

A possible resolution of the conflict between shock and
first-principles melting curves on one side and DAC melting
curves on the other side has emerged recently, at least for
some transition metals.21,27,65 DFT simulations of Mo have
shown that, although bcc is the most stable structure at low T
up to over 600 GPa, another structure, perhaps fcc or hcp, is
likely to become more stable than bcc at much lower P and
temperatures well below the melting curve. The suggestion is
that the transition interpreted as melting in DAC experiments
on Mo may actually be the transition between bcc and this
other structure.

Our main conclusions are as follows: A simple TB
model, parametrized using data for the volume-dependent
d-band width and the cold compression curve of Mo repro-
duces reasonably well the melting curve and the properties of
high-P/high-T solid and liquid Mo known from DFT simu-
lations; the model allows us to analyze the physical mecha-
nisms that determine the melting properties, and to assess
suggested explanations for the anomalously low melting
curves inferred from static compression experiments. We
hope to report soon on TB calculations of melting properties
across the whole 4d series.
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