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Abstract: When using quantum chemistry techniques to calculate the energetics of bulk crystals, there is a need to
calculate the Hartree-Fock (HF) energy of the crystal at the basis-set limit. We describe a strategy for achieving this,
which exploits the fact that the HF energy of crystals can now be calculated using pseudopotentials and plane-wave basis
sets, an approach that permits basis-set convergence to arbitrary precision. The errors due to the use of pseudopotentials
are then computed from the difference of all-electron and pseudopotential total energies of atomic clusters, extrapolated
to the bulk-crystal limit. The strategy is tested for the case of the LiH crystal, and it is shown that the HF cohesive energy
can be converged with respect to all technical parameters to a precision approaching 0.1 mEh per atom. This cohesive
energy and the resulting HF value of the equilibrium lattice parameter are compared with literature values obtained using
Gaussian basis sets.

© 2008 Wiley Periodicals, Inc. J Comput Chem 29: 2098–2106, 2008
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Introduction

Density functional theory (DFT) has dominated computational
condensed-matter science for many years.1 The reasons are well
known: its mild scaling with number of atoms makes it possible
to treat large complex systems; it allows basis-set convergence to
be achieved to any desired tolerance; and atomic forces can be
calculated at almost no extra cost, so that high-temperature dynam-
ical and thermodynamic properties can be calculated by molecular
dynamics simulation. However, the quantitative accuracy of DFT is
often inadequate (see e.g. ref. 2), and there is currently no known
way of systematically improving the description of electron correla-
tion within DFT. These problems with DFT have stimulated efforts
to apply wavefunction-based methods to condensed matter. These
efforts date back many years, and include, for example, the incre-
mental methods developed by Stoll, Fulde, and co-workers.3–7 In
the incremental approach, the total energy is divided into Hartree-
Fock and correlation parts, and the correlation energy is decomposed
according to a many-body expansion into single-atom, atom-pair,
atom-triplet, etc... terms. The approach has been successfully used
to calculate the cohesive energy, equilibrium lattice parameter,
and other properties of bulk crystals.7 Recently, there have also

been efforts to implement periodic versions of correlated quantum
chemistry techniques.8–11

We have recently reported12 an alternative way of using
wavefunction-based techniques to calculate the cohesive energy.
This approach was designed particularly for ionic crystals such as
LiH and MgO, though we believe it is more widely applicable.
The total energy is separated, as usual, into Hartree-Fock and cor-
relation energies, but the latter is then further separated into the
correlation energy of the appropriate number of MX molecules (M
= cation, X = anion), and the remainder, which we refer to as the
“correlation residual”. This residual is then extracted by analysing
its systematic variation over a large hierarchy of free or embedded
clusters. (Details are given in our published paper.12) Taking LiH as
an example, we showed that this approach is capable of giving the
total cohesive energy within ∼ 1 mEh (∼30 meV) per Li-H pair, and
comparison with experiment confirmed this. However, it has become
clear from our more recent work (unpublished) that in order to attain
this level of precision, one of the major challenges is to calculate the
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Hartree-Fock energy sufficiently accurately. In particular, we have
to ensure that errors of basis-set incompleteness in the Hartree-Fock
energy of the crystal can be reduced to any desired tolerance. We
note that the accurate calculation of the Hartree-Fock energy is also
indispensable for achieving high accuracy by any other quantum
chemistry method, for example the incremental method7 or peri-
odic correlated methods.8 The purpose of this article is to outline
the techniques we have developed to calculate the Hartree-Fock part
of the cohesive energy of a crystal very accurately.

The most thoroughly tested way of calculating the Hartree-
Fock energy of a periodic system is the crystal code,13–15 which
employs Gaussian basis sets. (There is also an option for treat-
ing periodic systems in the gaussian code,16 which has been used
recently for calculations on crystals.17) However, there seems to be
a fundamental difficulty in achieving full basis-set convergence for
condensed matter with Gaussian basis sets. The reason is that, as the
size of the basis set is systematically increased, one always arrives
at a point where near linear dependences between the basis func-
tions render the calculations unstable. If the tolerance required for
basis-set errors lies beyond this point, then the calculations simply
cannot deliver what is required. (We remark also that it is difficult
to demonstrate that convergence to a specified tolerance has been
achieved, if one is incapable of achieving considerably better con-
vergence.) This kind of difficulty means that basis-set convergence
to better than ∼1 mEh/atom is generally difficult to attain for con-
densed matter with Gaussian basis sets, and for some systems the
attainable accuracy may be worse than this.

The strategy we shall outline exploits the fact that the Hartree-
Fock energy of crystals can now be calculated using plane-wave
basis sets.18–21 There are two related ways of doing this. One way
is to use conventional pseudopotential methods to eliminate the
core electrons from the calculation and to represent the valence
orbitals by pseudo-wavefunctions. The machinery to calculate the
(pseudo-)Hartree-Fock energy in this way has been implemented in
some of the standard codes, e.g. castep19 and pwscf.22 The other
way is to use the PAW (projector augmented wave23, 24) implemen-
tation of Hartree-Fock described by Kresse et al.,18 which has been
implemented in the vasp code.25 With both these schemes, basis-set
convergence to any specified tolerance is straightforward to obtain,
simply by setting the plane-wave cut-off high enough. However,
there is clearly a problem if we use a pseudopotential method:
although we eliminate basis-set errors, we now incur another error
due to the pseudopotential approximation, and this error must be
corrected for.

The strategy we shall present is based on the conventional pseu-
dopotential approach, and consists of two parts. In the first part, we
calculate the (pseudo-)Hartree-Fock energy of the crystal in peri-
odic boundary conditions with a plane-wave basis set, and we go
to the required tolerance with respect to plane-wave cut-off and k-
point sampling. To correct for the pseudopotential error, we then
use exactly the same pseudopotential to calculate the Hartree-Fock
energies of a large set of free clusters, using a standard quan-
tum chemistry code. We then recalculate all the cluster formation
energies using all-electron Hartree-Fock calculations. Finally, we
perform a hierarchy analysis on the difference between the pseudo-
HF and all-electron-HF cluster formation energies to extract the
pseudopotential error in the bulk crystal. The technical details of
these calculations will be explained in the following, and we shall

present practical calculations on the LiH crystal, to demonstrate that
an accuracy of better than 1 mEh/atom can indeed be obtained. LiH
is a convenient choice, because it has the simple rock-salt structure,
and because it has only a single valence electron per atom. The
plane-wave calculations and the cluster calculations employed the
pwscf22 and molpro26 codes, respectively.

Throughout this article, “cohesive energy” means the Hartree–
Fock energy per cation-anion pair of the perfect crystal minus the
sum of the Hartree-Fock energies of the free neutral atoms. With this
convention, the cohesive energy is a negative quantity. The exact
Hartree-Fock cohesive energy is denoted by εcoh

HF . Since the analysis
to be presented is somewhat intricate, we have included a list of all
the notation in an Appendix, which also provides a brief summary
of the steps involved in our practical formula for εcoh

HF .

Hartree-Fock Cohesive Energy with Pseudopotentials

As a start, we calculate the HF cohesive energy using pseudopoten-
tials, denoting this by εcoh

ps . We show first that the HF pseudo-energy
of the perfect crystal can be calculated to high precision.

We use the Hartree-Fock pseudopotentials created by the group
of Needs.27 Technically, they are Dirac-Fock Average Relativistic
Effective Potentials (AREP’s). When used in Hartree-Fock calcu-
lations, they are constructed so as to reproduce (approximately)
all-electron Hartree-Fock results. Further details of their properties,
and how they are generated are given in ref. 27. It is important for
later purposes to note that each of these pseudopotentials comes
in two forms. The primary form is a finely spaced numerical table
of the pseudopotential as a function of radial distance r for each
angular momentum. However, in order to facilitate the use of the
pseudopotentials in quantum chemistry codes, a representation of
the radial form for each angular momentum is also given in terms of
a superposition of Gaussians multiplied by powers of r. These two
representations of each pseudopotential are, of course, not identical,
because the superposition of Gaussians is only an approximation to
the primary (tabulated) form. The Gaussian representation is care-
fully constructed so as to be as accurate as possible, but it is still not
exact. The calculations to be presented below use both forms, which
we refer to as “tabulated” and “Gaussian-fit”. The pseudopotentials
used for H and Li are publicly available.28

Calculations on Periodic Systems

Using the pwscf code,22 we start by studying convergence with
respect to k-points and plane-wave cut-off. We first report results
for LiH using tabulated pseudopotentials at the lattice parameter
a0 = 4.084 Å, which is the equilibrium value at room temperature.
Table 1 shows that a plane-wave cut-off of 125 Eh and a 5 × 5 × 5
Monkhorst-Pack k-point sampling grid suffice to ensure that the HF
pseudo-energy of the crystal is converged to better than 5 µEh per
ion pair, and these settings for cut-off and k-grid will be used in all
the following calculations, unless otherwise specified. Additional
tests on plane-wave cut-off, which confirm this convergence, will
be mentioned below in Section Hartree-Fock Pseudo-Energy of Free
Atoms. In the pseudopotential approximation, the cohesive energy
εcoh

ps is the difference between the HF pseudo-energy of the crystal
per Li-H pair and the sum of the HF pseudo-energies of the free
atoms. Since we can calculate the HF pseudo-energies of the atoms

Journal of Computational Chemistry DOI 10.1002/jcc



2100 Gillan et al. • Vol. 29, No. 13 • Journal of Computational Chemistry

Table 1. Calculated Hartree-Fock Pseudo-Energy Eps
HF Per Li-H Pair in LiH

Crystal as Function of Plane-Wave Cut-Off Energy Ecut and
Monkhorst-Pack k-Points Grid.

Ecut (Eh) k-pts Eps
HF (Eh)

125 4 × 4 × 4 −0.829911
125 5 × 5 × 5 −0.829877
125 6 × 6 × 6 −0.829873
150 4 × 4 × 4 −0.829912

Results are for lattice parameter a0 = 4.084 Å.

very precisely (see below), the results of Table 1 imply that we
can calculate the Hartree-Fock part of the cohesive energy in the
pseudopotential approximation to high precision.

For later purposes, it is useful to compare results obtained with
the tabulated and Gaussian-fit versions of the Li and H pseudopoten-
tials. Here, a bit of explanation is needed. The pwscf code requires
pseudopotentials to be presented in the form of radial tables. This
means that in order to run the code using the Gaussian-fit form
of the pseudopotentials, we must first construct radial tables of
this Gaussian-fit form. We shall refer to this tabular representation
of the Gaussian-fit pseudopotentials as “tabulated-Gaussian” pseu-
dopotentials. Table 2 compares the Hartree-Fock pseudo-energies at
four different lattice parameters calculated with the “tabulated” and
“tabulated-Gaussian” pseudopotentials. The comparison shows that
the differences vary from ∼0.3 to ∼0.6 mEh, which is not negligible
for present purposes.

Hartree-Fock Pseudo-Energy of Free Atoms

To obtain the HF cohesive energy in the pseudopotential approxima-
tion, we need to calculate the HF pseudo-energies of the free atoms.
In explaining how we have done this, we shall go to what may appear
absurd lengths to compare several different methods. The reason for
going to such lengths is that the methods that we now describe will
be important also in calculating the pseudopotential error (Section
Correcting for the Pseudopotential Error).

Our first method for calculating the pseudo-Hartree-Fock energy
of the atoms is to apply pwscf to a periodic system in which the
repeating cell contains a single atom, and the dimensions of the cell
are increased until interactions between images in different cells
are negligible. This approach can be used both for the “tabulated”
and “tabulated-Gaussian” forms of the pseudopotential. Our second
method makes use of the fact that the molpro code can be used to
calculate the Hartree-Fock energy with pseudopotentials, so long as
these are presented in Gaussian form. We have also used a third, less
obvious method, which makes use of our ability to perform quantum
Monte Carlo calculations29 on systems with or without periodic
boundary conditions (pbc). If we perform variational Monte Carlo
calculations, using a Slater determinant of single-electron orbitals
obtained with PWSCF, then the total energy obtained is the pseudo-
Hartree-Fock energy. We have done calculations of this kind using
the casino code.30 Since these calculations can be done on a given
system either with or without pbc, we have here a useful way of
directly determining the errors due to the use of pbc.

Table 2. Comparison of Hartree-Fock Pseudo-Energies Eps
HF (Eh units) Per

Ion Pair in LiH Crystal Calculated With Tabulated and Gaussian-fit
Pseudopotentials.

a0 (Å) tab Gauss

3.684 −0.823415 −0.822785
3.884 −0.828523 −0.828034
4.084 −0.829877 −0.829498
4.284 −0.828540 −0.828248

Results are given at different values of the lattice parameter a0. Calculations
use plane-wave cut-off Ecut = 125 Eh and 5 × 5 × 5 k-point sampling.

We report in Table 3 results for the HF pseudo-energies of the
H and Li atoms, obtained by our three methods, using, wherever
possible, both the tabulated and the Gaussian forms of the pseudopo-
tentials. The pwscf calculations were all performed with �-point
sampling and with a plane-wave cut-off of 125 Eh. It is worth men-
tioning that for the pwscf calculations on H, we have taken the
opportunity to conduct additional tests on the plane-wave cut-off
Ecut. We find that as Ecut is increased from 125 to 350 Eh, the cal-
culated pseudo-energy of the atom decreases by only 14 µEh, the
change on going from 250 to 350 Eh being only 4µEh. This con-
firms that Ecut = 125 Eh is more than adequate for present puporses.
For the molpro calculations, we have used standard Dunning cc-
pVnZ basis sets,31, 32 but uncontracted so that all Gaussian primitives
are independent. Results obtained in this way for VTZ, VQZ, and
V5Z basis sets are then extrapolated to the basis-set limit using the
three-point exponential formula discussed recently for Hartree-Fock
calculations by Jensen,33 according to which the HF energy E(Lmax)

obtained with a cc-pVNZ basis whose maximum angular momen-
tum is Lmax is E(Lmax) = A + B exp(−CLmax). The results show
that for either form of the pseudopotentials, the HF pseudo-energy
can readily be determined to a precision of ∼50 µEh.

Table 3. Hartree-Fock Pseudo-Energies (Eh units) of Free H and Li Atoms,
Calculated Using the pwscf, casino, and Molpro Codes, and With
Tabulated and Gaussian Pseudopotentials.

H Li

Calculation Tabulated pseudopotentials

PWSCF (L = 20 a.u.) −0.499956 −0.197095
PWSCF (L = 30 a.u.) −0.499956 −0.196352
PWSCF (L = 40 a.u.) − −0.196348
CASINO −0.500024(2) −0.196338(1)

Gaussian pseudopotentials

Molpro (VTZ) −0.499689 −0.196247
Molpro (VQZ) −0.499980 −0.196284
Molpro (V5Z) −0.500003 −0.196300
Molpro (∞) −0.500005 −0.196312
PWSCF −0.499955 −0.196347

pwscf calculations using Gaussian pseudopotentials were done with cell
lengths of 30 and 40 a.u. for H and Li respectively.
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Table 4. Hartree-Fock Pseudo-Energies (Eh units) of Selected Clusters Calculated in Periodic Boundary
Conditions With pwscf for different repeating cells.

Cluster pwscf casino

1 × 1 × 2 20 × 20 × 20 25 × 25 × 25 30 × 30 × 30 35 × 35 × 35 40 × 40 × 40
−0.737927 −0.736835 −0.736408 −0.736179 −0.736050 −0.73579(1)

1 × 2 × 2 20 × 20 × 20 25 × 25 × 25 30 × 30 × 30 35 × 35 × 35 40 × 40 × 40
−1.556938 −1.556336 −1.556155 −1.556089 −1.556062 −1.55605(2)

2 × 2 × 2 20 × 20 × 20 25 × 25 × 25 30 × 30 × 30 35 × 35 × 35 40 × 40 × 40
−3.201782 −3.201531 −3.201461 −3.201445 −3.201440 −3.20135(4)

1 × 4 × 4 20 × 26 × 26 25 × 32 × 32 30 × 39 × 39 35 × 45 × 45 40 × 52 × 52
−6.428209 −6.425594 −6.424849 −6.424584 −6.424479 −6.42407(6)

2 × 2 × 4 20 × 20 × 20 25 × 25 × 25 30 × 30 × 30 30 × 30 × 39 35 × 35 × 35
−6.476855 −6.472651 −6.472199 −6.472117 −6.472108 −6.47166(6)

The cells are orthorhombic, and their dimensions are given in the form L1 × L2 × L3 (edge lengths Lα in a.u.). Right-
most column gives HF pseudo-energy obtained from casino calculations on free clusters. All results are for tabulated
pseudopotentials.

Correcting for the Pseudopotential Error

As indicated in the Introduction, we determine the pseudopotential
error by comparing the formation energies of free clusters calculated
with the pseudopotential approximation and with all-electron calcu-
lations. In this Section, we describe first how we have calculated the
formation energies of clusters using pseudopotentials, and then how
we have done the same thing with all-electron calculations. In the
final part of the Section, we outline the hierarchical analysis used
to extract the pseudopotential error for the bulk crystal. This analy-
sis allows us to obtain highly converged values of the Hartree-Fock
cohesive energy of the crystal at different lattice parameters.

Pseudopotential Calculations on Free Clusters

The three methods used to calculate the pseudo-Hartree-Fock ener-
gies of the free atoms can all be applied for the same purpose to
clusters. We regard a careful comparison of the results of the differ-
ent methods as extremely important. The reason is that our whole
strategy for calculating the HF cohesive energy relies on a combina-
tion of completely different technologies, namely pseudopotentials
with plane waves (pwscf) and all-electron calculations with Gaus-
sians (Molpro). Since we are trying to attain a precision of better
than 1 mEh/atom it is clear that even very small inconsistencies
between the different technologies can prevent us from attaining
our goal. In this sense, the ability to compare the pseudo-HF ener-
gies of a hierarchy of clusters obtained with pwscf and with Molpro
can give us much needed reassurance that such inconsistencies are
not significantly affecting the results.

We first apply our methods to all neutral LiH clusters containing
up to 16 ions. For present purposes, a “cluster” is a cuboidal piece
of the rock-salt structured crystal, whose edges are parallel to the
cubic crystal axes and contain l, m, and n ions. We refer to such a
cluster as an l × m × n cluster. For electro-neutrality, the product
lmn must be even. The smallest such cluster is 1 × 1 × 2, which
is the LiH molecule. All the calculations in which we compare the
different methods are done with the Li-H nearest-neighbour distance
d = 1

2 a0 = 2.042 Å.

In using the pwscf code to obtain pseudo-HF energies of the free
clusters, we must, of course, pay careful attention to the errors due to
the use of periodic boundary conditions. As expected, the 1 × 1 × 2
cluster is the one that converges most slowly with respect to cell
size, since it is the only cluster that has a dipole moment. However,
since we know that the cell-size error for the 1 × 1 × 2 cluster must
decay as 1/L3, it is straightforward to remove the leading term in
this error by extrapolation. As a cross-check on the cell-size errors,
we have performed casino calculations without pbc. We compare in
Table 4 the HF pseudo-energies obtained with pwscf and casino,
using tabulated pseudopotentials. The comparisons show that the
HF pseudo-energies of clusters can be calculated to a precision of
∼ 50 µEh per ion pair.

We now report the pseudopotential calculations on all neutral
clusters having up to 16 ions using Molpro. We have used the same
fully decontracted Dunning basis sets as were used for our calcu-
lations on the free atoms (Section Hartree-Fock Pseudo-Energy of
Free Atoms). We show in Table 5 the resulting pseudo-HF forma-
tion energies (relative to free atoms), compared with those obtained
from pwscf using the Gaussian pseudopotentials. The free-atom
pseudo-HF energies used to obtain all the results in the Table were
−0.499956 Eh for H and −0.196348 Eh for Li (see Table 3). As
a measure of the basis-set errors in the Molpro results, we list the
quantities 2(Eform(V∞Z)− Eform(VnZ))/N , where N = lmn is the
number of ions in the cluster, denoting these by δT, δQ and δ5, accord-
ing to whether the basis set is triple-, quadruple- or quintuple-zeta.
The δ-values indicate that with VTZ, VQZ and V5Z, the basis-set
errors per ion pair are almost constant at −0.45, −0.08, and −0.015
mEh respectively.

All-Electron Calculations on Free Clusters

Our HF all-electron calculations on free clusters were all performed
using the standard Dunning basis sets.31, 32 (Our tests on the effect
of decontracting the basis sets indicate that the improvement is
insignificant.) To show the basis-set convergence, we report in
Table 6 the all-electron HF formation energies of all clusters up
to 16 ions, obtained with VTZ, VQZ, and V5Z basis sets, as well
as the extrapolated values obtained by the three-point exponential
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Table 5. HF Pseudo-Formation Energies (Eh units) of Li-H Clusters Obtained from Molpro With Different
Decontracted Dunning Basis Sets, and Values Obtained by Extrapolation to Basis-Set Limit.

Molpro

Cluster VTZ VQZ V5Z V∞Z PWSCF δT δQ δ5

1 × 1 × 2 −0.038942 −0.039354 −0.039441 −0.039464 −0.03943 −0.522 −0.110 −0.023
1 × 2 × 2 −0.162266 −0.163057 −0.163210 −0.163247 −0.16318 −0.491 −0.095 −0.019
1 × 2 × 3 −0.271008 −0.272150 −0.272347 −0.272388 – −0.460 −0.079 −0.014
1 × 2 × 4 −0.384287 −0.385766 −0.386011 −0.386060 −0.38629 −0.443 −0.074 −0.012
1 × 2 × 5 −0.495737 −0.497572 −0.497869 −0.497926 – −0.438 −0.071 −0.011
1 × 2 × 6 −0.608092 −0.610285 −0.610637 −0.610704 – −0.435 −0.070 −0.011
1 × 2 × 7 −0.719907 −0.722457 −0.722865 −0.722943 – −0.434 −0.069 −0.011
1 × 2 × 8 −0.832060 −0.834970 −0.835434 −0.835522 −0.83586 −0.433 −0.069 −0.011
1 × 3 × 4 −0.607733 −0.609951 −0.610309 −0.610378 – −0.441 −0.071 −0.012
1 × 4 × 4 −0.848890 −0.851825 −0.852298 −0.852389 −0.85262 −0.437 −0.071 −0.011
2 × 2 × 2 −0.413537 −0.415051 −0.415349 −0.415422 −0.41545 −0.471 −0.093 −0.018
2 × 2 × 3 −0.653911 −0.656175 −0.656591 −0.656685 – −0.462 −0.085 −0.016
2 × 2 × 4 −0.896014 −0.899000 −0.899537 −0.899655 −0.89984 −0.455 −0.082 −0.015

Results are compared with PWSCF values obtained in periodic boundary conditions with large cells. All values refer to
Gaussian pseudopotentials. Quantities δT, δQ, and δ5 are estimates of Molpro basis-set errors per ion pair (mEh units).

formula mentioned earlier. (The HF energies of the free atoms used
here are −0.5 Eh for H and −7.432727 Eh for Li, the latter value
being within 1 µEh of the HF limit.34) We also give the quantities
2(Eform(∞) − Eform(VnZ))/N , where Eform(VnZ) is the formation
energy using the VnZ basis set, and Eform(∞) is the value obtained
by extrapolation, denoting these quantities by δT, δQ, and δ5, accord-
ing to the basis set. We deduce from this that the errors in all-electron
formation energy per ion pair with triple-zeta, quadruple-zeta and
quintuple-zeta basis sets are almost constant at 0.5, 0.14, and 0.040
mEh. The implication is that if we can calculate the all-electron HF
total energy of the bulk crystal at the VTZ, VQZ, and V5Z levels,
then we can correct the results using these (almost) constant values
of the basis-set errors, and the corrected results should be within
∼100, ∼10 and ∼5 µEh of the basis-set limit, respectively.

Hierarchy Analysis to Determine Pseudopotential Errors

The results presented above show that Molpro calculations of the
pseudo-HF formation energies of clusters agree to high precision
with the formation energies calculated with pwscf (and casino), and
that Molpro can also give highly converged all-electron values of the
cluster formation energies. This means that we can now calculate
the difference between all-electron-HF and pseudo-HF formation
energies of clusters using only Molpro. We denote this difference
(all-electron minus pseudo) for the l × m × n cluster by �Eform

lmn .
We now need a systematic way of extracting the correction for the
pseudopotential error in the cohesive energy of the bulk crystal. To
do this, we use a procedure closely resembling the hierarchical anal-
ysis that we used elsewhere12 to calculate the “correlation residual”
contribution to the cohesive energy.

Table 6. All-Electron HF Formation Energies (Eh units) of Li-H Clusters Calculated Using Dunning VTZ, VQZ,
and V5Z Basis sets, With the Value Obtained by Exponential Extrapolation Denoted by V∞Z.

Cluster VTZ VQZ V5Z V∞Z δT δQ δ5

1 × 1 × 2 −0.039279 −0.039711 −0.039854 −0.039925 −0.646 −0.214 −0.071
1 × 2 × 2 −0.162161 −0.162997 −0.163220 −0.163301 −0.570 −0.152 −0.041
1 × 2 × 3 −0.270337 −0.271448 −0.271750 −0.271863 −0.509 −0.138 −0.038
1 × 2 × 4 −0.383110 −0.384504 −0.384891 −0.385040 −0.483 −0.134 −0.030
1 × 2 × 5 −0.494042 −0.495742 −0.496217 −0.496401 −0.472 −0.132 −0.037
1 × 2 × 6 −0.605878 −0.607886 −0.608452 −0.608674 −0.466 −0.131 −0.037
1 × 2 × 7 −0.717176 −0.719494 −0.720150 −0.720409 −0.462 −0.131 −0.037
1 × 2 × 8 −0.828811 −0.831440 −0.832187 −0.832483 −0.459 −0.130 −0.037
1 × 3 × 4 −0.605239 −0.607231 −0.607798 −0.608024 −0.464 −0.132 −0.038
1 × 4 × 4 −0.845155 −0.847760 −0.848509 −0.848811 −0.457 −0.131 −0.038
2 × 2 × 2 −0.412161 −0.413867 −0.414291 −0.414431 −0.568 −0.141 −0.035
2 × 2 × 3 −0.651221 −0.653543 −0.654153 −0.654370 −0.525 −0.138 −0.036
2 × 2 × 4 −0.892033 −0.895004 −0.895799 −0.896089 −0.507 −0.136 −0.036

Also shown are the differences δn = 2(Eform(∞)−Eform(VnZ))/N (mEh units) for the three basis sets, with N the number
of ions in the cluster.
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The correction �εcoh per ion pair that must be added to the
cohesive energy calculated with pseudopotentials is the limit of
2�Eform

lmn /lmn as l, m and n → ∞. For clusters of a size that can
be handled with Molpro, there are likely to be substantial contri-
butions to �Eform

lmn from the surfaces (and perhaps from edges and
corners) of clusters, so we cannot assume that the limiting value
of 2�Eform

lmn /lmn will be correctly obtained by simple extrapolation.
However, we can assume that in the limit of large clusters �Eform

lmn
will go to the asymptotic form:

�Eform
lmn → e000 + e001(l + m + n) + e011(mn + nl + lm)

+ e111lmn, (1)

where the coefficients e111, e011, e001, and e000 are associated with
the bulk, surfaces, edges and corners, respectively. The coefficient
that concerns us most here is e111, since the required correction is
�εcoh = 2e111.

Following our earlier ideas,12 we note now that if we have the
values of �Eform

lmn for four different clusters, we can solve the four
simultaneous equations (1) to obtain estimates of the four coeffi-
cients e000, e001, e011, and e111. This can be done, provided the four
equations are linearly independent. We must therefore require that
the four clusters be chosen so that the determinant whose rows are
made of the coefficients 1, l +m+n, mn+nl + lm and lmn does not
vanish. As a short-hand, we call these “linearly independent clus-
ters.” For any given set of four clusters, the coefficients so obtained
are only estimates, and we need to find the limits to which the esti-
mates tend as we go to infinite clusters. The “hierarchical” procedure
we have developed for doing this works as follows. We choose an
even integer N , and we make the complete list of all neutral clusters
for which the total number of ions is less than or equal to N . In
making this list, we do not count as distinct clusters whose indices
l, m, and n differ only by permutations, so that we can take the list
to consist of triplets (l, m, n) for which l ≤ m ≤ n. The clusters
in the list are arranged in lexicographical order, which means that
if we have two clusters (l1, m1, n1) and (l2, m2, n2) then (l1, m1, n1)

precedes (l2, m2, n2) if:

• l1 < l2
• l1 = l2 and m1 < m2

• l1 = l2 and m1 = m2 and n1 < n2.

As we pass through the list, n varies most rapidly, followed by m
and then l. With this ordering, the clusters that come towards the
end of the list are those for which l, m, and n are all large.

Using the lexicographical list constructed for a given integer N ,
we now make a procedure for choosing four large linearly indepen-
dent clusters. The last two members of the lexicographical list are
always chosen, since it can be shown that they are guaranteed to
be linearly independent. However, as we continue to count back in
the list, the next member is not necessarily linearly independent of
the two already chosen. If it is linearly independent, we choose it,
but otherwise we continue to count back until we find a member
that is linearly independent. We do the same thing to find the fourth
and final member. Solution of the four simultaneous equations now
gives us values of the coefficients. These values depend, of course,
on the integer N that was initially chosen. To go to the asymptotic

Figure 1. Coefficient e111 (mEh units) characterizing difference
between all-electron HF and pseudo-HF formation energies of LiH clus-
ters as function of N in hierarchical analysis (see text). Results are shown
for VTZ (open squares) and VQZ (closed circles) basis sets.

limit, we now repeat this procedure for increasing N values until the
coefficients are converged to the required tolerance.

To apply this analysis, we have calculated �Eform
lmn for all clusters

containing up to 48 ions, using VTZ basis sets for both all-electron
and pseudopotential calculations, and for all clusters up to 36 ions
with VQZ basis sets for both. The resulting values of e111 obtained
with the VTZ basis set (Fig. 1) show plateaux separated by small
breaks. For the smallest values of N , there are no atoms in bulk
environments, so the results are not necessarily meaningful. The
smallest cluster for which there are atoms in bulk environments is
3 × 3 × 4, and we therefore believe that the plateau for N ≥ 36
represents a close approximation to the asymptotic e111. For the
VQZ basis set, we have gone only to N = 36, and we regard the e111

for this N as the best available value for this basis set. Denoting the
values of e111 obtained with VTZ and VQZ basis sets by e111(VTZ)

and e111(VQZ), we find the asymptotic values to be e111(VTZ) =
0.51 mEh and e111(VQZ) = 0.64 mEh.

Final Hartree-Fock Results

We now assemble all the foregoing results, to obtain an accurate
value of the Hartree-Fock cohesive energy εcoh

HF relative to free atoms.
The notation used for all the quantities that enter the calculation is
summarised in the Appendix, where we show that the final value of
εcoh

HF obtained when we use all-electron and pseudopotential cluster
calculations with VnZ basis sets to estimate the pseudopotential
correction is given by:

εcoh
HF = εcoh

ps (PWSCF) + εcoh
ps (Molpro−PWSCF) + 2e111(VnZ)

+ δBSE(AE, VnZ) − δBSE(ps, VnZ). (2)

The numerical results to be presented now refer to the lattice
parameter a0 = 4.084 Å. From Section Hartree-Fock Pseudo-
Energy of Free Atoms, the pseudopotential approximation to
the HF cohesive energy given by PWSCF is εcoh

ps (PWSCF) =
−133.19 mEh. We have seen from our pseudopotential calculations
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Table 7. Calculated Hartree-Fock Equilibrium Values of the Cohesive
Energy εcoh

HF , the Lattice Parameter a0 and the Bulk Modulus B.

εcoh
HF (mEh) a0 (Å) B (GPa)

VTZ −132.23 4.1051 32.82
VQZ −131.99 4.1084 32.05
CRYSTAL −129.14(−130.16) 4.121 28.3

Results are corrected for pseudopotential error using hierarchy analysis on
cluster calculations performed with VTZ and VQZ basis sets. The results
are compared with published values obtained with the crystal code, the
values without and with brackets being from refs. 11 and 36 respectively.

on clusters that the PWSCF and Molpro treatments of Gaussian
pseudopotentials give almost identical results, the difference per
ion pair being εcoh

ps (Molpro−PWSCF) = 0.02 mEh.
We saw in Section Hierarchy Analysis to Determine Pseu-

dopotential Errors that our calculations with VTZ basis sets give
a correction for the cohesive energy per ion pair e111(VTZ) =
0.51 mEh. We also saw there that the basis-set corrections in this case
are δBSE(AE, VTZ) = −0.51 mEh and δBSE(ps, VTZ) = −0.46
mEh. Putting these results together, we obtain the corrected cohe-
sive energy εcoh

HF = −132.20 mEh. On the other hand, with VQZ
basis sets, we obtained e111(VQZ) = 0.64 mEh, δBSE(AE, VQZ) =
−0.14 mEh and δBSE(ps, VQZ) = −0.08 mEh, so that the final cohe-
sive energy in this case is εcoh

HF = −131.95 mEh. The final results
obtained using VTZ and VQZ basis sets to correct for the pseudopo-
tential errors are therefore within 0.2 mEh of each other. We believe
that the VQZ result is to be preferred.

We have repeated the calculations at a number of values of lattice
parameter a0, in order to obtain HF values of the equilibrium lattice
parameter and bulk modulus. More precisely, we have performed
pseudopotential-plane-wave calculations of the HF pseudopotential
cohesive energy εcoh

ps at a0 values ranging from 3.684 to 4.284 Å at

intervals of 0.1 Å, using in all cases the plane-wave cut-off of 125 Eh

and 5 × 5 × 5 k-point sampling. To obtain the pseudopotential error
as a function of lattice parameter, we have performed all-electron
and pseudopotential calculations on the four clusters 2 × 3 × 5,
2 × 3 × 6, 2 × 4 × 4 and 3 × 3 × 4, with both VTZ and VQZ basis
sets, as described above, at lattice parameters a0 = 3.884, 4.084,
and 4.284 Å, and used the hierarchy analysis to obtain e111 in each
case. A quadratic fit was then used to obtain e111 as a function of a0.
This quadratic approximation to e111 allows us to obtain εcoh

HF at the
set of a0 values from 3.684 to 4.284 Å at intervals of 0.1 Å. Finally,
we performed a 3rd-order Birch-Murnaghan35 fit to these results
to obtain the equilibrium lattice parameter, the cohesive energy at
this a0, and the bulk modulus B. We compare the results with those
from published crystal calculations11, 36 in Table 7. (In making the
comparison for εcoh

HF , we have taken from refs. 36 and 11 the values
−8.06289 and −8.06187 Eh for the total Hartree-Fock energy of
the crystal per ion pair. These have then been converted to cohesive
energies relative to free atoms, using the essentially exact Hartree-
Fock energies of the H and Li atoms, which are −0.5 and −7.432727
Eh.)

Given that the original crystal calculations36 of Hartree-Fock
cohesive energy of LiH were reported over 20 years ago, they are
in remarkable agreement with our values. The reason why the very

recent repetition of the crystal calculations11 gives a Hartree-Fock
energy that is higher than the old value by ∼1 mEh is unclear. To
check this, we have performed our own crystal calculations, using
exactly the same Gaussian basis set used by Dovesi et al.,36 obtaining
the total energy −8.06169 Eh, which is indeed above the old value
by 1.2 mEh. However, we find that on expanding the basis set the
energy can be lowered to −8.06326 Eh, giving εcoh

HF = −0.13053 Eh,
which is still above our value by 1.5 mEh. Since the margin of error
on our value appears to be much smaller than this, we believe that the
difference is significant, and that it is due to residual basis-set incom-
pleteness in crystal. Whether the differences in the equilibrium
values of a0 and B are significant is debatable.

Discussion and Conclusions

Our results for the Hartree-Fock cohesive energy εcoh
HF of LiH show

the possibility of calculating this quantity to a precision approaching
0.1 mEh/atom, at least for this material. We recall that in conven-
tional methods based on the use of Gaussian basis sets the attainable
precision is limited mainly by the difficulty of achieving basis-set
convergence, and specifically by the instabilities caused by near lin-
ear dependence of the basis functions. Comparison with literature
values of εcoh

HF for LiH suggests that with Gaussians it is difficult to
achieve convergence to better than 1 mEh/atom. In effect, our strat-
egy transfers the difficulty from one place to another. We have shown
that, with plane waves and pseudopotentials, basis-set convergence
to arbitrarily high precision is straightforward; for example, con-
vergence to within 1 µEh could readily be attained. However, the
difficulty is now to converge the difference between the pseudopo-
tential and all-electron cohesive energy per atom with respect to
cluster size. In the case we have studied, the pseudopotentials appear
to be very transferable, so that this difference is very small, and size
convergence is not hard to achieve.

However, LiH is clearly a favorable case, because it has a very
simple crystal structure and the number of electrons per atom is
small. It is important to ask what difficulties will arise if we apply our
strategy to other materials. For many materials having the same rock-
salt structure, our strategy will be applicable without change, and we
hope to report calculations on such materials soon. The calculations
will necessarily be heavier than for LiH, but the pseudopotential HF
cohesive energy should still be calculable to arbitrary precision. It
may be that the differences between pseudopotential and all-electron
energies of clusters for these materials will be larger. However, we
note that the methods we have used here to converge this difference
are still very crude, since we have used completely free clusters, for
which the surface energy is a large contribution. It should be possible
to achieve far better size convergence using embedded clusters, and
we plan to study this.

There is also another development that seems very promising.
We have noted the possibility of calculating the Hartree-Fock energy
of crystals with the projector augmented-wave (PAW) scheme,18

which is closely related to the ultra-soft pseudopotential method
with plane-wave basis sets. If required, full core relaxation21 can
also be applied. This PAW scheme may well be able to approach the
exact all-electron limit more closely than pseudotential methods, in
which case correction for the difference between the PAW and exact
values of the HF energy may become unnecessary. We suggest that
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the strategies outlined here could be important in assessing whether
this is the case.

In conclusion, we have presented a strategy for calculating
the Hartree-Fock energy of crystals with high precision, and have
demonstrated the effectiveness of this strategy for LiH. We have
noted the need to test the strategy on other, more challenging
materials, and have also pointed out ways of improving the strategy.
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Appendix: Notation

Here, we provide a summary of the notation used in the calcula-
tion of the Hartree-Fock cohesive energy. The cohesive energy of
the bulk crystal and the formation energies of cluster are always
defined relative to free atoms. The cohesive and formation energies
are always defined to be energy of crystal (or cluster) minus energy
of equivalent number of atoms, so that they are negative quantities.
Note also that the energies of free atoms that enter the following
quantities are always taken to be calculated at the basis-set limit
(pseudopotential or all-electron as appropriate), even if the quantity
refers to the energy of a cluster treated with a finite basis set.

• εcoh
HF : Exact Hartree-Fock cohesive energy per ion pair (energy of

crystal minus energy of neutral atoms).
• εcoh

ps (PWSCF): cohesive energy per ion pair calculated for perfect
crystal using PWSCF at basis-set limit. (Necessarily employs
pseudopotential.)

• εcoh
ps (Molpro): Hypothetical cohesive energy per ion pair that

would be obtained for perfect crystal using Molpro at basis-set
limit, using pseudopotentials. One can think of this as formation
energy of cluster per ion pair at basis-set limit, in limit of infinite
cluster.

• εcoh
ps (Molpro−PWSCF): Defined as the difference εcoh

ps (Molpro)−
εcoh

ps (PWSCF).

• Eform
lmn (PWSCF): formation energy of l × m × n cluster (total

energy of cluster minus total energy of free atoms) calculated
with PWSCF employing pseudopotentials at basis-set limit.

• Eform
lmn (ps, VnZ): formation energy of l × m × n cluster from free

atoms, calculated with Molpro employing pseudopotentials and
VnZ basis set. Value obtained by basis-set extrapolation using
3-point exponential formula is denoted by V∞Z.

• Eform
lmn (AE, VnZ): same as Eform

lmn (ps, VnZ), but with all-electron
calculations.

• δBSE(ps, VnZ): basis-set error per ion pair in formation energy
of cluster obtained with VnZ basis set, employing pseudopo-
tential. Defined as energy at basis-set limit minus energy with
VnZ: δBSE(ps, VnZ) = 2(Eform

lmn (ps, V∞Z)−Eform
lmn (ps, VnZ))/N ,

where N = lmn is number of ions in cluster.
• δBSE(AE, VnZ): same as δBSE(ps, VnZ), but with all-electron

calculations.

• e111(VnZ): value of pseudopotential correction energy per ion
obtained from hierarchy analysis, defined as:

lim
cluster→∞

[
Eform

lmn (AE, VnZ) − Eform
lmn (ps, VnZ)

]
/N ,

where N = lmn is number ions in cluster. Note that e111(VnZ) is
defined per ion, not per ion pair.

With these definitions, the formula for the corrected value of the
HF cohesive energy is:

εcoh
HF = εcoh

ps (PWSCF) + εcoh
ps (Molpro−PWSCF) + 2e111(VnZ)

+ δBSE(AE, VnZ) − δBSE(ps, VnZ).
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