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Introduction

T heoretical chemistry rests on the twin pillars of
quantum mechanics and statistical mechanics,

and it has long been clear that thermal equilibrium
properties should be computable by ab initio meth-
ods. To obtain thermodynamic functions, all that is
needed in principle is a quantum calculation of the
energy eigenvalues En, which are then used in the
standard formula for the partition function:

Z =
∑

n

exp(−βEn), (1)

where β = 1/kBT. This then gives the Helmholtz
free energy F = −kBT ln Z and hence all other ther-
modynamic functions. For simple molecules this
can clearly be done so that the ab initio calcula-
tion of the specific heat of a dilute gas, for example,
is perfectly feasible. It is equally clear that this di-
rect approach will not generally work in condensed
phases. The ab initio calculation of the melting
temperature of a material, for example, is not go-
ing to be done by computing its energy eigenval-
ues En.

In spite of the obvious difficulties, the ab ini-
tio calculation of melting properties has recently
become feasible [1, 2]. Indeed, all the essential ab
initio concepts are now at hand to calculate a wide
range of condensed-phase properties, including sol-
ubilities, phase diagrams, thermal-equilibrium con-
centrations of lattice defects [3 – 6], free energies
of surface adsorption, and equilibrium constants.
The aims of this study are to summarize the key
ideas that are making this possible and to give
practical examples of ab initio thermodynamic cal-
culations.

Key Ideas

In many condensed-phase problems, two major
simplifications can be made. First, the electrons can
be assumed to be in the ground state. Invoking
the Born–Oppenheimer principle, we can say that
if the N nuclei in the system are found at positions
R1, . . . , RN, then the total energy (excluding nuclear
kinetic energy) is U(R1, . . . , RN): the total ground-
state energy calculated with the nuclei at these
positions. Second, the nuclei can often be treated as
classical particles so that we can use the classical ap-

proximation for the free energy:

F = −kBT ln
{

1
N!33N

∫
dR1 · · · dRN

× exp
[−βU(R1, . . . , RN)

]}
, (2)

where 3 is the thermal wavelength, given by
h/(2πmkBT)1/2 (we assume that there is only one
kind of atom, whose mass is m). With these sim-
plifications, the problem reduces to (a) the ab initio
calculation of U and (b) the evaluation of the inte-
gral over configuration space.

We want to stress that we are discussing here
only methods in which U is calculated ab initio
for every set of positions {Ri} involved in com-
puting the integral over configuration space. We
distinguish this from approaches in which the total
energy is represented by some kind of parameter-
ized model. Even though the parameters in such a
model might have been determined by fitting to ab
initio calculations, this is not what we mean here by
“ab initio thermodynamics.”

In order to deliver what is needed, the ab initio
techniques must be capable of treating systems of
many atoms and of exploring large regions of con-
figuration space. There is only one effective way to
do this at present: density functional theory (DFT)
combined with the pseudopotential approach. DFT
is too well known to need detailed explanation here.
(For reviews, see, e.g. [7 – 9].) We recall its cen-
tral principle, which is that the total ground-state
energy of a system of electrons acted on by a po-
tential (in practice, the electrostatic potential due to
the nuclei) is uniquely determined by the electronic
density distribution n(r) [10, 11]. All the approxima-
tions are concentrated in the exchange–correlation
component Exc of the total energy. In the early days,
the local density approximation (LDA) was always
used for Exc [10, 11]; this assumes that there is a den-
sity of exchange–correlation energy that is related
to the local density n(r) in exactly the same way as
in a uniform electron gas. Nowadays, some form of
generalized gradient approximation (GGA) is fre-
quently used, and improved GGAs are continually
being developed [12 – 14]. DFT is highly competitive
in accuracy with other quantum chemistry methods
and is widely used for calculating the ground-state
energetics of both molecules and condensed-phase
systems.

In the pseudopotential approach [15 – 20], the
electrons are divided into two classes: core elec-
trons and valence electrons. The core electrons are
assumed to be in exactly the same state as in the
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free atom. The true interaction potential between
valence electrons and atomic cores is replaced by an
ab initio pseudopotential that has almost exactly the
same scattering properties. The key property of the
pseudopotential is that in the core region the result-
ing “pseudo-wave-functions” lack the rapid oscilla-
tions possessed by the true wave functions. Because
of their smoothness, the pseudo-wave-functions are
easy to represent in terms of mathematically sim-
ple basis functions, and the normal procedure is
to use a basis of free-electron wave functions, or
plane waves. In this scheme, it is natural, and
usual, to employ periodic boundary conditions so
that the extended system is represented as a col-
lection of atomic cores and electrons in a primary
cell, which is surrounded by periodic images of it-
self.

This DFT/pseudopotential/plane-wave method,
first formulated by Car and Parrinello [21] as a
way of performing ab initio molecular dynamics
simulations on condensed matter, is now in wide-
spread use for investigating both solids and liquids
[22 – 25]. For given nuclear positions {Ri}, the self-
consistent ground state and its energy U(R1, . . . , RN)
are determined by minimizing the total energy func-
tional with respect to the plane-wave coefficients.
The calculated forces on the nuclei are then used
with Newton’s equation of motion to generate the
trajectories Ri(t) of all the nuclei. To achieve this,
time is discretized into finite steps, and the self-
consistent ground state and the forces are recom-
puted at each step.

There are several DFT/pseudopotential/plane-
wave codes in common use. A review of some of the
key technical concepts underpinning these codes is
given in Ref. [22], although we note that there have
been considerable developments since that review
was written. Our work on the melting of Al was
performed with the VASP code [23, 24], which is
particularly stable and robust for metallic systems.
We shall see below that high precision and excellent
robustness are critically important in free energy
calculations. Technical aspects such as k-point sam-
pling and plane-wave cut-off, which are explained
in the reviews [22 – 24], must also be under strict
control if useful results are to be obtained.

Even with an accurate ab initio energy function
U(R1, . . . , RN), the calculation of the free energy
presents a major challenge, except in one case: the
harmonic system. For a harmonic vibrating solid (or
any other harmonic system) the energy U can be ex-
panded to quadratic order in the displacements ui

of the nuclei from their equilibrium positions:

U = Ueq +
∑
iα,jβ

uiα8iα,jβujβ , (3)

where Ueq is the equilibrium energy, and uiα de-
notes the αth Cartesian component of ui. In a crys-
tal, the phonon frequencies ωks (wave vector k,
branch s) are simply related to the eigenvalues of
the force-constant matrix 8iα,jβ . These eigenvalues
are straightforwardly calculated by diagonalization
of the dynamical matrix Dαβ(k), which is the Fourier
transform of the force-constant matrix:

Dαβ(k) = 1
m

∑
j

8iα,jβ exp
[
ik · (R0

i − R0
j

)]
, (4)

where R0
i is the position of lattice site i. (For ease of

writing, we assume here a monatomic crystal with
one atom per primitive cell.) The vibrational free
energy per atom is then given by:

Fvib = 1
Nk

∑
ks

[
1
2

h̄ωks + kBT ln
(
1− e−βh̄ωks

)]
, (5)

where the sum goes over the Brillouin zone, with Nk

the number of k vectors in this sum.
The ab initio calculation of the force-constant ma-

trix, and hence the phonon frequencies, of crystals
has been thoroughly explored in the last few years.
There are two main approaches: analytic perturba-
tion techniques based on linear response theory [26,
27] and the finite-displacement technique, based on
the ab initio calculation of the forces induced by
chosen displacements [28, 29]. The latter technique
uses the fact that the force-constant matrix gives
the proportionality between the forces Fiα (atom i,
Cartesian component α) and the displacements:

Fiα = −
∑

jβ

8iα,jβujβ . (6)

This relation is applied directly by calculating the
forces on the atoms in a large periodically repeated
cell for chosen displacements. Symmetry is used to
reduce to a minimum the number of independent
displacements that are needed. For further details,
see Ref. [28].

For anharmonic systems, and for liquids, a more
powerful and general approach is needed. The
strategy that has proved most successful is that
of “thermodynamic integration” [30], which allows
the free energy associated with the ab initio en-
ergy U(R1, . . . , RN) to be related to that of a refer-
ence system described by a simpler energy function
U0(R1, . . . , RN). The difference of free energy 1F be-
tween the systems is equal to the reversible work
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done on switching the energy function isother-
mally from U0 to U. In order to achieve this,
one needs a continuously variable energy function
Uλ(R1, . . . , RN), which depends on a “switching pa-
rameter” λ, defined so that Uλ = U0 for λ = 0,
and Uλ = U for λ = 1. It is then a standard result
of classical statistical mechanics that the change of
Helmholtz free energy caused by the infinitesimal
change dλ, this change being made at constant tem-
perature and volume, is:

dF = 〈dUλ/dλ〉λ dλ, (7)

where the thermal average 〈·〉λ is evaluated in the
canonical ensemble generated by the energy func-
tion Uλ. By integrating this relation, one obtains the
difference of free energy between the systems U0

and U:

1F =
∫ 1

0
dλ 〈dUλ/dλ〉λ. (8)

In many cases, the simplest procedure is to use a
linear switching between the two energy functions,
defined by:

Uλ = (1− λ)U0 + λU, (9)

in which case

1F =
∫ 1

0
dλ 〈U −U0〉λ. (10)

In order to calculate the ab initio free energy
by this route, one must choose a reference system
whose free energy is already known or is easily cal-
culable; in some cases, a system described by pair
potentials will be suitable. The difference1F is then
calculated by evaluating 〈U − U0〉λ at a series of
values of λ between 0 and 1, and performing the in-
tegral numerically. The evaluation of 〈U − U0〉λ is
done by ab initio molecular dynamics, with the en-
ergy Uλ used to generate the dynamics. It should
be noted that the foregoing thermodynamic inte-
gration formulas hold only for classical systems
because they assume that dUλ/dλ commutes with
the kinetic energy.

The success or failure of this whole scheme de-
pends heavily on the choice of reference system
because this determines the effort needed to com-
pute 1F. No general prescription can be given for
choosing U0, but the crucial requirement is that the
fluctuations of U−U0 should be as small as possible
in the ensemble generated by Uλ. There are two rea-
sons for this. The first is that the statistical accuracy
of 〈U − U0〉λ in a run of given length is determined
by the strength of the fluctuations (and, of course,

by their memory time). If we require a certain preci-
sion in 1F, this fixes the length of the runs needed
to achieve it. The second reason is that 〈U − U0〉λ
varies less with λ if the fluctuations are small, so
that a smaller number of λ values suffices to do the
integration. Although there are no general rules for
choosing U0, there is an obvious choice for vibrat-
ing solids, which is to choose U0 as the harmonic
part of the ab initio U given in Eq. (3). The condition
that quantum effects must be negligible for ther-
modynamic integration to be valid should not be
problematic here, since anharmonicity is normally
only significant at temperatures well above the De-
bye temperature. On the other hand, Eq. (5) for the
harmonic free energy Fvib fully includes quantum
effects.

Thermodynamic integration is the method of
choice for calculating the ab initio free energy of
liquids. Its use for calculating the free energy of an-
harmonic solids will be shown in the next section.

Practical Examples

The ab initio calculation of melting properties
provides an excellent illustration of the ideas we
have outlined, and we shall concentrate mainly on
this, but we shall also touch on the recent use of
DFT to calculate the free energy of formation of lat-
tice defects. The first fully ab initio study of melting
was that of Car and Sugino [1] on silicon; more re-
cently, we reported a detailed study of the melting
properties of aluminum [2]. It is important to under-
stand that high precision is crucial to the success of
this type of calculation, for a reason that is easy to
explain. The melting temperature is determined by
plotting the Gibbs free energies of solid and liquid
as a function of T for fixed p, and by determining
the point where the curves cross. But they cross at
a shallow angle. Since the entropy S is −(∂G/∂T)p,
the difference of slopes at the point of intersection is
1S, the entropy of fusion. If the free energy of the
liquid is subject to an error δG, which is not can-
celed by a similar error for the solid (or vice versa),
then the error in the melting temperature will be
δTm = δG/1S. But since 1S for most monatomic
materials is approximately kB per atom (it is actually
1.4kB for Al), then if we aim to calculate Tm within
100 K, the uncanceled error δG must be no more
than ca. 10 meV. This implies that the absolute tech-
nical precision for noncanceling errors of solid and
liquid separately must exceed this tolerance. The
question of how this can be achieved was examined
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in detail in our work on Al [2], and we summarize
the key points here.

For liquid Al, our ab initio simulations revealed
that the Lennard-Jones model provides an excellent
reference system. In this model, the total energy is a
sum of pair potentials of the form

φ(r) = 4ε
[(
σ

r

)12

−
(
σ

r

)6 ]
, (11)

where r is the interatomic distance. For each thermo-
dynamic state, we can choose the parameters ε and
σ so that the structures of the ab initio liquid and the
Lennard-Jones liquid are almost identical, in which
case the average 〈U−U0〉λ in the thermodynamic in-
tegral is almost independent of λ. Our tests showed
that the required precision can be achieved by ig-
noring the variation with λ and setting 〈U − U0〉λ
equal to its value for λ = 1

2 . The free energy of the
Lennard-Jones reference liquid has been extensively
investigated by other researchers, and we used the
accurate parameterized form published by Johnson
et al. [31].

It is important to stress that the free energy that
we need to compute refers to the thermodynamic
limit, in which the number of atoms in the sys-
tem tends to infinity, with the density held fixed.
But ab initio molecular dynamics calculations can
only be done for rather modest sizes of periodically
repeated cells; our ab initio simulations on liquid
Al were done with systems of only 64 atoms, so
finite-size errors need to be carefully considered.
The crucial point here is that the Lennard-Jones free
energies refer already to the thermodynamic limit,
so that we are concerned only with errors for the
quantity 〈U − U0〉λ, and this is much less sensitive
to system size. Our tests suggest that size errors for
this quantity are probably well within the required
tolerance already with 64 atoms.

For the crystal, a good approximation to the free
energy is obtained by ignoring anharmonic effects
and basing the calculation on the harmonic phonon
frequencies. Nevertheless, anharmonic corrections
are not negligible, and we use thermodynamic inte-
gration to calculate them. Our ab initio calculations
of the phonon frequencies ωks of the face-centred-
cubic aluminum crystal were performed using the
finite-displacement method [28] explained in the
previous section. Since all atoms in a face-centred-
cubic crystal, and all three Cartesian directions, are
equivalent by symmetry, displacement of a single
atom in a single direction suffices.

Having obtained the harmonic free energy, the
thermodynamic integration formula (10) is applied

to obtain anharmonic corrections, with U0 now
representing the ab initio harmonic energy, and U
the full ab initio energy. Sampling over configura-
tion space was performed by ab initio molecular
dynamical (MD) simulation. Here, it is crucial to
recognize that conventional dynamics suffers from
a serious problem because in a harmonic system
equipartition between vibrational modes is never
achieved. To overcome this ergodicity bottleneck,
we use instead the constant-temperature MD
technique of Andersen [32], in which the atomic
velocities are randomized at frequent intervals. We
find that for Al, anharmonicity raises the crystal free
energy enough to lower the melting temperature by
ca. 80 K.

The melting temperature, entropy, and volume
change on melting and other properties for alu-
minum that emerge from our calculations [2] are
compared with experimental values in Table I. The
comparison with experiment is very satisfying, es-
pecially when it is recalled that the final results
depend on no fitting to experimental data whatever.
The calculated Tm is correct to ca. 5%, and the en-
tropy and volume of fusion are in almost perfect
agreement with experimental values.

The techniques used in the earlier ab initio work
of Car and Sugino [1] on the melting of Si were sim-
ilar to those we have just described. The reference
system used for both the liquid and the solid was
the Stillinger–Weber (SW) interaction model [33],
for which the free energy is accurately known. (We
remark that the Lennard-Jones model would be
a very poor model for Si because it gives close-
packed hard-sphere-like structures for both solid
and liquid, whereas crystalline Si is tetrahedrally

TABLE I
Comparison between experimental and calculated
melting properties of Al from Ref. [2].a

Experiment Calculation

Tm (K) 933.47 890± 20
1S (kB/atom) 1.38 1.36± 0.04
1H (eV/atom) 0.111 0.104± 0.003
1V (Å3/atom) 1.24 1.26± 0.2
dTm/dP (K/GPa) 65 67± 12

a Listed are the melting temperature (Tm), the entropy of fu-
sion 1S, the enthalpy of fusion 1H (related to 1S by 1H =
Tm1S), the volume of fusion 1V, and the derivative of Tm
with respect to pressure. For sources of experimental data,
see Ref. [2].
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coordinated and liquid Si is approximately sixfold
coordinated [34].) As in our work on Al, careful at-
tention was paid to size effects, k-point sampling
errors, and other technical aspects. In calculating
the free energy of the crystal, Car and Sugino [1]
used the SW model as reference system, whereas
we would strongly advocate use of the ab initio
harmonic system. However, we have no reason to
suppose that their choice of reference system caused
any problems.

The calculated melting properties of Si [1] are
compared with experimental values in Table II. The
accord with experiment is not as good as what we
found for Al, the calculated Tm being too low by
ca. 20%. However, the predicted entropy and vol-
ume of fusion appear to be very satisfactory. There
are reasons why Si may be more difficult than a
simple metal like Al. Crystalline Si is a semiconduc-
tor (the experimental band-gap is 1.1 eV), whereas
the liquid is a metal. The way in which electronic
charges are screened therefore changes significantly
on melting, and it may be that the LDA does not
account for these changes accurately enough. Such
problems are not expected in a free-electron-like
metal such as Al.

Before leaving the subject of phase equilibria, we
note that the ability to calculate the free energies
associated with lattice vibrations opens up the pos-
sibility of calculating the relative thermodynamic
stabilities of different crystal structures, and phase
boundaries between them. A notable recent achieve-
ment has been the very recent work of Pavone
et al. [35] on the transition between the α and β

phases of tin. The α phase is more stable at low
temperatures, and the DFT-pseudopotential calcu-

TABLE II
Comparison between experimental and calculated
melting properties of Si from Ref. [1].a

Experiment Calculation

Tm (K) 1685 1350
1S (kB/atom) 3.6, 3.3 3.0
1H (eV/atom) 0.52, 0.47 0.35
1V (Å3/atom) −2.43, −1.94 −2.00
dTm/dP (K/GPa) −38 −50

a Listed are the melting temperature (Tm), the entropy of fu-
sion 1S, the enthalpy of fusion 1H (related to 1S by 1H =
Tm1S), the volume of fusion 1V, and the derivative of Tm
with respect to pressure. For sources of experimental data,
see Ref. [1].

lations confirm that at zero temperature its energy is
slightly below that of the β phase. However, the vi-
brational properties of the β phase make its entropy
larger at high temperatures. The calculations pre-
dict a zero-pressure transition temperature of 311 K,
which is very close to the experimental temperature
of 286 K. Other recent work on solid-state phase sta-
bility is reported in Refs. [29, 36 – 38]. The ab initio
calculation of vibrational free energies also makes it
possible to study thermal expansion [39] and other
thermodynamic properties of crystals.

We now turn briefly to the ab initio treatment
of lattice defects. In thermal equilibrium, all crys-
tals contain point defects, and in most materials the
vacancy is the dominant defect. (In some materials,
thermally generated interstitials are also important.)
At temperature T, the thermal equilibrium concen-
tration cvac of vacancies, i.e., the mean number of
vacancies per lattice site, is given by [40]:

cvac = exp(−βgvac), (12)

where gvac is the free energy of formation of a va-
cancy. To be more precise, gvac is the change of Gibbs
free energy of the system when an atom is removed
from a specified lattice site and the removed atom
is then replaced to create a new bulk lattice site,
the whole process being performed reversibly and
at constant pressure. Alternatively, and completely
equivalently, gvac can be regarded as the change of
Helmholtz free energy in this process, provided it is
performed at constant volume.

We can express gvac as the sum of two terms: first,
the change of free energy g(1)

vac when a chosen atom
is reversibly removed from a lattice site and parked
in some convenient “holding state;” second, the dif-
ference g(2)

vac between the free energy of the atom in
the holding state and the free energy per atom of the
perfect bulk crystal:

gvac = g(1)
vac + g(2)

vac. (13)

The choice of holding state is arbitrary and makes
no difference to the final result.

In the holding state used in Refs. [3 – 6], the re-
moved atom is completely isolated from all other
atoms in the system, but is acted on by a harmonic-
oscillator potential. With this choice, g(2)

vac is straight-
forward to calculate: The free energy of the atom
in the holding state is trivial, and the free energy
per atom in the bulk crystal can be computed as ex-
plained earlier in this section. The contribution g(1)

vac
is calculated by thermodynamic integration, and for
this we need a continuous reversible path connect-
ing the end states: the initial state is the perfect bulk
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crystal; the final state is the crystal containing a sin-
gle vacancy, together with the isolated atom in the
holding state. A path can be constructed by contin-
uously decoupling the chosen atom from the rest of
the system, while simultaneously switching in the
holding potential, the point on the path being spec-
ified by the coupling parameter λ.

In practice, the decoupling process is full of in-
teresting subtleties. Since the DFT/pseudopotential
technique is used, decoupling actually means
switching off the core charge of the removed ion and
the pseudopotential through which it interacts with
the valence electrons. This means that the atom in
the holding state is actually a bare uncharged core.
But the vacancy system so produced must contain Z
fewer valence electrons than the initial bulk system,
where Z is the core charge of the removed atom. It is
therefore essential that Z valence electrons be made
to disappear in a continuous way during the de-
coupling process. Although electrons do not behave
like Cheshire cats in the real world, their continu-
ously variable presence fits very naturally with the
conventional machinery of DFT, where partial elec-
tronic occupation numbers are routinely [41] used.
For full details of these and other subtleties, we re-
fer the reader to the original studies. As pointed
out by Smargiassi and Madden [5, 6], the general
principles just outlined are readily adapted to deal
with other defects, such as the divacancy and inter-
stitial.

The first practical calculations on defect concen-
trations using these ab initio methods were on the
vacancy in crystalline Si [3, 4]. This was followed by
detailed free energy calculations on the vacancy, the
divacancy, and self-interstitial in Na, reported by
Smargiassi and Madden [5, 6]. The reader is referred
to the original studies for details of the results.

Future Prospects

The examples we have presented leave no doubt
that the ab initio calculation of free energies
and other thermodynamic functions of condensed
phases is now a practical possibility. To clarify what
has been achieved, we return to the distinction
made earlier between a fully ab initio calculation of
thermodynamic functions and a calculation based
on a parameterized interaction model fitted to ab
initio calculations. In the techniques we have out-
lined, interaction models play a role as reference
systems in thermodynamic integration. But it is cru-
cial to appreciate that the final results do not depend

in any way on the choice of these models. This
choice affects only the route by which these results
are obtained. The situation is fundamentally differ-
ent if thermodynamic functions are calculated solely
from a fitted interaction model, because then the fi-
nal results clearly do depend on the choice of model.
Almost all fitting procedures involve fairly arbitrary
choices, and the likely errors are hard to judge. The
ability to avoid such uncertainties by performing
direct ab initio calculations of thermodynamic func-
tions is therefore a significant step forward.

But, of course, uncertainties remain because DFT
cannot be made exact. We stressed that in order to
treat melting with useful accuracy the calculation of
free energies must achieve a technical precision of
ca. 10 meV per atom. Needless to say, this is well
beyond the absolute accuracy of practical DFT cal-
culations. (For example, one would not expect to
predict cohesive energies to better than a few times
100 meV.) However, the size of absolute errors is
irrelevant. The relevant issue is the size of “non-
canceling errors”: errors that do not cancel between
the two phases in equilibrium. In the melting of met-
als, for example, where the atomic coordination and
electronic structure are often almost identical in the
coexisting solid and liquid, a high degree of cancel-
lation of DFT errors is expected, so that reduction of
noncanceling errors below 10 meV is not unrealistic.
What remains is then the reduction of other non-
canceling errors—those due to k-point sampling,
size effects, statistical sampling, etc.—below this
threshold. This is entirely achievable.

We believe that the ab initio calculation of phase
equilibria and defect concentrations is potentially
of great importance. One scientific area that is likely
to benefit in the near future is the earth sciences.
Under the conditions of extreme pressure and
temperature found in planetary interiors, phase
equilibria are difficult to determine experimentally,
and information from ab initio calculations will be
very valuable. The techniques we have outlined
will be directly applicable to solid–solid and
solid–liquid equilibria both in iron and in silicates,
which are the main constituents of Earth’s core and
mantle, respectively. Defect processes play a key
role in the convection of Earth’s mantle, which is
responsible for continental drift.

If we can calculate free energies, then it should
be possible to calculate chemical potentials, and
hence solubilities, and the compositions of coex-
isting phases in multicomponent systems. A large
amount of experience in the calculation of chemical
potentials has already been accumulated using sim-
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ulation methods based on classical potentials [30].
A commonly used procedure is to obtain chemi-
cal potentials by a thermodynamic integration in
which one chemical species is transmuted into an-
other. There is no doubt that such procedures could
be applied to fully ab initio simulation. However,
given the much greater computational effort needed
in ab initio calculations, it is clear that carefully de-
signed reference systems will play a key role here,
as they have already done in melting calculations.

We conclude with some comments about the in-
clusion of electronic thermal excitations and nuclear
quantum effects. Electronic excitations present no
problem in principle, and may be important for
matter under extreme conditions. Mermin’s finite-
temperature generalization of DFT [42] is already
quite widely used in the treatment of metallic sys-
tems [41]. The key issue here is the possible tem-
perature dependence of the exchange–correlation
energy, and very little is yet known about the accu-
racy of finite-temperature DFT in practical calcula-
tions.

Concerning nuclear quantum effects, we have
noted that the key formula of thermodynamic in-
tegration, Eq. (10), is valid only in classical sta-
tistical mechanics because it assumes that the en-
ergy U commutes with the nuclear kinetic energy.
However, this limitation is straightforward (though
possibly expensive) to overcome. Feynman’s path-
integral formulation of quantum mechanics [43, 44]
provides the basis for simulations of systems in
thermal equilibrium with full inclusion of nuclear
quantum effects [45 – 47]. The combination of path-
integral simulation with ab initio DFT methods has
already been used in practical calculations [48, 49],
and the evaluation of free energies by this approach
looks perfectly feasible.
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